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Con�dence interval from a simulation viewpoint

Assume, as usual, that we estimate τ = E(φ(X)) by means of MC,

providing the level (1− α) con�dence interval(
τN − λα/2

σ(φ)√
N
, τN + λα/2

σ(φ)√
N

)
for τ . Conversely, assume that we want to choose N large enough to

assure that we estimate τ with an error less than a given ε > 0 on the

speci�ed level. This means that

λα/2
σ(φ)√
N

< ε ⇔ N > λ2α/2
σ2(φ)

ε2
.

Thus, the required MC sample size N (and consequently the required

work) increases linearly with the variance σ2(φ).
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Alternative representations of τ

Thus, in general, a strategy to gain computational e�ciency would thus be

to �nd an alternative representation (φ′, f ′) of τ , in the sense that

τ = Ef (φ(X)) =

∫
X
φ(x)f(x) dx =

∫
X
φ′(x)f ′(x) dx = Ef ′(φ′(X)),

for which σ2f ′(φ
′) < σ2f (φ).

Last time we saw that importance sampling (IS) was one way to do this

(f ′ ← g and φ′ ← φω).
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Last time: Importance sampling

The basis of importance sampling was to take an instrumental density g on

X such that g(x) = 0⇒ f(x)φ(x) = 0 and rewrite the integral as

τ = Ef (φ(X)) =

∫
X
φ(x)f(x) dx =

∫
f(x)|φ(x)|>0

φ(x)f(x) dx

=

∫
g(x)>0

φ(x)
f(x)

g(x)
g(x) dx = Eg

(
φ(X)

f(X)

g(X)

)
= Eg (φ(X)ω(X)) ,

where

ω : {x ∈ X : g(x) > 0} 3 x 7→ f(x)

g(x)

is the so-called importance weight function.
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Last time: Importance sampling (cont.)

We may now estimate τ = Eg(φ(X)ω(X)) using standard MC:

for i = 1→ N do

draw Xi ∼ g
end for

set τN ←
∑N

i=1 φ(Xi)ω(Xi)/N
return τN

The CLT provides immediately, as N →∞,

√
N(τN − τ)

d.−→ N (0, σ2g(φω)),

where σ2g(φω) = Vg(φ(X)ω(X)) can be estimated using var.

Conclusion: Try to choose g so that the function x 7→ φ(x)ω(x) is close to

constant in the support of g.
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Last time: Self-normalized IS

Often f(x) is known only up to a normalizing constant c > 0, i.e.
f(x) = z(x)/c, where we can evaluate z(x) = cf(x) but not f(x). We

could then however show that τ can be rewritten as

τ = Ef (φ(X)) = . . . =
Eg(φ(X)ω(X))

Eg(ω(X))
,

where

ω : {x ∈ X : g(x) > 0} 3 x 7→ z(x)

g(x)

is known and can be evaluated.
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Last time: Self-normalized IS (cont.)

Thus, having generated a sample X1, . . . , XN from g we may estimate the

numerator Eg(φ(X)ω(X)) as well as the denominator Eg(ω(X)) using
standard MC:

τ =
Eg(φ(X)ω(X))

Eg(ω(X))

≈
1
N

∑N
i=1 φ(Xi)ω(Xi)

1
N

∑N
`=1 ω(X`)

=

N∑
i=1

ω(Xi)∑N
`=1 ω(X`)︸ ︷︷ ︸

normalized weight

φ(Xi) = τN .

We also concluded that the denominator yields an estimate of the

normalizing constant c:

c = Eg(ω(X)) ≈ 1

N

N∑
`=1

ω(X`).
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A CLT for self-normalized IS estimators

One may establish the following CLT.

Theorem

Assume that σ2g(ωφ) = Vg(ω(X)φ(X)) <∞. Then

√
N(τN − τ)

d.−→ N (0, σ2g(ω{φ− τ})/c2),

where, as usual, c = Eg(ω(X)).

The asymptotic standard deviation can be estimated by

(1) letting, for each of the draws Xi ∼ g,

Zi = ω(Xi)(φ(Xi)− τN ),

(2) applying std to the vector containing all the Zi's, and, �nally, (3)
dividing the result by the estimate of the normalizing constant c.
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What do we need to know?

OK, so what do we need to master for having practical use of the MC

method?

We agreed on that, for instance, the following questions should be

answered:

1: How do we generate the needed input random variables?

2: How many computer experiments should we do? What can be said

about the error?

3: Can we exploit problem structure to speed up the computation?
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Control variates

Assume that we have at hand another real-valued random variable Y ,

referred to as a control variate such that

(i) E(Y ) = m is known and

(ii) φ(X) and Y can be simulated at the same complexity as φ(X).

Then we may set, for some β ∈ R,

Z = φ(X) + β(Y −m),

so that

E(Z) = E(φ(X) + β(Y −m)) = E(φ(X))︸ ︷︷ ︸
=τ

+β (E(Y )−m)︸ ︷︷ ︸
=0

= τ.
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Control variates (cont.)

In addition, if φ(X) and Y have covariance C(φ(X), Y ) it holds that

V(Z) = V(φ(X) + βY ) = C(φ(X) + βY, φ(X) + βY )

= V(φ(X)) + 2βC(φ(X), Y ) + β2V(Y ).

Di�erentiating w.r.t. β and minimizing yields

0 = 2C(φ(X), Y ) + 2βV(Y ) ⇔ β = β∗ = −C(φ(X), Y )

V(Y )
,

which provides the optimal coe�cient β∗ in terms of variance.
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Control variates (cont.)

Plugging β∗ into the formula for V(Z) gives

V(Z) = V(φ(X)) + 2β∗C(φ(X), Y ) + (β∗)2V(Y )

= . . . = V(φ(X))

(
1− C(φ(X), Y )2

V(φ(X))V(Y )

)
= V(φ(X)){1−ρ(φ(X), Y )2},

where

ρ(φ(X), Y )
def
=

C(φ(X), Y )√
V(φ(X))

√
V(Y )

is the correlation between φ(X) and Y .

Consequently, we can expect large variance reduction if |ρ(φ(X), Y )| is
close to 1.
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Example: another tricky integral

We estimate

τ =

∫ π/2

−π/2
exp(cos2(x)) dx

sym
= 2

∫ π/2

0
exp(cos2(x)) dx∫ π/2

0
2
π

2
exp(cos2(x))︸ ︷︷ ︸

=φ(x)

2

π︸︷︷︸
=f(x)

dx = Ef (φ(X))

using

Z = φ(X) + β∗(Y −m),

where Y = cos2(X) is a control variate with

m = E(Y ) =

∫ π/2

0
cos2(x)

2

π
dx = {use integration by parts} = 1

2

and β̂∗ is an estimate of the optimal coe�cient.
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Example: another tricky integral (cont.)

cos2 = @(x) cos(x).^2;
phi = @(x) 2*(pi/2)*exp(cos2(x));
X = (pi/2)*rand(1,N);
tau = mean(phi(X));
Y = cos2(X);
m = 1/2;
beta = − cov([phi(X)' Y'])./var(Y); % appr. optimal beta
Z = phi(X) + beta(1,2)*(Y − m);
tau_CV = mean(Z);
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Antithetic sampling

Again, assume that we wish to estimate τ = Ef (φ(X)) by means of MC.

For simplicity, let V
def
= φ(X), so that τ = E(V ).

Now, assume we can generate another variable V ′ such that
(i) E(V ′) = τ ,
(ii) V(V ′) = V(V ) (= σ2(φ)),
(iii) V ′ can be simulated at the same complexity as V .

Then for

W
def
=
V + V ′

2
it holds that E(W ) = τ and

V(W ) = V
(
V + V ′

2

)
=

1

4

(
V(V ) + 2C(V, V ′) + V(V ′)

)
=

1

2

(
V(V ) + C(V, V ′)

)
.
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Antithetic sampling (cont.)

Now, recall that the number NV of V :s that we need to generate in order

to estimate τ with an error less than a given ε > 0 must satisfy

NV > λ2α/2
V(V )

ε2
.

Similarly,

NW > λ2α/2
V(W )

ε2
.

Consequently, it is better to use the W 's if

2λ2α/2
V(W )

ε2
< λ2α/2

V(V )

ε2
⇔ V(V ) + C(V, V ′) < V(V )

⇔ C(V, V ′) < 0.

So, if we can �nd V ′ such that the antithetic variables V and V ′ are
negatively correlated, then we will gain computational work.
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Antithetic sampling (cont.)

For this purpose, the following theorem can be very useful.

Theorem

Let V = ϕ(U), where ϕ : R→ R is a monotone function. Moreover,

assume that there exists a non-increasing transform T : R→ R such that

U
d.

= T (U). Then V = ϕ(U) and V ′ = ϕ(T (U)) are identically distributed

and

C(V, V ′) = C(ϕ(U), ϕ(T (U))) ≤ 0.
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Example: a tricky integral (reconsidered)

We estimate again

τ =

∫ π/2

−π/2
exp(cos2(x)) dx

sym
=

∫ π/2

0
2
π

2
exp(cos2(x))︸ ︷︷ ︸

=φ(x)

2

π︸︷︷︸
=f(x)

dx

= E(φ(X)).

Now, set 
U = cos2(X), X ∼ U(0, π/2)
T (u) = 1− u,
ϕ(u) = 2π2 exp(u).

Then

T (U) = 1− cos2(X) = sin2(X) = cos2
(π
2
−X

)
d.
= cos2(X) = U.
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Example: a tricky integral (reconsidered)

Since in addition T (u) = 1− u is non-increasing and ϕ(u) = 2π2 exp(u)
monotone, the theorem above applies. Thus,

C

π exp(cos2(X)), π exp(1− cos2(X)︸ ︷︷ ︸
=sin2(X)

)

 ≤ 0,

and we may apply antithetic sampling with
V = π exp(cos2(X)),

V ′ = π exp(sin2(X)),

W = V+V ′

2 .
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Example: another tricky integral (cont.)

In Matlab:

cos2 = @(x) cos(x).^2;
phi = @(x) pi*exp(cos2(x));
X = (pi/2)*rand(1,N);
tau = mean(phi(X));
XX = (pi/2)*rand(1,N/2); % only half the sample size
V_1 = pi*exp(cos2(XX));
V_2 = pi*exp(1 − cos2(XX));
W = (V_1 + V_2)/2;
tau_AS = mean(W);
UB = tau + norminv(0.975)*std(phi(X))./sqrt(N);
LB = tau − norminv(0.975)*std(phi(X))./sqrt(N);
UB_AS = tau_AS + norminv(0.975)*std(W)./sqrt(N/2);
LB_AS = tau_AS − norminv(0.975)*std(W)./sqrt(N/2);
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Example: another tricky integral (cont.)
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Strati�ed Sampling

Let A1, . . . , AJ be disjoint sets such that

∪Ji=1Ai = {support of distribution for X with density f}.

We then have that (Law of total probability)

f(x) =

J∑
i=1

fX|X∈Ai
(x)P(X ∈ Ai)

def
=

J∑
i=1

fi(x)pi.

So if we want to calculate τ = Ef (φ(X)) we can use that

Ef [φ(X)] =

J∑
i=1

piEfi [φ(X)].
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Strati�ed Sampling (Cont)

We can now simulate N1, N2, . . . , NJ independent random variables

{X1,k}N1
k=1, {X2,k}N2

k=1, . . . , {XJ,k}NJ
k=1 from f1, f2, . . . , fJ respectively

where
∑J

i=1Ni = N . The simulation can be done using problem one on

the home assignment if the Ai:s are intervals. We then form the Monte

Carlo estimate

τ stratN =

J∑
i=1

pi
Ni

Ni∑
k=1

φ(Xi,k).

E[τ stratN ] =

J∑
i=1

piEfi [φ(Xi,1)]
def
=

J∑
i=1

piµi = Ef [φ(X)]

and

V[τ stratN ] =

J∑
i=1

p2i
Ni

Vfi [φ(Xi,1)]
def
=

J∑
i=1

p2i
Ni
σ2i .
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When is this better than standard Monte Carlo?

First we have that for τN being the standard MC estimate

V[τN ] =
1

N
Vf [φ(X)] =

1

N

J∑
i=1

piσ
2
i +

1

N

J∑
i=1

pi(µi − τ)2

Comparing this with

V[τ stratN ] =

J∑
i=1

p2i
Ni
σ2i

we see that choosing Ni = piN (proportional allocation) will give

V[τ strat,propN ] =
1

N

J∑
i=1

piσ
2
i ≤ V[τN ].

One extreme choice would be J = N ,

Ai = (F−1((i− 1)/N), F−1(i/N)]⇒ pi = 1/N ⇒ Ni = 1.
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Example: Tricky integral again

We estimate

τ =

∫ π/2

−π/2
exp(cos2(x)) dx

with (extreme) strati�ed sampling
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Optimal alloction (Neyman allocation)

Minimizing
J∑
i=1

p2i
Ni
σ2i

under the restriction N1 +N2 + . . .+NJ = N give us

Nj = N
pjσj∑J
i=1 piσi

, j = 1, 2, . . . , J

which gives the variance

V[τ strat,optimal
N ] =

1

N

(
J∑
i=1

piσi

)2
C-S
≤ 1

N

J∑
i=1

piσ
2
i = V[τ strat,propN ] ≤ V[τN ].

This optimal choice of Ni is called Neyman allocation. The problem is

however that we do not know the σi:s. We can use MC-methods with a

smaller sample size to estimate them approximately (pilot sampling).
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