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Introduction to variance reduction

Confidence interval from a simulation viewpoint

Assume, as usual, that we estimate 7 = E(¢(X)) by means of MC,
providing the level (1 — «) confidence interval

(TN - A01/20\-/(‘%?77-N + )‘a/QO\-/(gﬁv)>

for 7. Conversely, assume that we want to choose IV large enough to

assure that we estimate 7 with an error less than a given € > 0 on the
specified level. This means that

2
AQ/Q@« o N>, 79

\/N a/2 €2

Thus, the required MC sample size N (and consequently the required
work) increases linearly with the variance o2(¢).
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Introduction to variance reduction

Alternative representations of 7

Thus, in general, a strategy to gain computational efficiency would thus be
to find an alternative representation (¢, f’) of 7, in the sense that

r=Ey(0(X) = [ 6la)f(@)do = [ o(a)f(0)do = B (4 (X)),

for which O' (d) < O'f (9).

Last time we saw that importance sampling (IS) was one way to do this

(f' + g and ¢/ «+ guw).
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Introduction to variance reduction

Last time: Importance sampling

The basis of importance sampling was to take an instrumental density g on
X such that g(z) = 0= f(z)¢(x) = 0 and rewrite the integral as

T=FE (z)dx = z)f(z)dz
s /¢ /f(r)¢(93)>0¢( e
) )Y _ )
/g o b @ b =y (000 S ) = By 0000002),
where
w:{mEX:g(m)>0}9x»—>£g;

is the so-called importance weight function.
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Introduction to variance reduction

Last time: Importance sampling (cont.)

We may now estimate 7 = E(¢(X)w(X)) using standard MC:

fori=1— N do
draw X, ~ g
end for
set T = ity H(X)w(X;)/N
return 7N
The CLT provides immediately, as N — oo,

VN(7y = 1) = N(0,05(6)),

where ag(cf)w) = Vy(¢(X)w(X)) can be estimated using var.

Conclusion: Try to choose g so that the function x — ¢(z)w(z) is close to
constant in the support of g.
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Introduction to variance reduction

Last time: Self-normalized IS

Often f(z) is known only up to a normalizing constant ¢ > 0, i.e.
f(z) = z(x)/c, where we can evaluate z(z) = c¢f(x) but not f(z). We
could then however show that 7 can be rewritten as

P By (0X) = .. = AT

where
w:{xEX:g(x)>O}9x»—>@

(x

<
~—

is known and can be evaluated.
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Introduction to variance reduction

Last time: Self-normalized IS (cont.)

Thus, having generated a sample X,..., X, from g we may estimate the
numerator E,(¢(X)w(X)) as well as the denominator E4(w(X)) using
standard MC:

= Eg(0(X)w (X))
EQ(W(X))
~ %Zi\il ¢(X3)w (X)) _ > GO X)=r1
%Zévzlw(Xg) ;Zévlw(Xg) ¢( 2) N -
= -

normalized weight

We also concluded that the denominator yields an estimate of the
normalizing constant c:

1 N
¢ =Ey(w(X)) = & > w(X).
/=1
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Introduction to variance reduction

A CLT for self-normalized IS estimators

One may establish the following CLT.

Theorem
Assume that o7 (w¢) = Vy(w(X)p(X)) < co. Then

VN(ry —7) = N(0, 05 (w{e = 7})/S),

where, as usual, ¢ = Eg(w(X)).

The asymptotic standard deviation can be estimated by
(1) letting, for each of the draws X, ~ g,

Zi = w(X;)((X;) — ),

(2) applying std to the vector containing all the Z;'s, and, finally, (3)
dividing the result by the estimate of the normalizing constant c.
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Control variates

What do we need to know?

OK, so what do we need to master for having practical use of the MC
method?
We agreed on that, for instance, the following questions should be
answered:
1: How do we generate the needed input random variables?
2: How many computer experiments should we do? What can be said
about the error?

3: Can we exploit problem structure to speed up the computation?
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Control variates

Control variates

Assume that we have at hand another real-valued random variable Y,
referred to as a control variate such that

@ E(Y)=mis known and
® ¢(X) and Y can be simulated at the same complexity as ¢(X).

Then we may set, for some 8 € R,

E(Z) = E(¢(X) + B(Y —m)) = E(¢(X)) +5 (E(Y) —m) = 7.

=T =0
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Control variates

Control variates (cont.)

In addition, if (X)) and Y have covariance C(¢(X),Y) it holds that

V(Z) = V(¢(X) + BY) = C(¢(X) + BY, (X) + 5Y)
= V($(X)) + 26C(4(X), Y) + B2V(Y).
Differentiating w.r.t. 8 and minimizing yields

Clo(X),Y)

0=2C((X),Y) +28V(Y) & B=f"=-—Frs—

which provides the optimal coefficient 5* in terms of variance.
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is the correlation between ¢(X) and Y.

Consequently, we can expect large variance reduction if |p(¢(X),Y)] is
close to 1.
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Control variates

Example: another tricky integral

We estimate

w/2 sum /2
7'—/ exp(cos?(x)) dz "L 2/ exp(cos®(z)) dz
0

—7/2
/2
/ 2% exp(cost(z)) = dz = Ef(¢(X))
0 — <~
=¢(z) =f(z)

using
Z = 6(X) + B(Y —m),
where Y = cos?(X) is a control variate with

/2 9 1
m=EY) = / cos?(x) = dz = {use integration by parts} = 5
0 T

and 3* is an estimate of the optimal coefficient.
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Control variates

Example: another tricky integral (cont.)

cos2 = @(x) cos(x)."2;

phi = Q(x) 2% (pi/2)*exp(cos2(x));
X = (pi/2)+*rand(l,N);

tau = mean (phi (X)) ;

Y = cos2 (X);

m=1/2;

beta = — cov([phi(X)' Y'])./var(Y); % appr. optimal beta
Z = phi(X) + beta(l,2)* (Y — m);

tau_CV mean (Z) ;

0 100 200 300 400 500 600 700
Sample size N
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Antithetic sampling
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Antithetic sampling

Antithetic sampling

Again, assume that we wish to estimate 7 = E¢(¢(X)) by means of MC.
For simplicity, let V = ¢(X), so that 7 = E(V).

Now, assume we can generate another variable V’ such that

@ EWV')=r,

0 V() =V(V) (=0%¢)),

@ V' can be simulated at the same complexity as V.

Then for
WgV;V
it holds that E(W) = 7 and
!
1
V(W) =V <V +2 v > = £ (V(V) +2C(V, V) + V(1))

(V(V) +C(V,V")).

N =
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Antithetic sampling

Antithetic sampling (cont.)

Now, recall that the number Ny of Vs that we need to generate in order
to estimate 7 with an error less than a given € > 0 must satisfy

v(v)
NV > )\i/Q 62 .

Similarly,

V(W)

€
Consequently, it is better to use the W's if

V(W V(V
2A§/2(62) < Ai/Q;) & VW) +C(V, V) <V(V)

s C(V, V) <o.

So, if we can find V' such that the antithetic variables V and V' are
negatively correlated, then we will gain computational work.
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Antithetic sampling

Antithetic sampling (cont.)

For this purpose, the following theorem can be very useful.

Theorem
Let V = p(U), where ¢ : R — R is a monotone function. Moreover,

assume that there exists a non-increasing transform T : R — R such that
UZ<TU). Then V = (U) and V' = o(T(U)) are identically distributed

and
C(V,V') = C(p(U), p(T(U))) < 0.
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Antithetic sampling

Example: a tricky integral (reconsidered)

We estimate again

w/2 /2
T :/ exp(cos?(x)) dz Sy:m/ 2E€XP(C032(95)) 2 dx
—/2 0 2 N
=¢(x) =f(z)
= E(¢(X))
Now, set
U =cos®(X), X ~U(0,7/2)
T(u)=1-u,
p(u) = 25 exp(u)
Then

T(U) =1 — cos*(X) = sin*(X) = cos? (g - X) 2 cos?(X) = U.
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Antithetic sampling

Example: a tricky integral (reconsidered)

Since in addition T'(u) = 1 — u is non-increasing and ¢(u) = 27 exp(u)
monotone, the theorem above applies. Thus,

C | mexp(cos®(X)), mexp(1 — cos?(X)) | <0,
2
=sin“(X)

and we may apply antithetic sampling with

V = mexp(cos?(X)),

V' = mexp(sin?(X)),
VeV

W= Y5
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Antithetic sampling

Example: another tricky integral (cont.)

In Matlab:

cos2 = @(x) cos(x)."2;

phi = @(x) pixexp(cos2(x));

X = (pi/2)+*rand(1l,N);

tau = mean (phi (X)) ;

XX = (pi/2)*rand(1,N/2); % only half the sample size

V_1 = pixexp(cos2(XX));

V_2 = pixexp(l — cos2(XX));

W= (V_1 + V_2)/2;

tau_AS = mean (W) ;

UB = tau + norminv (0.975) xstd (phi (X)) ./sqgrt (N);

LB = tau — norminv (0.975) xstd (phi (X)) ./sqrt (N);
UB_AS = tau_AS + norminv (0.975)«std (W) ./sqrt (N/2);
LB_AS tau_AS — norminv (0.975) xstd (W) ./sqrt (N/2);
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Antithetic sampling

Example: another tricky integral (con

.
' Standard MC

445
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Stratified Sampling
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Stratified Sampling

Stratified Sampling

Let Aq,..., Ay be disjoint sets such that

U, A; = {support of distribution for X with density f}.

We then have that (Law of total probability)

J
ZfX\XeA P(X € A) S filz)ps-

=1

So if we want to calculate 7 = E¢(¢(X)) we can use that
J
X =) piEglo(X
i=1
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Stratified Sampling

Stratified Sampling (Cont)

We can now simulate Ny, No, ..., N independent random variables
{lek}évzll, {X27k}’1€v:21, e {XJ7]€};€V;1 from fl, fg, e fJ respectively
where Z{Zl N; = N. The simulation can be done using problem one on
the home assignment if the A;:s are intervals. We then form the Monte

Carlo estimate
J
strat Z

i=1 k=1

J
strat szEfz X; 1)] . sz‘ﬂi = IEf [¢(X)]
=1

N;

-

P(X

==

and

def 1
strat ’L Q}’ Z 7 )] ]\;’L O-Z .
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Stratified Sampling

When is this better than standard Monte Carlo?

First we have that for 7y being the standard MC estimate

1 1< 1<
Virn] = S Vslo(X)] = > pio + N > pilpi —7)?
=1 =1

Comparing this with

strat § :pz 2

we see that choosing N; = p; N (proportlonal allocation) will give

V[Ti}rat ProP] = sza < V).
=1

One extreme choice would be J = N,
Aj=(FY((i =1)/N),F~'(i/N)] = pi=1/N = N; = 1.
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Stratified Sampling

Example: Tricky integral again

We estimate

w/2
T = / exp(cos?(x)) dz

—7/2
with (extreme) stratified sampling
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Stratified Sampling

Optimal alloction (Neyman allocation)

Minimizing
J
> o
—~ N; '
=1

under the restriction N1 + Ny + ...+ Ny = N give us
Nj=N—2% _ j_192 . ...J

22]:1 Dio;
which gives the variance
2
| > 1 :
V[T]s(;rat optlma (Z p20_2> S N Z;pio'iz — V[Tﬁrat proP] < V[TN].
1=

This optimal choice of N; is called Neyman allocation. The problem is
however that we do not know the o;:s. We can use MC-methods with a
smaller sample size to estimate them approximately (pilot sampling).
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