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Summary

Last time: Principal aim

We formulated the main problem of the course, namely to compute some
expectation

τ = E(φ(X)) =

∫
A
φ(x)f(x) dx,

where

X is a random variable taking values in A ⊆ Rd (where d ∈ N∗ may
be very large),

f : A→ R+ is the probability density (target density) of X, and

φ : A→ R is a function (objective function) such that the above
expectation exists.

This framework covers a large set of fundamental problem in statistics and
numerical analysis, and we inspected a few examples.

M. Wiktorsson Monte Carlo and Empirical Methods for Stochastic Inference, L2 (2) 2 / 24



MC output analysis
Generating pseudo-random numbers

Summary

Last time: Principal aim

We formulated the main problem of the course, namely to compute some
expectation

τ = E(φ(X)) =

∫
A
φ(x)f(x) dx,

where

X is a random variable taking values in A ⊆ Rd (where d ∈ N∗ may
be very large),

f : A→ R+ is the probability density (target density) of X, and

φ : A→ R is a function (objective function) such that the above
expectation exists.

This framework covers a large set of fundamental problem in statistics and
numerical analysis, and we inspected a few examples.

M. Wiktorsson Monte Carlo and Empirical Methods for Stochastic Inference, L2 (2) 2 / 24



MC output analysis
Generating pseudo-random numbers

Summary

Last time: The MC method in a nutshell

Let X1, X2, . . . , XN be independent random variables with density f .
Then, by the law of large numbers, as N tends to in�nity,

τN
def.
=

1

N

N∑
i=1

φ(Xi)→ E(φ(X)). (a.s.)

Inspired by this result, we formulated the basic MC sampler:

for i = 1→ N do

draw Xi ∼ f
end for

set τN ←
∑N

i=1 φ(Xi)/N
return τN
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What do we need to know?

OK, so what do we need to master for having practical use of the MC
method?

We agreed on that, for instance, the following questions should be
answered:

1: How do we generate the needed input random variables?

2: How many computer experiments should we do? What can be said
about the error?

3: Can we exploit problem structure to speed up the computation
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Plan of today's lecture

1 MC output analysis
Con�dence bounds
The delta method

2 Generating pseudo-random numbers
Uniform pseudo-random numbers
The inversion method
Rejection sampling

3 Summary
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Con�dence bounds
The delta method

Con�dence bounds

Last time we noticed that the central limit theorem (CLT) implies

√
N (τN − τ)

d.−→ N (0, σ2(φ)), as N →∞,

where
σ2(φ)

def.
= V (φ(X)) .

Consequently, the two-sided con�dence interval

Iα =

(
τN − λα/2

σ(φ)√
N
, τN + λα/2

σ(φ)√
N

)
,

where λp denotes the p-quantile of the standard normal distribution, covers
τ with (approximate) probability 1− α.

A problem with this approach is that σ2(φ) is in general not known.
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Con�dence bounds (cont.)

Quick �x: σ2(φ) is again an expectation that can be estimated using the
already generated MC sample (Xi)

N
i=1! More speci�cally, for large N 's,

σ2(φ) = E
(
φ2(X)

)
− E2 (φ(X)) = E

(
φ2(X)

)
− τ2

≈ 1

N

N∑
i=1

φ2(Xi)− τ2N =
1

N

N∑
i=1

(
φ(Xi)−

1

N

N∑
`=1

φ(X`)

)2

.

This estimator is not unbiased, and one often uses instead the
bias-corrected estimator

σ2N (φ)
def.
=

1

N − 1

N∑
i=1

(
φ(Xi)−

1

N

N∑
`=1

φ(X`)

)2

.

In Matlab, this estimator is pre-implemented in the routine var (see also
std).
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The delta method

For a given estimand τ , one is often interested in estimating ϕ(τ) for some
function ϕ : R→ R.

Question: Is it OK to simply estimate ϕ(τ) by ϕ(τN )?

The estimator ϕ(τN ) is not unbiased; indeed, under suitable assumptions
on ϕ it holds that

E (ϕ(τ)− ϕ(τN )) =
ϕ′′(τ)

2
V(τN ) +O

(
N−2

)
=
ϕ′′(τ)σ2(φ)

2N
+O

(
N−2

)
,

verifying that ϕ(τN ) is asymptotically unbiased (consistent). In addition,
one may establish the CLT

√
N (ϕ(τN )− ϕ(τ))

d.−→ N (0, ϕ′(τ)2σ2(φ)), as N →∞,

which can by used for constructing CBs in the usual manner.
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Example: Bu�on's needle (Simulation without computer)

Consider a wooden �oor with parallel boards of width d on which we
randomly drop a needle with length `, with ` ≤ d. Let{
X = distance from the lower needlepoint to the upper board edge ∈ U(0, d),

θ = angle between the needle and the board edge normal ∈ U(−π/2, π/2).

Then

τ = P (needle intersects board edge) = P(X ≤ ` cos θ) = . . . =
2`

πd
.

so we can estimate π as,

π =
2`

τd
.

This may not look well suited for computer implementation since

the simulation of θ seems to need the value of π.

M. Wiktorsson Monte Carlo and Empirical Methods for Stochastic Inference, L2 (9) 9 / 24
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Example: Bu�on's needle (cont.)

However if U1, U2 ∈ U(0, 1) then

Y =
U1√

U2
1 + U2

2

|{U2
1 + U2

2 ≤ 1} d
= cos(θ).

So we can draw U1 and U2 and generate Y if U2
1 + U2

2 ≤ 1. We will soon
talk more about this (rejection sampling).
But if we analyse the probability for this event to happen we see that

P(U2
1 + U2

2 ≤ 1) = π/4.

So this actually suggests a better way to estimate π directly.
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Example: Bu�on's needle (cont.)

Since

τ = P (needle intersects board edge) = E
(
1{X≤` cos θ}

)
,

an MC approximation of π is obtained by using the delta method by �rst
estimating τ via

X = d*rand(1,N);
for i=1:N
ready=0;
while ~ready
U=rand(2,1);
ready=sum(U.^2)<=1;

end
costheta(i)=U(1)/sqrt(sum(U.^2));

end
tau = mean(X <= L*costheta);

and then letting

pi_est = 2*L./(tau*d);
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MC output analysis
Generating pseudo-random numbers

Summary

Con�dence bounds
The delta method

Example: Bu�on's needle (cont.)

The delta method provides a 95% con�dence interval through

sigma = std(X <= L*costheta);
LB = pi_est − norminv(0.975)*2*L/(d*tau^2*sqrt(N))*sigma;
UB = pi_est + norminv(0.975)*2*L/(d*tau^2*sqrt(N))*sigma;

Executing this code (and the previous) for N = 1:10:1000 yields the
following graph:
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Generating pseudo-random numbers

Pseudo-random numbers = Numbers exhibiting statistical randomness
while being generated by a deterministic process.

We will discuss

how to generate pseudo-random U(0, 1) numbers,

inversion and transformation methods,

rejection sampling, and

conditional methods.
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Good pseudo-random numbers

�Good� pseudo-random numbers

appear to come from the correct distribution (also in the tails),

have long periodicity,

are �independent� and

fast to generate.

Most standard computing languages have packages or functions that
generate either U(0, 1) random numbers or integers on U(0, 232 − 1):

rand and unifrnd in matlab

rand in C/C++

Random in Java
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Linear congruential generator (LCG)

The linear congruential generator is a simple, fast, and popular way of
generating random numbers:

Xn = (a ·Xn−1 + c) mod m,

where a, c, and m are integers. This recursion generates integer numbers
(Xn) in [0,m− 1]. These are mapped to (0, 1) through division by m.
It turns out that the period of the generator is m if (for c > 0)

(i) c and m are relatively prime,

(ii) a− 1 is divisible by all prime factors of m, and

(iii)a− 1 is divisible by 4 if m is divisible by 4.

This is known as the Hull-Dobell Theorem (1962). �Thus with m as a
power of 2, as natural on a binary machine, we need only to have c odd
and a mod 4 = 1� (Hull-Dobell,1962).
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Multiplicative congruential generator (MCG)

The multiplicative congruential generator is special case of LCG:s where
c = 0:

Xn = a ·Xn−1 mod m,

where a, m are integers. This recursion generates integer numbers (Xn) in
[1,m− 1]. These are mapped to (0, 1) through division by m. It turns out
that the period of the generator is m− 1 if

(i) The number m is a prime,

(ii) The multiplier a is is primitive root of m, and

(iii)x0 ∈ [1,m− 1].

The number a is a primitive root of m if and only if a mod m 6= 0 and
a(m−1)/q mod m 6= 1, for any prime divisor q of m− 1.

As an example, MATLAB (pre v. 5) uses m = 231 − 1, a = 75 = 16807.
Now MATLAB uses the Mersenne Twister alogorithm.
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The inversion method

We will now assume that we have access to U(0, 1) pseudo-random
numbers U and want to generate random numbers X from a univariate
distribution with distribution function F .

De�ne the general inverse F←(u)
def.
= inf{x ∈ R : F (x) ≥ u} and

draw U ∼ U(0, 1)
set X ← F←(U)
return X

One may now prove the following.

Theorem (Inverse method)

The output X has distribution function F .
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The inversion method (cont.)

Some remarks:

If F is strictly monotone, then F← = F−1.

The method is limited to cases where

we want to generate univariate random numbers and
the generalized inverse F← is easy to evaluate (which is far from
always the case).
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Example: exponential distribution

F (x) = 1− e−x, x ∈ R+ ⇔ F←(u) = − log(1− u), u ∈ (0, 1)

F_inv = @(y) − log(1 − y);
U = rand(1,20);
X = F_inv(U);
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Rejection sampling

The inversion method looks promising, but what do we do if, e.g.,
f(x) ∝ exp(cos2(x)), x ∈ (−π/2, π/2)? Here we cannot �nd an inverse

and even the normalizing constant is hard to calculate. /
In the continuous case the following (somewhat magic!) algorithm saves
the day. Let f and g be densities on Rd for which there exists a constant
K <∞ such that f(x) ≤ Kg(x) for all x ∈ Rd; then
repeat

draw X∗ ∼ g
draw U ∼ U(0, 1)

until U ≤ f(X∗)
Kg(X∗)

X ← X∗

return X
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Rejection sampling (cont.)

The following holds true:

Theorem (Rejection sampling)

The output X of the rejection sampling algorithm has density function f .

Moreover:

Theorem

The expected number of trials needed before acceptance is K.

Consequently, K should be chosen as small as possible.
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Example

We wish to simulate f(x) = exp(cos2(x))/c, x ∈ (−π/2, π/2), where
c =

∫ π/2
−π/2 exp(cos

2(z)) dz = πe1/2Io(1/2) is the normalizing constant.

However, since for all x ∈ (−π/2, π/2),

f(x) =
exp(cos2(x))

c
≤ e

c
=

eπ

c︸︷︷︸
K

× 1

π︸︷︷︸
g

,

where g is the density of U(−π/2, π/2), we may use rejection sampling
where a candidate X∗ ∼ U(−π/2, π/2) is accepted if

U ≤ f(X∗)

Kg(X∗)
=

exp(cos2(X∗))/c

e/c
= exp(cos2(X∗)− 1).
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prob = @(x) exp((cos(x))^2 − 1);
trial = 1;
accepted = false;
while ~accepted,

Xcand = − pi/2 + pi*rand;
if rand < prob(Xcand),

accepted = true;
X = Xcand;

else
trial = trial + 1;
end

end
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Figure: Plot of a histogram of 20,000 accept-reject draws together with the true
density. The average number of trials was
1.5555(≈ K = e1/2/I0(1/2) ≈ 1.5503).
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Summary

Today we have

discussed how to construct con�dence intervals of the MC estimates
using the CLT,

shown that natural estimator ϕ(τN ) of ϕ(τ) is asymptotically
consistent,

shown how to generate pseudo-random numbers using

the inversion method (when the general inverse F← of F is easily
obtained),
rejection sampling (when f(x) ≤ Kg(x) for some density g and
constant K),
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