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People and literature

The following people are involved in the course:

Function Name Room E-mail

Lecturer Magnus Wiktorsson MH:130 magnusw@maths.lth.se

Assistants Samuel Wiqvist MH:326 samuel@maths.lth.se

Maria Juhlin MH:138A juhlin@maths.lth.se

Secretary Susann Nordqvist MH:221 susann.nordqvist@matstat.lu.se

The following material will be used:

Slides. Will be available online immediately after each lecture.

Geof H. Givens and Jennifer A. Hoeting Computational Statistics

Second Edition (2012). Ebook available at:
http://ludwig.lub.lu.se/login?url=http:

//onlinelibrary.wiley.com/book/10.1002/9781118555552

Book homepage:
http://www.stat.colostate.edu/computationalstatistics/
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Course schedule and homepage

The course schedule is as follows:

Weekday Time Room

Lecture I Tuesday 13.15�15 E:C
Computer session I Wednesday 8.15�10 E:Neptunus, E:Pluto
Computer session II Wednesday 15.15�17 E:Neptunus, E:Pluto
(Week 2 only) Tuesday 15.15-17 E:Neptunus, E:Pluto
Lecture II Thursday 15.15�17 E:C
O�ce hours Friday 15.30�16.30 MH:130, MH:326

and MH:138A

The computer sessions and o�ce hours start in Week 2.

Information and Matlab �les will be available at the homepage:

https://canvas.education.lu.se/courses/3630.
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Examination

The examination comprises

three larger projects handed out during Weeks 2, 4, and 6. Each
project requires the submission of a report. The projects, which are
solved in pairs, concern

1 simulation and Monte Carlo integration,

2 sequential Monte Carlo methods, and

3 Markov chain Monte Carlo methods and Bayesian inference.

an oral exam.

The �nal mark will be computed according to the formula

Final mark =

⌈
Median project mark + Mark at oral exam

2

⌉
.
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Course contents

Part I: Monte Carlo integration

Simulation and Monte Carlo integration (Weeks 1�2)

Sequential Monte Carlo methods (3�4)

Markov chain Monte Carlo (MCMC) methods (4�5)

Part II: Applications to inference

Applications of MCMC to Bayesian statistics (5�6)

Bootstrap (6�7)

Permutation tests (7)
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Principal aim

The main problem of the course is to compute some expectation

τ
def.
= E(φ(X)) =

∫
A
φ(x)f(x) dx,

where

X is a random variable taking values in A ⊆ Rd (where d ∈ N may be
very large),

f : A→ R+ is the probability density of X (referred to as the target
density), and

φ : A→ R is a function (referred to as the objective function) such
that the above expectation is �nite.

As we will see in the following, this framework covers a large set of
fundamental problems in statistics, numerical analysis, and other scienti�c
disciplines.
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The Monte Carlo (MC) method in a nutshell (Ch. 6.1)

Let X1, X2, . . . , XN be independent random variables with density f .
Then, by the law of large numbers, as N tends to in�nity,

τN
def.
=

1

N

N∑
i=1

φ(Xi)→ τ = E(φ(X)). (a.s.)

Inspired by this result, we formulate the following basic MC sampler
(Stanisªav Ulam, John von Neumann, and Nicholas Metropolis; the Los
Alamos Scienti�c Laboratory; 40's):

for i = 1→ N do

draw Xi ∼ f
end for

set τN ←
∑N

i=1 φ(Xi)/N
return τN
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�The �rst thoughts and attempts I made to practice [the Monte Carlo
method] were suggested by a question which occurred to me in 1946 as I

was convalescing from an illness and playing solitaires. The question was

what are the chances that a Can�eld solitaire1 laid out with 52 cards will

come out successfully? After spending a lot of time trying to estimate

them by pure combinatorial calculations, I wondered whether a more

practical method than 'abstract thinking' might not be to lay it out say one

hundred times and simply observe and count the number of successful

plays. This was already possible to envisage with the beginning of the new

era of fast computers, and I immediately thought of problems of neutron

di�usion and other questions of mathematical physics, and more generally

how to change processes described by certain di�erential equations into an

equivalent form interpretable as a succession of random operations. Later

[in 1946], I described the idea to John von Neumann, and we began to plan

actual calculations.�

�Stanisªav Ulam
1See link on course home page for rules of the game.
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The curse of dimensionality

Most numerical integration methods are of order O(N−c/d), where N is
the number of function evaluations needed to approximate the integral and
c > 0 is a constant�cf. the trapezoidal method (c = 2) or the Simpson
method (c = 4).Thus, for some C ≥ 1,

εN
def.
= |τ − τN | ≤ CN−c/d.

In order to guarantee that εN ≤ δ, N should satisfy

CN−c/d ≤ δ ⇔ N ≥
(
C

δ

)d/c
This means that for a �xed error the number of function evaluations grows
exponentially with the dimension d of A.
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Rate of convergence of MC

For the MC method, the error is random. However, the central limit
theorem implies, under the assumption that V(φ(X)) <∞,

√
N (τN − τ)

d.−→ N (0,V(φ(X))).

This means that for large N 's,

V
(√

N (τN − τ)
)

= NV (τN − τ) = V(φ(X)),

implying that

D (τN − τ)
def.
=
√

V (τN − τ) =

√
V(φ(X))

N
=

D(φ(X))√
N

.

Thus, the MC convergence rate O(N−1/2) is independent of d!
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Example: Integration

The problem of computing an integral of form∫
(0,1)d

h(x) dx

can be cast into our framework by letting
A← (0, 1)d

φ← h

f ← 1(0,1)d(= unif(0, 1)d).
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Example: Integration (cont.)

As an example for d = 1, let h(x) = sin2(1/ cos(log(1 + 2πx))):
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Example: Integration (cont.)

h = @(x) (sin(1./cos(log(1 + 2*pi*x)))).^2;
U = rand(1,N);
tau = mean(h(U));
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Example: Integration (cont.)

Now, let Ω ⊆ Rd be arbitrary and consider the general case∫
Ω
h(x) dx.

Then we may choose some positive reference density g on Ω (e.g. the
N (0, Id) density if Ω = Rd) and write∫

Ω
h(x) dx =

∫
Ω

h(x)

g(x)
g(x) dx,

which can again be cast into the MC framework by letting
A← Ω

φ← h/g

f ← g.
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Example: Intractable likelihoods

A similar technique can be used for estimating intractable likelihood
functions. Indeed, assume that we know a density fθ(x)/c(θ) up to fθ(x)
only. Then∫

fθ(x)

c(θ)
dx = 1 ⇔ c(θ) =

∫
fθ(x) dx =

∫
fθ(x)

g(x)
g(x) dx,

where g is again some density that is easy to simulate from.

Thus, an estimate of c(θ) can be formed by generating a sample
X1, . . . , XN from g and setting

cN (θ)
def.
=

1

N

N∑
i=1

fθ(Xi)

g(Xi)
.

This (and the last part of the previous example) is a �rst instance of
importance sampling (Week 2).
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Example: Filtering, Bayesian statistics

Often the joint density p(x, y) of a pair (X,Y ) of random variables is easily
obtained while the conditional density

p(x|y) =
p(x, y)∫
p(x, y) dx

of X given Y is by far more complicated due to the normalizing integral.
Again MC applies, especially in the shape of Markov Chain Monte Carlo
methods (Weeks 4�6). Typical examples are

�ltering of a signal/image from noisy observations,

Bayesian statistics, where the variable X plays the role of an unknown
parameter (usually denoted by θ) and p(x|y) is the so-called posterior
distribution of the parameter given observed data Y .
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Example: Pricing of contingent claims

Di�usion processes are processes related to Brownian motion. These are
fundamental within mathematical �nance modeling.

Figure: Evolution of the Nike, Inc. stock price St for t ∈ (2003, 2011).
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Example: Pricing of contingent claims (cont.)

Let S
def.
= (St)t≥0 be a price process. A contingent claim is a �nancial

contract which stipulates that the holder of the contract will obtain X SEK
at time T , where for some contract function Φ,

X = Φ(ST ).

Under certain assumptions, one may prove that the fair price F of the
claim X at time t ≤ T is given by

F (s, t) = e−r(T−t)EQ [Φ(ST ) | St = s] ,

where Q indicates the �risk neutral dynamics� of S and r is the interest
rate.

Thus, compute the price by (i) simulating ST |St = s repeatedly, (ii)
compute the claim for each realization, and (iii) take the mean!
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Example: Computing the size of a BIG set

Say that we want to compute the size of a �nite but huge set S. Assume
that S ⊆ T and de�ne a random variable X taking values in T with
probabilities p(x) = P(X = x) > 0, x ∈ T. Then we can write

|S| =
∑
x∈T

1S(x) =
∑
x∈T

1

p(x)
1S(x)p(x) = E(1S(X)/p(X)),

which again �ts into our MC integration framework with
A← T

φ← 1S/p

f ← p.
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Sequential MC problems

In the sequential Monte Carlo framework, we aim at sequentially estimating
sequences (τn)n≥0 of expectations

τn = Efn(φ(X0:n)) =

∫
An

φ(x0:n)fn(x0:n) dx0:n

over spaces An of increasing dimension, where the densities (fn)n≥0 are
known up to normalizing constants only, i.e., for every n ≥ 0,

fn(x0:n) =
zn(x0:n)

cn
,

where zn(x0:n) ≥ 0 and cn is an unknown constant.
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Example 3: Filtering in genetics

Cancer cells might have parts of chromosomes with di�erent copy numbers.
These numbers can be modelled e�ciently using hidden Markov models
(HMM), which are e�ciently estimated using SMC (Weeks 3�4).
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Example 3: Filtering in target tracking

An observer obtains noisy observations of the bearing of a moving target. In
this HMM, the conditional distribution of the target given the observations
can again be estimated online using SMC methods (Weeks 3�4).
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What do we need to know?

OK, so what do we need to master for having practical use of the MC
method?

Well, for instance, the following questions should be answered:

1: How do we generate the needed input random variables?

2: How many computer experiments should we do? What can be said
about the error?

3: Can we exploit problem structure to speed up the computation?
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Next lecture

Next time we will deal with the �rst two issues and discuss

Pseudo-random number generation and

MC output analysis.

See you!
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