Problems V on Calculus of Variations

Matematik Lth Spring 2020
May, 2020

Problem 1 For the following problems, find admissible extremals and verify if they

- satisfy Jacobi sufficient condition,
- satisfy Weirestrass necessary/sufficient condition,
- are global minima.
(Apply as many conditions as you can to exercise on the principles.)

1. $f\left(x, y, y^{\prime}\right)=x y^{\prime}+y^{2}, \quad y(0)=1, y(2)=0$.
2. $f\left(x, y, y^{\prime}\right)=y^{2}+y^{\prime 2}+2 y e^{2 x}, \quad y(0)=\frac{1}{3}, y(1)=\frac{1}{3} e^{2}$.
3. $f\left(x, y, y^{\prime}\right)=y^{\prime}\left(1+x^{2} y^{\prime}\right), \quad y(-1)=1, y(2)=4$.
4. $f\left(x, y, y^{\prime}\right)=y^{\prime}\left(1+x^{2} y^{\prime}\right), \quad y(1)=3, y(2)=5$.
5. $f\left(x, y, y^{\prime}\right)=y^{\prime}\left(1+x^{2} y^{\prime}\right), \quad y(-1)=y(2)=1$.
6. $f\left(x, y, y^{\prime}\right)=y^{2} y^{2}, \quad y(0)=0, y(1)=1$.

Problem 2* Show that $y=0$ not only satisfies both the strengthened Legendre condition and Weierstrass necessary condition for the problem of minimizing

$$
J[y]=\int_{0}^{1}\left(y^{\prime 2}-4 y y^{\prime 3}+2 x y^{\prime 4}\right) d x, \quad y(0)=y(1)=0
$$

but also can be embedded in a field of extremals, yet fails to furnish a strong local minimum.

