Computer Vision: Lecture 7

$\mathsf{Carl}\ \mathrm{OLSSON}$

2020-02-11

Carl Olsson

Computer Vision: Lecture 7

Today's Lecture

Repetition

- Reconstruction Problems
- A First Reconstruction System

Model Fitting

- Line Fitting and Noise models
- Linear Least Squares
- Total Least Squares
- Outliers and Robust Estimation
- Reprojection error

Repetition: Computing the Camera Matrix

Carl Olsson

2020-02-11 3 / 3

Repetition: Relative Orientation

Scene points $\{\mathbf{X}_i\}$ and cameras P_1 P_2 , such that

$$\begin{aligned} \lambda_i \mathbf{x}_i &= P_1 \mathbf{X}_i \\ \bar{\lambda}_i \bar{\mathbf{x}}_i &= P_2 \mathbf{X}_i \end{aligned}$$

Computer Vision: Lecture 7

20-02-11 4 /

The Fundamental Matrix (see lecture 5)

For cameras $P_1 = \begin{bmatrix} I & 0 \end{bmatrix}$ and $P_2 = \begin{bmatrix} A & t \end{bmatrix}$. The corresponding image points \mathbf{x}_i and $\mathbf{\bar{x}}_i$ fulfills

$$\mathbf{\bar{x}}_{i}^{T}F\mathbf{x}_{i}=0,$$

where, $F = [t]_{\times} A$.

- The scene point X_i has been eliminated.
- Solve F using 8-point alg, compute cameras (lect. 5).

Problem: Projective ambiguity

The Essential Matrix (see lecture 5)

For cameras $P_1 = \begin{bmatrix} I & 0 \end{bmatrix}$ and $P_2 = \begin{bmatrix} R & t \end{bmatrix}$. The corresponding image points \mathbf{x}_i and $\mathbf{\bar{x}}_i$ fulfills

$$\bar{\mathbf{x}}_i^T E \mathbf{x}_i = 0,$$

where, $F = [t]_{\times}R$.

- The scene point **X**_i has been eliminated.
- Solve E using modified 8-point alg, compute cameras (lect. 6).

Repetition: Triangulation

Known

Image points $\{\mathbf{x}_{ij}\}$.

Camera matrices P_i

Sought

See lecture 4.

A First Reconstruction System

Sequential Reconstruction

Given lots of images

How do we compute the entire reconstruction?

- For an initial pair of images, compute the cameras and visible scene points, using 8-point alg.
- For a new image viewing some of the previously reconstructed scene points, find the camera matrix, using DLT.
- Ompute new scene points using triangulation.
- If there are more cameras goto step 2.

2020-02-11

A First Reconstruction System

Demonstrations...

A First Reconstruction System

Issues

- Outliers.
- Noise sensitivity.
- How to select initial pair.
- Unreliable 3D points.

Will get back to theses issues later in the course.

Given a set of model parameters find the parameter values that give the "best" fit the the data.

Examples:

Camera Estimation Given scene points X_i find P such that PX_i gives the best fit to the detected image points x_i .

Line Fitting Find the line that best fits a set of 2D-points (x_i, y_i) .

What is the "best" fit? Depends on the noise model.

Model Fitting

See lecture notes.

Least Squares Line Fitting

$$\min\sum_i (ax_i + b - y_i)^2$$

In matrix form

In matlab use

 $A \setminus B$

Total Least Squares Line Fitting

min
$$\sum_{i} (ax_i + by_i + c)^2$$

s.t $a^2 + b^2 = 1$

Let

$$\bar{x} = \frac{1}{m} \sum_{i=1}^{m} x_i \text{ and } \bar{y} = \frac{1}{m} \sum_{i=1}^{m} y_i$$

The the optimum fulfills

$$\sum_{i=1}^{m} \begin{bmatrix} (x_i - \bar{x})(x_i - \bar{x}) & (y_i - \bar{y})(x_i - \bar{x}) \\ (x_i - \bar{x})(y_i - \bar{y}) & (y_i - \bar{y})(y_i - \bar{y}) \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \lambda \begin{bmatrix} a \\ b \end{bmatrix}$$

and

$$c = -(a\bar{x} + b\bar{y})$$

Carl Olsson

Computer Vision: Lecture 7

We want to remove measurements that do not obey the Gaussian-noise model before doing least squares fitting.

See lecture notes.

Computer Vision: Lecture 7

2020-02-11 18 /

Handling Noise - Minimizing Reprojection Error

Gaussian Noise

When outliers have been removed, measurements are still corrupted by noise. The exact position of a feature may be difficult to determine.

Handling Noise - Minimizing Reprojection Error

Under the assumption that image points are corrupted by Gaussian noise, minimize the reprojection error.

2020-02-11

Handling Noise - Minimizing Reprojection Error

Demonstration ...

Reprojection Error vs. Algebraic Error

Algebraic Error

Attempts to find an approximate solution to an algebraic equation. Ex. DLT _____

$$\min\sum_{i}||\lambda_i\mathbf{x}_i-P\mathbf{X}_i||^2,$$

8-point algorithm etc.

Reprojection Error

- Gives most probable solution (least squares).
- Geometrically meaningful.
- Nonlinear equations, difficult to optimize. Often requires starting solutions.

Algebraic Error

- No clear geometrical meaning.
- May produce poor solutions.
- Easy to optimize, using e.g. svd.

2020-02-11

Use algebraic solution as starting solution (next lecture).

Carl Olsson

Computer Vision: Lecture 7

Optimal 2-view Triangulation

 $\mathbf{x}, \bar{\mathbf{x}}$ measured projections in P and \bar{P}

$$\min_{\mathbf{X}} \underbrace{\left\| \left(x^1 - \frac{P^1 \mathbf{X}}{P^3 \mathbf{X}}, \ x^2 - \frac{P^2 \mathbf{X}_j}{P^3 \mathbf{X}} \right) \right\|^2}_{:=d(\mathbf{x}, P\mathbf{X})^2} + \underbrace{\left\| \left(\bar{x}^1 - \frac{\bar{P}^1 \mathbf{X}}{\bar{P}^3 \mathbf{X}}, \ \bar{x}^2 - \frac{\bar{P}^2 \mathbf{X}}{\bar{P}^3 \mathbf{X}} \right) \right\|^2}_{:=d(\bar{\mathbf{x}}, \bar{P}\mathbf{X})^2}$$

Lecture 5: There is a 3D-point **X** that projects to **y** and $\bar{\mathbf{y}}$ in *P* and \bar{P} respectively if and only if

$$\bar{\mathbf{y}}^T F \mathbf{y} = 0.$$

Equivalent formulation:

min
$$d(\mathbf{x},\mathbf{y})^2 + d(\mathbf{\bar{x}},\mathbf{\bar{y}})^2$$

such that $\mathbf{\bar{y}}^T F \mathbf{y} = 0$

Optimal 2-view Triangulation

Corresponding epipolar lines:

There is a one-to-one correspondence between epipolar lines of image 1 and 2.

Compute all epipolar line correspondences for the cameras

$$P = egin{bmatrix} I & 0 \end{bmatrix} ext{ and } ar{P} = egin{pmatrix} 1 & 0 & 1 & 0 \ 0 & 1 & 0 & 0 \ 1 & 0 & 0 & 1 \end{pmatrix}.$$

(1)

Optimal 2-view Triangulation

Equivalent formulation:

min $d(\mathbf{x},\mathbf{I})^2 + d(\bar{\mathbf{x}},\bar{\mathbf{I}})^2$ such that I corresponds to $\bar{\mathbf{I}}$

 $d(\mathbf{x}, \mathbf{I}) =$ orthogonal distance between \mathbf{x} and \mathbf{I} .

Compute the corresponding epipolar lines that minimize $d(\mathbf{x}, \mathbf{I})^2 + d(\bar{\mathbf{x}}, \bar{\mathbf{I}})^2$ for the cameras in Ex. 1.

Optimal Triangulation vs. DLT

Comparison between the DLT- and the ML objectives for triangulation. First row DLT, second row ML objective (with the same colormap)

Carl Olsson

2020-02-11 29

Special Case: Affine Cameras

$$P = \begin{bmatrix} A_{2\times3} & t_{2\times1} \\ 0 & 1 \end{bmatrix}$$

2020-02-11 30

Solving Structure and Motion via Factorization

Suppose x_{ij} is the projection of X_j in image *i*. The maximum likelihood solution is obtained by minimizing

$$\sum_{ij}||x_{ij}-(A_iX_j+t_i)||^2$$

The optimal t_i is given by

$$t_i=\bar{x}_i-A_i\bar{X},$$

where $\bar{X} = \frac{1}{m} \sum_{j} X_{j}$ and $\bar{x}_{i} = \frac{1}{m} \sum_{j} x_{ij}$.

Solving Structure and Motion via Factorization

Changing coordinates, $\tilde{x}_{ij} = x_{ij} - \bar{x}_i$ and $\tilde{X}_i = X_i - \bar{X}$, gives

$$\sum_{ij}||\tilde{x}_{ij}-\mathcal{A}_i\tilde{X}_j||^2.$$

In matrix form

Special Case: Affine Cameras

Algorithm

- Re center all images such that the center of mass of the points is zero.
- Form the measurement matrix *M*.
- Compute the svd:

$$[U, S, V] = svd(M);$$

- A solution is given by the cameras in U(:, 1:3) and the structure in S(1:3, 1:3) * V(:, 1:3)'.
- Transform back to the original image coordinates.

Factorization

- Requires all points to be visible in all images.
- Could work for perspective cameras if all points have roughly the same distance to the cameras.

2020-02-1

Special Case: Affine Cameras

Demonstration...

