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Today’s Lecture

Repetition

Reconstruction Problems

A First Reconstruction System

Model Fitting

Line Fitting and Noise models

Linear Least Squares

Total Least Squares

Outliers and Robust Estimation

Reprojection error
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Repetition: Computing the Camera Matrix

Known

Image points xi .

Known scene points Xi .

Estimate

A camera matrix P such that

λixi = PXi .

Solved using DLT in lecture 3.
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Repetition: Relative Orientation

Known:

Two corresponding point sets {x̄i}
and {xi}.

Sought:

Scene points {Xi} and cameras P1

P2, such that

λixi = P1Xi

λ̄i x̄i = P2Xi
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Repetition: Relative Orientation

The Fundamental Matrix (see lecture 5)

For cameras P1 =
[
I 0

]
and P2 =

[
A t

]
. The corresponding image

points xi and x̄i fulfills
x̄Ti Fxi = 0,

where, F = [t]×A.

The scene point Xi has been eliminated.

Solve F using 8-point alg, compute cameras (lect. 5).

Problem: Projective ambiguity
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Repetition: Relative Orientation

The Essential Matrix (see lecture 5)

For cameras P1 =
[
I 0

]
and P2 =

[
R t

]
. The corresponding image

points xi and x̄i fulfills
x̄Ti Exi = 0,

where, F = [t]×R.

The scene point Xi has been eliminated.

Solve E using modified 8-point alg, compute cameras (lect. 6).

No projective ambiguity
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Repetition: Triangulation

Known

Image points {xij}.

Camera matrices Pj

Sought

3D points Xi , such that

λijxij = PjXi

See lecture 4.
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A First Reconstruction System

Sequential Reconstruction

Given lots of images

. . .

How do we compute the entire reconstruction?

1 For an initial pair of images, compute the cameras and visible scene
points, using 8-point alg.

2 For a new image viewing some of the previously reconstructed scene
points, find the camera matrix, using DLT.

3 Compute new scene points using triangulation.

4 If there are more cameras goto step 2.
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A First Reconstruction System

Demonstrations...
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A First Reconstruction System

Issues

Outliers.

Noise sensitivity.

How to select initial pair.

Unreliable 3D points.

Will get back to theses issues later in the course.
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Model Fitting

Given a set of model parameters find the parameter values that give the
”best” fit the the data.

Examples:

Camera Estimation Given scene points Xi find P such that PXi gives the
best fit to the detected image points xi .

Line Fitting Find the line that best fits a set of 2D-points (xi , yi ).

What is the ”best” fit? Depends on the noise model.
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Model Fitting

See lecture notes.
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Least Squares Line Fitting

min
∑
i

(axi + b − yi )
2

In matrix form

min ||


x1 1
x2 1
...

...
xn 1


︸ ︷︷ ︸

A

[
a
b

]
−


y1

y2
...
yn


︸ ︷︷ ︸

B

||2.

In matlab use

A\B
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Total Least Squares Line Fitting

min
∑

i (axi + byi + c)2

s.t a2 + b2 = 1

Let

x̄ =
1

m

m∑
i=1

xi and ȳ =
1

m

m∑
i=1

yi

The the optimum fulfills

m∑
i=1

[
(xi − x̄)(xi − x̄) (yi − ȳ)(xi − x̄)
(xi − x̄)(yi − ȳ) (yi − ȳ)(yi − ȳ)

] [
a
b

]
= λ

[
a
b

]
and

c = −(ax̄ + bȳ)
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Outliers and Robust Loss Functions
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Outliers and Robust Loss Functions

Data Least Squares Fit Robust Fit

We want to remove measurements that do not obey the Gaussian-noise
model before doing least squares fitting.
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Outliers and Robust Loss Functions

See lecture notes.
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Outliers and Robust Loss Functions

ρ1(ε2
i ) = ε2

i ρ′1(ε2
i ) = 1

ρ2(ε2
i ) = min(ε2

i , τ
2) ρ′2(ε2

i ) =

{
0 |εi | > τ

1 |εi | < τ

ρ3(ε2
i ) =

ln(1+τ2)−ln(e
−ε2

i +τ2)

ln(1+τ2)
ρ′3(ε2

i ) = e
−ε2

i

(e
−ε2

i +τ2)ln(1+τ2)

ρ4(ε2
i ) = b2 ln(1 +

ε2
i

b2 ) ρ′4(ε2
i ) = b2

b2+ε2
i

ρ5(ε2
i ) =

{
2b|εi | − b2 |εi | ≥ b

ε2
i |εi | ≤ b

ρ′5(ε2
i ) =

{
b
|εi |

|εi | ≥ b

1 |εi | ≤ b

Carl Olsson Computer Vision: Lecture 7 2020-02-11 18 / 34



Handling Noise - Minimizing Reprojection Error

Gaussian Noise

When outliers have been removed, measurements are still corrupted by
noise. The exact position of a feature may be difficult to determine.
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Handling Noise - Minimizing Reprojection Error

Under the assumption that image points are corrupted by Gaussian noise,
minimize the reprojection error.

The reprojection error

In regular coordinates the
projection is(

P1X

P3X
,
P2X

P3X

)
,

P1,P2,P3 are the rows of P.
The reprojection error is

||
(
x1 −

P1X

P3X
, x2 −

P2X

P3X

)
||2.

C

x

PX

X
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Handling Noise - Minimizing Reprojection Error

Demonstration ...
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Reprojection Error vs. Algebraic Error

Algebraic Error

Attempts to find an approximate solution to an algebraic equation.
Ex. DLT

min
∑
i

||λixi − PXi ||2,

8-point algorithm etc.

Reprojection Error

Gives most probable solution
(least squares).

Geometrically meaningful.

Nonlinear equations, difficult
to optimize. Often requires
starting solutions.

Algebraic Error

No clear geometrical
meaning.

May produce poor solutions.

Easy to optimize, using e.g.
svd.

Use algebraic solution as starting solution (next lecture).
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Optimal 2-view Triangulation

x,x̄ measured projections in P and P̄

min
X

∥∥∥∥(x1 − P1X

P3X
, x2 −

P2Xj

P3X

)∥∥∥∥2

︸ ︷︷ ︸
:=d(x,PX)2

+

∥∥∥∥(x̄1 − P̄1X

P̄3X
, x̄2 − P̄2X

P̄3X

)∥∥∥∥2

︸ ︷︷ ︸
:=d(x̄,P̄X)2

.
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Optimal 2-view Triangulation

Lecture 5: There is a 3D-point X that projects to y and ȳ in P and P̄
respectively if and only if

ȳTFy = 0.

Equivalent formulation:

min d(x, y)2 + d(x̄, ȳ)2

such that ȳTFy = 0
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Optimal 2-view Triangulation

Corresponding epipolar lines:
There is a one-to-one correspondence between epipolar lines of image 1
and 2.

There is a one-parameter family of corresponding epipolar lines.
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Ex. 1

Compute all epipolar line correspondences for the cameras

P =
[
I 0

]
and P̄ =

1 0 1 0
0 1 0 0
1 0 0 1

 . (1)
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Optimal 2-view Triangulation

Equivalent formulation:

min d(x, l)2 + d(x̄, l̄)2

such that l corresponds to l̄

d(x, l) = orthogonal distance between x and l.
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Ex. 2

Compute the corresponding epipolar lines that minimize d(x, l)2 + d(x̄, l̄)2

for the cameras in Ex. 1.
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Optimal Triangulation vs. DLT

Comparison between the DLT- and the ML objectives for triangulation.
First row DLT, second row ML objective (with the same colormap).
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Special Case: Affine Cameras

P =

[
A2×3 t2×1

0 1

]
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Special Case: Affine Cameras

Solving Structure and Motion via Factorization

Suppose xij is the projection of Xj in image i . The maximum likelihood
solution is obtained by minimizing∑

ij

||xij − (AiXj + ti )||2

The optimal ti is given by

ti = x̄i − Ai X̄ ,

where X̄ = 1
m

∑
j Xj and x̄i = 1

m

∑
j xij .
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Special Case: Affine Cameras

Solving Structure and Motion via Factorization

Changing coordinates, x̃ij = xij − x̄i and X̃i = Xi − X̄ , gives∑
ij

||x̃ij − Ai X̃j ||2.

In matrix form

||


x̃11 x̃12 . . . x̃1m

x̃21 x̃22 . . . x̃2m
...

...
. . .

...
x̃n1 x̃n2 . . . x̃nm


︸ ︷︷ ︸

M

−


A1

A2
...
An

 [X̃1 X̃2 . . . X̃m

]
︸ ︷︷ ︸

rank 3 matrix

||2

Carl Olsson Computer Vision: Lecture 7 2020-02-11 32 / 34



Special Case: Affine Cameras

Algorithm

Re center all images such that the center of mass of the points is zero.

Form the measurement matrix M.

Compute the svd:
[U,S ,V ] = svd(M);

A solution is given by the cameras in U(:, 1 : 3) and the structure in
S(1 : 3, 1 : 3) ∗ V (:, 1 : 3)′.

Transform back to the original image coordinates.

Factorization

Requires all points to be visible in all images.

Could work for perspective cameras if all points have roughly the
same distance to the cameras.
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Special Case: Affine Cameras

Demonstration...

Carl Olsson Computer Vision: Lecture 7 2020-02-11 34 / 34


