
Computer Vision Lecture 7 2020-02-11

Lecture 7: Model Fitting

1 Noise Models

In Lectures 3,4,5 and 6 we addressed various problems using linear formulations that approximately solve the
governing algebraic equations. While this is an easy approach we can in general not expect that these equations
can be solved exactly. Since the appearance of a patch changes when the viewpoint changes, exact positioning of
corresponding points is not possible, see Figure 1. Additionally, since matching is done automatically we have to
expect that some matches are incorrect causing large deviations from the model. Therefore, our point measurements
will in practice always be corrupted by noise of various forms and levels and in general approximate solutions based
on DLT will not give the "best" possible fit to the observed data.

In this lecture we will derive formulations that gives the "best" fit under the assumption of Gaussian noise. The
resulting problems are in general more difficult to solve than the formulations that we have used previously. In many
cases they can only be locally optimized. Therefore the linear approaches are still very useful since they provide an
easy way of creating a starting solution.

Figure 1: Two patches extracted from images with slightly different viewpoint. Exact localization of corresponding
points is made difficult because of slight appearance differences and limited image resolution.

2 Line Fitting

What is meant by the "best" fit depends on the particular noise model. In this section we will consider two different
noise models and show that they lead to different optimization criteria. For simplicity we will consider the problem
of line fitting since this leads to closed form solutions.

2.1 Linear Least Squares

Suppose that (xi, yi) are measurements of 2D-points belonging to a line y = ax + b. Furthermore, we assume
that yi is corrupted by Gaussian noise, that is,

yi = ỹi + εi (1)

where εi ∈ N (0, 1) (Gaussian noise with mean 0 and standard deviation 1) and ỹi is the true y-coordinate. Our
goal is to estimate the line parameters a and b for which the measurements yi are most likely. Since εi ∈ N (0, 1),

1

Computer Vision Lecture 7 2020-02-11

its probability density function is

p(εi) =
1√
2π
e−ε

2
i /2. (2)

Furthermore, if we assume that the εi, i = 1, ..., n are independent of each other then their joint distribution is

p(ε) =

n∏
i=1

p(εi), (3)

where ε = (ε1, ε2, ..., εn). Since εi = yi − ỹi we can compute the likelihood of the measurements by

p(ε) =

n∏
i=1

p(εi) =

n∏
i=1

p(yi − ỹi) =

n∏
i=1

p(yi − (axi + b)) =

n∏
i=1

1√
2π
e−(yi−(axi+b))

2/2. (4)

We now want to find the the line parameters a and b that make these measurements most likely. To simplify the
maximization we maximize the logarithm of the likelihood

log

(
n∏
i=1

p(εi)

)
= −

n∑
i=1

(yi − (axi + b))2

2
+

n∑
i=1

log

(
1√
2π

)
. (5)

Since the second term does not depend on a of b this is the same as minimizing

n∑
i=1

(yi − (axi + b))2. (6)

In matrix form we can write this as ∥∥∥∥∥∥∥∥∥∥∥∥∥∥

x1 1
x2 1
...

...
xn 1

︸ ︷︷ ︸

=A

(
a
b

)
−

y1

y2

...
yn

︸ ︷︷ ︸

=B

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

. (7)

The minimum of this expression can be computed using the normal equations(
a
b

)
= (ATA)−1ATB, (8)

which we will derive in Lecture 9. The geometric interpretation of (6) is that under this noise model the vertical
distance between the line and the measurement should be minimized, see Figure 2.

2.2 Total Linear Least Squares

Next we will assume that we have noise in both coordinates, that is,(
xi
yi

)
=

(
x̃i
ỹi

)
+ δi, (9)

where δi ∈ N (0, I) and ax̃i + bỹi = c. The δi now belong to a two dimensional normal distribution with
probability density function

p(δi) =
1

2π
e−‖δi‖

2/2. (10)

The log likelihood function is

n∑
i=1

log(p(δi)) = −
n∑
i=1

(xi − x̃i)2 + (yi − ỹi)2

2
+

n∑
i=1

log(
1

2π
). (11)

2

Computer Vision Lecture 7 2020-02-11

Figure 2: Left: The vertical distances between the line and the measured points are minimized in (6). In contrast,
the minimal distances between the line and the measured points are minimized in (12).

Therefore, to maximize the likelihood we need to minimize

n∑
i=1

((xi − x̃i)2 + (yi − ỹi)2), (12)

where ax̃i + bỹi = c. The point (x̃i, ỹi) can be any point on the line, however since we are minimizing (12) we
can restrict it to be the closest point on the line. The expression (12) then becomes the distance between (xi, yi)
and the line. This distance can be expressed using the distance formula as

|axi + byi + c|√
a2 + b2

. (13)

Without loss of generality we ca assume that a2 + b2 = 1, and therefore we need to solve

min

n∑
i=1

(axi + byi + c)2 (14)

s.t. a2 + b2 = 1. (15)

This problem is often referred to as the total linear least squares problem.

2.2.1 Solving the Total Least Squares Problem

To solve (14),(15) we first take derivatives with respect to c. This shows that the the optimal solution must fulfill

c = −(ax̄+ bȳ), (16)

where x̄ and ȳ are the mean values

(x̄, ȳ) =
1

n

n∑
i=1

(xi, yi). (17)

Substituting into (14) we get

min

m∑
i=1

(a(xi − x̄) + b(yi − ȳ))2 (18)

such that 1− (a2 + b2) = 0. (19)

3

Computer Vision Lecture 7 2020-02-11

By forming the matrix

M =

m∑
i=1

(
(xi − x̄)2 (xi − x̄)(yi − ȳ)

(xi − x̄)(yi − ȳ) (yi − ȳ)2

)
, (20)

we can write this problem as

min tTMt (21)

such that 1− tT t = 0, (22)

where t is a 2× 1 vector containing a and b. This is a constrained optimization problem of the type

min f(t) (23)

such that g(t) = 0. (24)

According to Persson-Böiers, "Analys i flera variabler" and the method of Lagrange multipliers the solution of such
a system has to fulfill

∇f(t) + λ∇g(t) = 0. (25)

Therefore the solution of (21)-(22) must fulfill

2Mt+ λ(−2t) = 0⇔Mt = λt. (26)

That is, the solution t has to be an eigenvector of the matrix M . Furthermore, inserting into (21), and using that
tT t = 1 we see that it has to be the eigenvector corresponding to the smallest eigenvalue.

2.3 Outliers and Robust Loss-Functions

In structure from motion problems we typically have two types of noise. Appearance changes that makes it hard
to exactly localize corresponding points giving rise to displacements that are typically in the order of at most a few
pixels. This type of noise is usually modeled as Gaussian. In addition to this we often have mismatches that give
rise to very large errors. When minimizing the least squares objective such measurements can severely distort the
results. Figure 3 shows a line fitting example with one outlier point. Because of the quadratic growth of the least
squares criterion (6) points that are far away from the estimated line will have a proportionally larger effect on the
estimate than points that are close to it. This gives a poor estimate shown in the middle of Figure 3. By using a
robust loss-function that essentially removes the effect of the outlier it is possible obtain a better estimate of the line
as shown to the right in Figure 3.

Figure 3: Line fitting with one outlier. Left: Measurements. Middle: Obtained model fit using the least squares
objective (6). Right: Obtained model fit using a robust loss-function.

To find a suitable robust loss-function we can replace the assumption of normalized noise with a more general
distribution with density function

p(εi) = ce−ρ(ε
2
i). (27)

4

Computer Vision Lecture 7 2020-02-11

Here ρ is a function that should be less sensitive to outliers and c is some constant which ensures that the density
function integrates to 1. As in Section 2.1 we assume that we have 2D measurements (xi, yi) of points belonging
to a line y = ax+ b with noise in the y-coordinate yi = ỹi + εi. To obtain the maximum likelihood estimate we
should then minimize

n∑
i=1

ρ
(
(axi + b− yi)2

)
. (28)

Taking derivatives with respect to a and b we get

n∑
i=1

ρ′
(
(axi + b− yi)2

)
2(axi + b− yi)xi = 0 (29)

n∑
i=1

ρ′
(
(axi + b− yi)2

)
2(axi + b− yi) = 0 (30)

respectively. In general these equations lack closed form solutions and have to be solved iteratively. None the less,
we can still draw some simple conclusions from these expressions. In matrix form we can also write these two

equations M

(
a
b

)
= m, where

M =

n∑
i=1

ρ′(ε2i)

(
x2
i xi
xi 1

)
and m =

n∑
i=1

ρ′(ε2i)

(
xiyi
xi

)
. (31)

Assuming that we somehow know what εi is at the optimal values of (a, b) then we have

(
a
b

)
= M−1m. We

note that M and m can be seen as weighted sums of the matrices

(
x2
i xi
xi 1

)
and

(
xiyi
xi

)
respectively. If we use

ρ(t) = t then (28) reduces to the least squares solution and ρ′(ε2i) = 1. By modifying the weight ρ′(ε2i) we can
increase or reduce the impact of measurement i on the solution. For example selecting ρ so that its derivative is
decreasing will reduce the effects of measurements with large errors. A common approach is to use a threshold
τ . If we let ρ2(t) = min(t, τ2) for some value τ then ρ′2(ε2i) will be zero if |εi| larger than τ and therefore this
residuals completely disappears from (31). In contrast if |εi| is smaller than τ then ρ′2(ε2i) = 1. (Note that this
is the derivative of ρ2(t) with respect to t where we have inserted t = ε2i). Therefore this option will essentially
remove large residuals and compute the least squares solution of remaining ones, which is what is illustrated to the
right in Figure 3. Figure 4 shows the truncated loss function ρ2(ε2i).

Strictly speaking the function min(ε2i , τ
2) will not be differentiable at εi = τ . However, we can always find

approximations that are close to min(ε2i , τ
2) while still being differentiable. In Figure 4 we show ρ3(ε2i) which is

one such commonly used approximation.

As we noted above using decreasing derivatives generally makes the loss-function more robust to outliers. On the
other hand optimization then becomes more difficult since this often leads to non-convex problems with local
minimizers. If we for example use

∑n
i=1 ρ2

(
(axi + b− yi)2

)
the derivatives will all be zero for any choice of

a and b that makes all error residuals larger than τ . Thus an iterative algorithm, making use of the derivatives,
will immediately get stuck if the starting point is not close enough to the global minimizer. Selecting ρ so that
the derivatives are decreasing but never reach zero can help to achieve better convergence. The function ρ4(ε2i) in
Figure 4 shows one such example. However, without convexity there is in general no guarantee that we will reach
the global minimizer. Initialization is therefore an important issue (which we will address in Lecture 8) for these
methods.

The last example h(εi) := ρ5(ε2i) of Figure 4 is the Huber function. If we consider h as a function of εi it has the
derivative

h′(εi) =

{
2εi |εi| < b

2bsign(εi) |εi| ≥ b
. (32)

Since h′ is non-decreasing h is convex. Furthermore, since a sum of a set of convex functions is also convex the line
fitting problem defined by (28) is convex. Therefore local optimization staring from any initialization is guaranteed
to converge to the globally optimal solution. On the other hand the weights ρ′(ε2i) are decreasing (and tend to 0 as

5

Computer Vision Lecture 7 2020-02-11

εi →∞). In that sense this is a good trade off between robustness and convexity. We will study global optimization
further in Lecture 10.

ρ1(ε
2
i) = ε2i ρ′1(ε

2
i) = 1

ρ2(ε
2
i) = min(ε2i , τ

2) ρ′2(ε
2
i) =

{
0 |εi| > τ

1 |εi| < τ

ρ3(ε
2
i) =

ln(1+τ2)−ln(e−ε
2
i +τ2)

ln(1+τ2)
ρ′3(ε

2
i) =

e−ε
2
i

(e
−ε2
i +τ2)ln(1+τ2)

ρ4(ε
2
i) = b2ln(1 + ε2i

b2
) ρ′4(ε

2
i) =

b2

b2+ε2i

ρ5(ε
2
i) =

{
2b|εi| − b2 |εi| ≥ b
ε2i |εi| ≤ b

ρ′5(ε
2
i) =

{
b
|εi|

|εi| ≥ b
1 |εi| ≤ b

Figure 4: Some examples of loss-functions and the resulting weights. (Note that the derivative ρ′j(ε
2
i) is obtained

by differentiating ρj(t) with respect to t and inserting t = ε2i).

3 The Maximum Likelihood Solution for Camera Systems

In this section we derive the maximum likelihood estimator for our class projection problems. Suppose the 2D-
point xij = (x1

ij , x
2
ij) is a projection in regular Cartesian coordinates of the 3D-point Xj in camera Pi. The

projection in regular coordinates can be written(
P 1
i Xj

P 3
i Xj

,
P 2
i Xj

P 3
i Xj

)
, (33)

where P 1
i , P

2
i , P

3
i are the rows of the camera matrix Pi. Also we assume that the observations are corrupted by

Gaussian noise, that is,

(x1
ij , x

2
ij) =

(
P 1
i Xj

P 3
i Xj

,
P 2
i Xj

P 3
i Xj

)
+ δij , (34)

and δij is normally distributed with covariance I . The probability density function is then

p(δij) =
1

2π
e−

1
2 ||δij ||

2

. (35)

6

Computer Vision Lecture 7 2020-02-11

Similarly to Section 2.2 we now see that the model configuration that maximizes the likelihood of the obtaining
the observations xij = (x1

ij , x
2
ij) is obtained by solving

min

n∑
i=1

m∑
j=1

∥∥∥∥(x1
ij −

P 1
i Xj

P 3
i Xj

, x2
ij −

P 2
i Xj

P 3
i Xj

)∥∥∥∥2

. (36)

where n is the number of cameras and m is the number of scene points. The geometric interpretation of the above
expression is that the distance between the projection and the measured point in the image should be minimized,
see Figure 5. Note that it does not matter which of the variables Pi and Xi we consider as unknowns, it is always
the reprojection error that should be minimized.

C

x

PX

X

Figure 5: Geometric interpretation of the maximum likelihood estimate for projection problems. The dashed
distance should be minimized.

3.1 Optimal 2-view Triangulation

The objective function (36) is in very hard to minimize and in general we are limited to local refinement from a
suitably selected starting point. In this section we will study the special case of 2-view triangulation where it can
be shown that the problem can be solved by finding the roots of a 6th degree polynomial. We assume that the two
cameras P and P̄ are known and we are looking for the 3D point X that projects as close to the measured points
x and x̄ as possible by minimizing the objective

min
X

∥∥∥∥(x1 − P 1X

P 3X
, x2 − P 2Xj

P 3X

)∥∥∥∥2

+

∥∥∥∥(x̄1 − P̄ 1X

P̄ 3X
, x̄2 − P̄ 2X

P̄ 3X

)∥∥∥∥2

. (37)

To simplify notation we will let y and ȳ be the exact projections of X, that is λy = PX and λ̄ȳ = P̄X. From
Lecture 5 we know that there is a 3D point that projects to y and ȳ if and only if the epipolar constraint ȳTFy = 0
holds. Furthermore, if we let d(·, ·) denote the distance between two points then (37) can be written

min
ȳTFy=0

d(x,y)2 + d(x̄, ȳ)2. (38)

The epipolar constraint says that y has to lie on the epipolar line l = FT ȳ in image 1. Similarly ȳ has to lie on the
epipolar line l̄ = Fy in image 2. It turns out that all points p lying on the epipolar line l in image 1 gives the same
epipolar line Fp in the second image. To see this we note that since the epipole in image 1 e is on l the points of l
can be written

p = e + sv, (39)

where v is a direction and t ∈ R. Therefore we have Fp = Fe + tFv = tFv ∼ Fv, which shows that all these
points give the same epipolar line. Similarly one sees that all points on l̄ give rise to the same epipolar line in image
1. There is therefore a one-to-one correspondence of epipolar lines in the two images and as long as y and ȳ lies
on corresponding epipolar lines there is a 3D point X that projects to them.

Figure 6 gives a geometric interpretation of corresponding epipolar lines. The camera centers C,C̄ and the 3D
point X are coplanar and forms an epipolar plane. The epipolar lines are the intersections between this plane and

7

Computer Vision Lecture 7 2020-02-11

the image planes. A 3D plane has 3 degrees of freedom. Any epipolar plane contains the two camera centers (and
the two epipoles) which fixes two of these degrees. The family of epipolar planes, and consequently the family of
corresponding epipolar lines, can therefore be parametrized by a single parameter s.

Figure 6: Visualization of corresponding epipolar lines. The camera centers C and C̄ and the 3D-point X forms a
plane. The intersections with the image planes form a pair of corresponding epipolar lines.

Now suppose that we search for the best points over a given pair of corresponding epipolar lines l and l̄. It is then
clear that the points that minimize the distance to x and x̄ respectively are given by the ortogonal projections of x
and x̄. To solve (37) we can therefore equivalently search for the corresponding epipolar lines l and l̄ that minimizes

d(x, l)2 + d(x̄, l̄)2 (40)

where d(x, l) denotes the (orthogonal) distance between the measured point x and the line l.

To parametrize the family of corresponding lines we note that l goes through e2 and specify its direction v. If we

let v =

s1
0

 the line can take any 2D-direction (except (1, 0) which corresponds to s → ∞ which has to be

checked separately). The expression for the corresponding lines are now given by

l = e1 × v =
[
e1

]
× v (41)

l̄ = F (e1 + tv) ∼ Fv (42)

Note that the elements of these two vectors are affine functions (1st degree polynomials).

Exercise 1. Compute all epipolar line correspondences for the cameras

P =
[
I 0

]
and P̄ =

1 0 1 0
0 1 0 0
1 0 0 1

 . (43)

The squared distance between l and x is given by

(l1x1 + l2x2 + l3)2

(l21 + l22)
. (44)

Since x is independent of s this is a quotient of quadratic functions of the type

as2 + bs+ c

ds2 + es+ f
. (45)

Since the same holds for the squared distance between x̄ and l̄ the objective function (40) is a sum of two such
expressions. To find its minimizer we compute its stationary points by differentiating. The derivative of (45) is

(ae− bd)s2 + 2(af − cd)s+ bf − ce
(ds2 + es+ f)2

(46)

8

Computer Vision Lecture 7 2020-02-11

which is a quotient of a degree two and a degree four polynomial. Setting the derivative of (40) to zero and
multiplying with the two denominators thus gives a polynomial of at most degree 6 with roots contain the optimal
value of s.

Exercise 2. Compute the corresponding epipolar lines that minimize d(x, l)2 + d(x̄, l̄)2 for the cameras in Exer-
cise 1.

Figure 7 compares the optimal triangulation objective to the DLT objective from Lecture 4.

Figure 7: Comparison between the DLT- and the ML objectives for triangulation. First row DLT, second row ML
objective (with the same colormap).

3.2 Affine Cameras

In general the maximum likelihood estimator (36) can only be solved using local iterative methods. However in
the special case of affine cameras there is a closed form solution. An affine camera is a camera where the third row
of P , P 3 = [0 0 0 t3]. Since the scale of the camera matrix is arbitrary we may assume that t3 = 1, and therefore
the camera matrix has the form

P =

[
A t
0 1

]
, (47)

where A is a 2 × 3 matrix and t is a 2 × 1 vector. Geometrically this means that viewing rays are assumed to be
perpendicular to the image plane, see Figure 8. If the observed scene points are roughly at the same distance from
the camera this model often works well as an approximation of the pinhole camera model.

If we use regular Cartesian coordinates for both image points and scene points the camera equations can be simpli-
fied. If xij is the projection of the scene point Xj in the affine cameras Pi then the projection can be written

xij = AiXj + ti. (48)

To find he maximum likelihood estimate we therefore need to solve

min

n∑
i=1

m∑
j=1

‖xij −AiXj + ti‖2. (49)

Dy differentiating with respect to ti it can be seen that the optimal ti is given by

ti = x̄i −AiX̄,

9

Computer Vision Lecture 7 2020-02-11

Figure 8: Left - A regular pinhole camera where all viewing rays go through the camera center. Right - The affine
camera model where the viewing rays are parallel to the normal of the image ray.

where X̄ = 1
m

∑
j Xj and x̄i = 1

m

∑
j xij . To simplify the problem we therefore change coordinates so that all

these mean values are zero by translating all image points and scene points. Using x̃ij = xij−x̄i and X̃i = Xi−X̄ ,
gives the simplified problem

min
∑
ij

||x̃ij −AiX̃j ||2. (50)

In matrix form we can write this as

min

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

x̃11 x̃12 . . . x̃1m

x̃21 x̃22 . . . x̃2m

...
...

. . .
...

x̃n1 x̃n2 . . . x̃nm

︸ ︷︷ ︸

M

−

A1

A2

...
An

 [X̃1 X̃2 . . . X̃m

]
︸ ︷︷ ︸

rank 3 matrix

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

. (51)

Since the Ai has only 3 columns the second term will be rank 3 matrix. Thus our problem is to find the matrix of
rank 3 that best approximates M . The best approximating matrix can be found by computing the SVD of M and
setting all but the first 3 singular values to zero.

We summarize the algorithm for affine cameras here:

1. Re-center all images so that the center of mass of the image points is zero in each image.

2. Form the measurement matrix M .

3. Compute the SVD:
M = USV T . (52)

4. A solution can be found by extracting the cameras from U(:, 1 : 3) and the structure from S(1 : 3, 1 :
3) ∗ V (:, 1 : 3)′.

5. Transform back the solution to the original image coordinates.

Note that the approach only works when all points are visible in all images. Furthermore, the camera model is
affine, which is a simplification. This is often a good approximation when the scene point have roughly the same
depth.

10

	Noise Models
	Line Fitting
	Linear Least Squares
	Total Linear Least Squares
	Solving the Total Least Squares Problem

	Outliers and Robust Loss-Functions

	The Maximum Likelihood Solution for Camera Systems
	Optimal 2-view Triangulation
	Affine Cameras

