Computer Vision: Lecture 4

Carl Olsson

```
2019-01-29
```


Today's Lecture

Keypoint detection and Matching.

- Repetition: DLT
- Triangulation
- Homography Estimation
- Panoramas

Repetition: Direct Linear Transformtation - DLT

Algorithm for solving

$$
\min _{\|v\|^{2}=1}\|M v\|^{2}
$$

(1) Compute the factorization

$$
M=U S V^{T}
$$

(in Matlab).
(2) Select the solution

$$
v=\text { last column of } V .
$$

Can solve homogeneous leas squares problems:
Ex. The resection problem: Find P and λ_{i}

$$
\lambda_{i} \mathbf{x}_{i} \approx P \mathbf{X}_{i} \quad \text { for all } i
$$

Triangulation

Known

Image points $\left\{\mathbf{x}_{i j}\right\}$.

Sought

3D points \mathbf{X}_{i}, such that

$$
\lambda_{i j} \mathbf{x}_{i j}=P_{j} \mathbf{X}_{i}
$$

Camera matrices P_{j}

Triangulation

Fixed cameras: Determine one 3D point at a time.

Problem Formulation

Given measured projections \mathbf{x}_{i} and known camera matrices $P_{i}, i=1, \ldots, n$ compute the corresponding scene point \mathbf{X}. Solve

$$
\lambda_{i} \mathbf{x}_{i}=P_{i} \mathbf{X} \quad i=1, \ldots, n
$$

$3 n$ equations, $3+n$ unknowns. Need $3 n \geq 3+n \Rightarrow n \geq 2$ points.

Triangulation Geometric Interpretation

Two cameras:

The 3D point is the intersection of the viewing rays.

Degenerate Configurations

If all camera centers and the unknown 3D point X are on a line, X cannot be uniquely determined.

Estimation with Noise using DLT

Viewing rays may not intersect in 3D.

DLT

Find the least squares solution of

$$
\begin{aligned}
& \lambda_{1} \mathbf{x}_{1}=P_{1} \mathbf{X} \\
& \lambda_{2} \mathbf{x}_{2}=P_{2} \mathbf{X}
\end{aligned}
$$

In matrix form:

$$
\underbrace{\left[\begin{array}{cccc}
P_{1} & -\mathbf{x}_{1} & 0 & \cdots \\
P_{2} & 0 & -\mathbf{x}_{2} & \cdots \\
\vdots & \vdots & \vdots &
\end{array}\right]}_{:=M}\left[\begin{array}{c}
\mathbf{x} \\
\lambda_{1} \\
\lambda_{2} \\
\vdots
\end{array}\right]=0
$$

Near Degenerate Configurations

$$
\min _{\|v\|^{2}=1}\|M v\|^{2}=\min _{X} f(X)
$$

Reduced DLT objective (with known X):

$$
f(X)=\min _{\lambda_{1}^{2}+\lambda_{2}^{2}+\|X\|^{2} \gamma^{2}=1}\left\|M\left[\begin{array}{c}
\gamma \mathbf{X} \\
\lambda_{1} \\
\lambda_{2}
\end{array}\right]\right\|^{2} .
$$

Near Degenerate Configurations

DLT estimations with noise

Homography Estimation

Problem Formulation

Given 2D points \mathbf{x}_{i} and corresponding points \mathbf{y}_{i} related by a projective transformation find H such that

$$
\lambda_{i} \mathbf{y}_{i}=H \mathbf{x}_{i}, \quad i=1, \ldots, N
$$

$3 N$ equations, $8+N$ unknowns
Need $3 N \geq 8+N \Rightarrow N \geq 4$ point correspondences.

Homography Estimation Examples

Two images of a plane are related by a $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ homography.

Homography Estimation Examples

Uncalibrated solutions to structure from motion are related by $\mathbb{P}^{3} \rightarrow \mathbb{P}^{3}$ homographies.

Euclidean

Homography Estimation with Exact Mesurements

In general a set of points in \mathbb{P}^{n} are called projectively independent if they have homogeneous coordinates that are linearly independent as vectors in \mathbb{R}^{n+1}.

A set of $n+2$ points in \mathbb{P}^{n} is called a projective basis if no subset of $n+1$ points is projectively dependent.

A projective transformation $\mathbb{P}^{n} \rightarrow \mathbb{P}^{n}$ is uniquely determined by the mapping of the $n+2$ points of a projective basis.

Ex1. $\mathbb{P}^{2} \rightarrow \mathbb{P}^{2}: 4$ points, no 3 on a line.
Ex2. $\mathbb{P}^{3} \rightarrow \mathbb{P}^{3}: 5$ points, no 4 on a plane.

Degenerate Cases

Homography Estimation with Noise

DLT

If

$$
H=\left[\begin{array}{l}
H_{1}^{T} \\
H_{2}^{T} \\
H_{3}^{T}
\end{array}\right] \quad \text { and } \quad \mathbf{y}_{i}=\left[\begin{array}{c}
x_{i} \\
y_{i} \\
1
\end{array}\right]
$$

solve

$$
\left[\begin{array}{cccccc}
\mathbf{x}_{1}^{T} & 0 & 0 & -x_{1} & 0 & \ldots \\
0 & \mathbf{x}_{1}^{T} & 0 & -y_{1} & 0 & \ldots \\
0 & 0 & \mathbf{x}_{1}^{T} & -1 & 0 & \ldots \\
\mathbf{x}_{2}^{T} & 0 & 0 & 0 & -x_{2} & \ldots \\
0 & \mathbf{x}_{2}^{T} & 0 & 0 & -y_{2} & \ldots \\
0 & 0 & \mathbf{x}_{2}^{T} & 0 & -1 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots &
\end{array}\right]\left[\begin{array}{c}
H^{1} \\
H^{2} \\
H^{3} \\
\lambda_{1} \\
\lambda_{2} \\
\vdots
\end{array}\right]=0 .
$$

Panoramas and Compositions

H_{21} estimated from green matches, H_{32} estimated from red matches.

Panoramas and Compositions

H_{21} estimated from green matches, H_{32} estimated from red matches.

- Transform image 2 using H_{21}.

Panoramas and Compositions

H_{21} estimated from green matches, H_{32} estimated from red matches.

- Transform image 2 using H_{21}.
- Stitch.

Panoramas and Compositions

H_{21} estimated from green matches, H_{32} estimated from red matches.

- Transform image 2 using H_{21}.
- Stitch.
- Transform image 2 using $H_{31}=H_{21} H_{32}$.

Panoramas and Compositions

H_{21} estimated from green matches, H_{32} estimated from red matches.

- Transform image 2 using H_{21}.
- Stitch.
- Transform image 2 using $H_{31}=H_{21} H_{32}$.
- Stitch.

Panoramas and Compositions

Panoramas

For calibrated cameras:

Panoramas

For calibrated cameras:

Panoramas

Panoramas

Panoramas

Panoramas

Panoramas

For calibrated cameras:

Distances are not preserved. Points close to the x -axis tend to

Panoramas

Panoramas

For calibrated cameras:

Cannot transfer all points into the first image.

Panoramas

For calibrated cameras:

Project onto a cylinder instead.

Panoramas

For calibrated cameras:

Distances are roughly preserved. Lines may not appear straight.

To do

- Work on assignment 2

