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Todays Lecture

Two view geometry

Relative orientation of two cameras

The epipolar constraints

The uncalibrated case: The Fundamental Matrix

The 8-point algorithm
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Relative Orientation: Problem Formulation

Given

Two images and corresponding
points.

Compute

The structure (3D-points) and the
motion (camera matrices).
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Relative Orientation: Problem Formulation

Mathematical Formulation

Given two sets of corresponding points {xi} and {x̄i}, compute camera
matrices P1, P2 and 3D-points {Xi} such that

λixi = P1Xi

and
λ̄i x̄i = P2Xi .
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Relative Orientation: Problem Formulation

Ambiguities (uncalibrated case)

Can always apply a projective transformation H to archive a different
solution

λixi = P1HH
−1Xi = P̃1X̃i

and
λ̄i x̄i = P2HH

−1Xi = P̃2X̃i .
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Relative Orientation: Problem Formulation

Simplification

If P1 =
[
A1 t1

]
and P2 =

[
A2 t2

]
, apply the transformation

H =

[
A−11 −A−11 t1

0 1

]
.

Then

P1H =
[
A1 t1

] [A−11 −A−11 t1
0 1

]
=
[
I 0

]
.

Hence, we may assume that the cameras are

P1 =
[
I 0

]
and P2 =

[
A t

]
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Epipolar Geometry

C
1

C
2

Consider a single point x in the first image. Any point on the line projects
to this point.
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Epipolar Geometry

C
1

C
2

Any point on the projection of the 3D line can correspond to x.
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Epipolar Geometry
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Epipolar Geometry

The projected lines should all meet in a point. The so called epipole is the
projection of the camera center of the other camera.
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Epipolar Geometry

C
1

e
1

e
2

C
2

The epipole e1 is the projection of the C2 in P1.
The epipole e2 is the projection of the C1 in P2.
e1, e2 usually outside field of view.
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Exercise 1

Compute the epipoles for the camera pair P1 =
[
I 0

]
and

P2 =

 1 1 0 0
1 0 1 0
0 1 0 1

 ,

and verify that e2 lies on the epipolar line of x = (0, 1, 1).
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Exercise 2

If P1 = [I 0] and

P2 =

 1 1 0 0
1 0 1 0
0 1 0 1

 ,

which of the two points x̄1 = (1, 2, 1) and x̄2 = (1, 1, 1) in image 2 could
correspond to x = (0, 1, 1) in image 1?
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Exercise 3

Let P1 = [I 0] and

P2 =

 1 1 0 0
1 0 1 0
0 1 0 1

 .

Compute the fundamental matrix F and verify that Fe1 = 0, eT2 F = 0
and det(F ) = 0.
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The Fundamental Matrix

Estimating F

If xi and x̄i corresponding points

x̄Ti Fxi = 0.

If xi = (xi , yi , zi ) and x̄i = (x̄i , ȳi , z̄i ) then

x̄Ti Fxi = F11x̄ixi + F12x̄iyi + F13x̄izi
+F21ȳixi + F22ȳiyi + F23ȳizi
+F31z̄ixi + F32z̄iyi + F33z̄izi
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The Fundamental Matrix

Estimating F

In matrix form (one row for each correspondence):


x̄1x1 x̄1y1 x̄1z1 . . . z̄1z1
x̄2x2 x̄2y2 x̄2z2 . . . z̄2z2

...
...

...
. . .

...
x̄nxn x̄nyn x̄nzn . . . z̄nzn


︸ ︷︷ ︸

M


F11
F12
F13

...
F33

 =


0
0
0
...
0


Solve using homogeneous least squares (svd).
F has 9 entries (but the scale is arbitrary). Need at least 8 equations
(point correspondences).
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The Fundamental Matrix

Issues

Resulting F may not have det(F ) = 0.
Pick the closest matrix A with det(A) = 0.

Can be solved using svd, in matlab:

[U,S ,V ] = svd(F );
S(3, 3) = 0;
A = U ∗ S ∗ V ′;

Carl Olsson Computer Vision: Lecture 5 2020-02-04 17 / 22



The Fundamental Matrix

Issues

Normalization needed (see DLT).
If x1 and x̄1 ≈ 1000 pixels, the coefficients z1z̄1 = 1, x1z̄1 = 1000 and
x1x̄1 = 1000000. May give poor numerics.

Not normalized: Normalized:
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The Fundamental Matrix

The 8-point algorithm

Extract at least 8 point correspondences.

Normalize the coordinates (see DLT).

Form M and solve
min
||v ||2=1

||Mv ||2,

using svd.

Form the matrix F (ensure that det(F ) = 0).

Transform back to the original coordinates.

Compute a pair of cameras from F (next lecture).

Compute the scene points (next lecture).
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The Fundamental Matrix

Demo.
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Relative Orientation - Reduced Formulation.

Original Formulation

Given two sets of corresponding points {xi} and {x̄i}, compute camera
matrices P1, P2 and 3D-points {Xi} such that

λixi = P1Xi and λ̄i x̄i = P2Xi .

Reduced Formulation

Given two sets of corresponding points {xi} and {x̄i}, compute a
fundamental matrix F = [e2]×A such that

x̄Ti Fxi = 0, i = 1, 2, ...

The scene points have been eliminated!
Next time: extracting cameras from F .
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To do

Start working on Assignment 3.
Theory for E1,E2,E3,CE1,E4,CE2 is done.

Search for ”The Fundamental Matrix Song” on youtube.
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