Computer Vision: Lecture 5

Carl Olsson

2020-02-04

Todays Lecture

Two view geometry

- Relative orientation of two cameras
- The epipolar constraints
- The uncalibrated case: The Fundamental Matrix
- The 8-point algorithm

Relative Orientation: Problem Formulation

Given

Two images and corresponding points.

Compute

The structure (3D-points) and the motion (camera matrices).

Relative Orientation: Problem Formulation

Mathematical Formulation

Given two sets of corresponding points $\left\{\mathbf{x}_{i}\right\}$ and $\left\{\overline{\mathbf{x}}_{i}\right\}$, compute camera matrices P_{1}, P_{2} and 3D-points $\left\{\mathbf{X}_{i}\right\}$ such that

$$
\lambda_{i} \mathbf{x}_{i}=P_{1} \mathbf{X}_{i}
$$

and

$$
\bar{\lambda}_{i} \overline{\mathbf{x}}_{i}=P_{2} \mathbf{X}_{i} .
$$

Relative Orientation: Problem Formulation

Ambiguities (uncalibrated case)

Can always apply a projective transformation H to archive a different solution

$$
\lambda_{i} \mathbf{x}_{i}=P_{1} H H^{-1} \mathbf{X}_{i}=\tilde{P}_{1} \tilde{\mathbf{X}}_{i}
$$

and

$$
\bar{\lambda}_{i} \overline{\mathbf{x}}_{i}=P_{2} H H^{-1} \mathbf{X}_{i}=\tilde{P}_{2} \tilde{\mathbf{x}}_{i} .
$$

Relative Orientation: Problem Formulation

Simplification

If $P_{1}=\left[\begin{array}{ll}A_{1} & t_{1}\end{array}\right]$ and $P_{2}=\left[\begin{array}{ll}A_{2} & t_{2}\end{array}\right]$, apply the transformation

$$
H=\left[\begin{array}{cc}
A_{1}^{-1} & -A_{1}^{-1} t_{1} \\
0 & 1
\end{array}\right] .
$$

Then

$$
P_{1} H=\left[\begin{array}{ll}
A_{1} & t_{1}
\end{array}\right]\left[\begin{array}{cc}
A_{1}^{-1} & -A_{1}^{-1} t_{1} \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
I & 0
\end{array}\right]
$$

Hence, we may assume that the cameras are

$$
P_{1}=\left[\begin{array}{ll}
I & 0
\end{array}\right] \text { and } P_{2}=\left[\begin{array}{ll}
A & t
\end{array}\right]
$$

Epipolar Geometry

Consider a single point \mathbf{x} in the first image. Any point on the line projects to this point.

Epipolar Geometry

Any point on the projection of the 3D line can correspond to \mathbf{x}.

Epipolar Geometry

Epipolar Geometry

The projected lines should all meet in a point. The so called epipole is the projection of the camera center of the other camera.

Epipolar Geometry

The epipole e_{1} is the projection of the C_{2} in P_{1}. The epipole e_{2} is the projection of the C_{1} in P_{2}. e_{1}, e_{2} usually outside field of view.

Exercise 1

Compute the epipoles for the camera pair $P_{1}=\left[\begin{array}{ll}I & 0\end{array}\right]$ and

$$
P_{2}=\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right)
$$

and verify that \mathbf{e}_{2} lies on the epipolar line of $\mathbf{x}=(0,1,1)$.

Exercise 2

If $P_{1}=\left[\begin{array}{ll}1 & 0\end{array}\right]$ and

$$
P_{2}=\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right),
$$

which of the two points $\overline{\mathbf{x}}_{1}=(1,2,1)$ and $\overline{\mathbf{x}}_{2}=(1,1,1)$ in image 2 could correspond to $\mathbf{x}=(0,1,1)$ in image 1 ?

Exercise 3

Let $P_{1}=\left[\begin{array}{ll}1 & 0\end{array}\right]$ and

$$
P_{2}=\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right)
$$

Compute the fundamental matrix F and verify that $F \mathbf{e}_{1}=0, \mathbf{e}_{2}^{T} F=0$ and $\operatorname{det}(F)=0$.

The Fundamental Matrix

Estimating F

If \mathbf{x}_{i} and $\overline{\mathbf{x}}_{i}$ corresponding points

$$
\overline{\mathbf{x}}_{i}^{T} F \mathbf{x}_{i}=0
$$

If $\mathbf{x}_{i}=\left(x_{i}, y_{i}, z_{i}\right)$ and $\overline{\mathbf{x}}_{i}=\left(\bar{x}_{i}, \bar{y}_{i}, \bar{z}_{i}\right)$ then

$$
\begin{aligned}
\overline{\mathbf{x}}_{i}^{T} F \mathbf{x}_{i}= & F_{11} \bar{x}_{i} x_{i}+F_{12} \bar{x}_{i} y_{i}+F_{13} \bar{x}_{i} z_{i} \\
& +F_{21} \bar{y}_{i} x_{i}+F_{22} \bar{y}_{i} y_{i}+F_{233} \bar{y}_{i} z_{i} \\
& +F_{31} \bar{z}_{i} x_{i}+F_{32} \bar{z}_{i} y_{i}+F_{33} \bar{z}_{i} z_{i}
\end{aligned}
$$

The Fundamental Matrix

Estimating F

In matrix form (one row for each correspondence):

$$
\underbrace{\left[\begin{array}{ccccc}
\bar{x}_{1} x_{1} & \bar{x}_{1} y_{1} & \bar{x}_{1} z_{1} & \ldots & \bar{z}_{1} z_{1} \\
\bar{x}_{2} x_{2} & \bar{x}_{2} y_{2} & \bar{x}_{2} z_{2} & \ldots & \bar{z}_{2} z_{2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\bar{x}_{n} x_{n} & \bar{x}_{n} y_{n} & \bar{x}_{n} z_{n} & \cdots & \bar{z}_{n} z_{n}
\end{array}\right]}_{M}\left[\begin{array}{c}
F_{11} \\
F_{12} \\
F_{13} \\
\vdots \\
F_{33}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right]
$$

Solve using homogeneous least squares (svd).
F has 9 entries (but the scale is arbitrary). Need at least 8 equations (point correspondences).

The Fundamental Matrix

Issues

Resulting F may not have $\operatorname{det}(F)=0$.
Pick the closest matrix A with $\operatorname{det}(A)=0$.
Can be solved using svd, in matlab:

$$
\begin{aligned}
& {[U, S, V]=\operatorname{svd}(F)} \\
& S(3,3)=0 \\
& A=U * S * V^{\prime}
\end{aligned}
$$

The Fundamental Matrix

Issues

Normalization needed (see DLT).
If x_{1} and $\bar{x}_{1} \approx 1000$ pixels, the coefficients $z_{1} \bar{z}_{1}=1, x_{1} \bar{z}_{1}=1000$ and $x_{1} \bar{x}_{1}=1000000$. May give poor numerics.

Not normalized:

Normalized:

The Fundamental Matrix

The 8-point algorithm

- Extract at least 8 point correspondences.
- Normalize the coordinates (see DLT).
- Form M and solve

$$
\min _{\|v\|^{2}=1}\|M v\|^{2}
$$

using svd.

- Form the matrix F (ensure that $\operatorname{det}(F)=0$).
- Transform back to the original coordinates.
- Compute a pair of cameras from F (next lecture).
- Compute the scene points (next lecture).

The Fundamental Matrix

Demo.

Relative Orientation - Reduced Formulation.

Original Formulation

Given two sets of corresponding points $\left\{\mathbf{x}_{i}\right\}$ and $\left\{\overline{\mathbf{x}}_{i}\right\}$, compute camera matrices P_{1}, P_{2} and 3D-points $\left\{\mathbf{X}_{i}\right\}$ such that

$$
\lambda_{i} \mathbf{x}_{i}=P_{1} \mathbf{X}_{i} \text { and } \bar{\lambda}_{i} \overline{\mathbf{x}}_{i}=P_{2} \mathbf{X}_{i} .
$$

Reduced Formulation

Given two sets of corresponding points $\left\{\mathbf{x}_{i}\right\}$ and $\left\{\overline{\mathbf{x}}_{i}\right\}$, compute a fundamental matrix $F=\left[e_{2}\right]_{\times} A$ such that

$$
\overline{\mathbf{x}}_{i}^{T} F \mathbf{x}_{i}=0, \quad i=1,2, \ldots
$$

The scene points have been eliminated! Next time: extracting cameras from F.

- Start working on Assignment 3. Theory for E1,E2,E3,CE1,E4,CE2 is done.
- Search for "The Fundamental Matrix Song" on youtube.

