Computer Vision: Lecture 6

Carl Olsson

> 2020-02-05

Repetition

If $P_{1}=\left[\begin{array}{ll}1 & 0\end{array}\right], P_{2}=\left[\begin{array}{ll}A & t\end{array}\right]$,

$$
\overline{\mathrm{x}}^{\top} \underbrace{[t] \times A}_{:=F} \mathrm{x}=0
$$

Fx - epipolar line in image 2, $F^{\top} e_{2}=0$
$F^{\top} \overline{\mathrm{x}}$ - epipolar line in image 1 , $F e_{1}=0$

Uncalibrated Structure from Motion with 2 cameras:

- Solve for F using 8 -point solver
- Extract cameras from F (Today's Lecture)
- Triangulate 3D points

Today's Lecture

Two view geometry

- Computing cameras from F
- The calibrated case: The Essential Matrix
- The 8-point algorithm (again)
- Computing the cameras from E.

Exercise 1

Find camera matrices P_{1}, P_{2} such that

$$
F=\left(\begin{array}{ccc}
-1 & 0 & -1 \\
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

and a 3D point \mathbf{X} that projects to $\mathbf{x}=(0,1,1)$ in P_{1} and $\mathbf{x}_{2}=(1,1,1)$ in P_{2}.

Conclusion

If we have correspondences $\mathbf{x}_{i} \leftrightarrow \overline{\mathbf{x}}_{i}$ such that $\overline{\mathbf{x}}_{i}^{T} F \mathbf{x}=0$ for all i then there are 3 D points \mathbf{X}_{i} such that

$$
\begin{gathered}
\mathbf{x}_{i} \sim\left[\begin{array}{ll}
I & 0
\end{array}\right] \mathbf{X}_{i} \\
\overline{\mathbf{x}}_{i} \sim\left[\begin{array}{ll}
{\left[e_{2}\right]_{\times} F} & e_{2}
\end{array}\right] \mathbf{X}_{i}
\end{gathered}
$$

Exercise 2

If F is as in Ex 1 is there v and λ such that

$$
P_{2}=\left[\left[e_{2}\right]_{\times} F+e_{2} v^{T} \quad \lambda e_{2}\right]=\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right) ?
$$

Relative Orientation: The Calibrated Case

Problem Formulation

Given two sets of corresponding (normalized) points $\left\{\mathbf{x}_{i}\right\}$ and $\left\{\overline{\mathbf{x}}_{i}\right\}$, compute camera matrices $P_{1}=\left[\begin{array}{ll}R_{1} & t_{1}\end{array}\right], P_{2}=\left[\begin{array}{ll}R_{2} & t_{2}\end{array}\right]$ and 3D-points $\left\{\mathbf{X}_{i}\right\}$ such that

$$
\lambda_{i} \mathbf{x}_{i}=P_{1} \mathbf{X}_{i}
$$

and

$$
\bar{\lambda}_{i} \overline{\mathbf{x}}_{i}=P_{2} \mathbf{X}_{i} .
$$

Relative Orientation: Problem Formulation

Simplification

If $P_{1}=\left[\begin{array}{ll}R_{1} & t_{1}\end{array}\right]$ and $P_{2}=\left[\begin{array}{ll}R_{2} & t_{2}\end{array}\right]$, apply the transformation

$$
H=\left[\begin{array}{cc}
R_{1}^{T} & -R_{1}^{T} t_{1} \\
0 & 1
\end{array}\right] .
$$

Then

$$
P_{1} H=\left[\begin{array}{ll}
R_{1} & t_{1}
\end{array}\right]\left[\begin{array}{cc}
R_{1}^{T} & -R_{1}^{T} t_{1} \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
I & 0
\end{array}\right] .
$$

Hence, we may assume that the cameras are

$$
P_{1}=\left[\begin{array}{ll}
I & 0
\end{array}\right] \text { and } P_{2}=\left[\begin{array}{ll}
R & t
\end{array}\right]
$$

The Essential Matrix

The Essential Matrix

The camera pair $P_{1}=\left[\begin{array}{ll}I & 0\end{array}\right]$ and $P_{2}=\left[\begin{array}{ll}R & t\end{array}\right]$ has the fundamental matrix

$$
E=[t]_{\times} R .
$$

E is called the essential matrix.

- R has 3 dof, $t 3$ dof, but the scale is arbitrary, therefore E has 5 dof.
- E has $\operatorname{det}(E)=0$
- E has two nonzero equal singular values.

The Essential Matrix

The 8-point algorithm (again)

- Extract at least 8 point correspondences.
- Normalize the coordinates (multiply with K^{-1}, K inner parameters).
- Form M and solve

$$
\min _{\|v\|^{2}=1}\|M v\|^{2},
$$

using svd.

- Form the matrix E (ensure that $\operatorname{det}(E)=0$ and that E has two nonzero equal singular values).
- Compute a pair of cameras from E.
- Compute the scene points.

The Essential Matrix

Issues

Resulting E may not have $\operatorname{det}(E)=0$ and two nonzero equal singular values.
Pick the closest essential matrix A.
Can be solved using svd, in matlab:

$$
\begin{aligned}
& {[U, S, V]=\operatorname{svd}(E) ;} \\
& s=(S(1,1)+S(2,2)) / 2 ; \\
& S=\operatorname{diag}([s s c 0]) ; \\
& A=U * S * V^{\prime}
\end{aligned}
$$

Note: Since the scale of the essential matrix is arbitrary we may assumes that $s=1$. That is use $S=\operatorname{diag}\left(\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]\right)$; instead.

Computing the cameras

Want to find $P_{2}=[R t]$ such that $E=[t]_{\times} R$.
Outline:

- Ensure that E has the SVD

$$
E=U \Sigma V^{T}=U\left(\begin{array}{lll}
\sigma & 0 & 0 \\
0 & \sigma & 0 \\
0 & 0 & 0
\end{array}\right) V^{T}
$$

where $\operatorname{det}\left(U V^{T}\right)=1$.

- Compute a factorization $E=S R$ where S is skew symmetric and R a rotation.
- Compute a t such that $[t]_{\times}=S$.
- Form the camera $P_{2}=[R t]$.

See lecture notes for details...

Decomposing E

First decompose $\Sigma=\underbrace{Z}_{\text {skew sym. orthogonal }} \underbrace{W} \Leftrightarrow W^{T}=Z$.
$\left(\begin{array}{ccc}\sigma & 0 & 0 \\ 0 & \sigma & 0 \\ 0 & 0 & 0\end{array}\right)\left(\begin{array}{lll}w_{11} & w_{21} & w_{31} \\ w_{12} & w_{22} & w_{32} \\ w_{13} & w_{23} & w_{33}\end{array}\right)=\sigma\left(\begin{array}{ccc}w_{11} & w_{21} & w_{31} \\ w_{12} & w_{22} & w_{32} \\ 0 & 0 & 0\end{array}\right)=\left(\begin{array}{ccc}0 & -z_{3} & z_{2} \\ z_{3} & 0 & -z_{1} \\ -z_{2} & z_{1} & 0\end{array}\right)$
This gives: $w_{11}=w_{22}=0, \sigma w_{31}=z_{2}=0, \sigma w_{32}=-z_{1}=0$ and $\sigma w_{12}=z_{3}=-\sigma w_{21}$

Gives two solutions $\Sigma=Z W=Z^{T} W^{T}$, where

$$
W=\left(\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \quad Z=\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Decomposing E

Two solutions for E :

$$
\begin{gathered}
E=U \Sigma V^{T}=U Z W V^{T}=\underbrace{U Z U^{T}}_{S_{1}} \underbrace{U W V^{T}}_{R_{1}} \\
E=U \Sigma V^{T}=U Z^{T} W^{T} V^{T}=\underbrace{U Z^{T}}_{S_{2}} \underbrace{U W^{T} V^{T}}_{R_{2}}
\end{gathered}
$$

The Twisted Pair

$S_{1}=-S_{2}$ (same up to scale). Find t such that $[t]_{\times}=S_{1}$.
$[t]_{\times} t=0 \Rightarrow t$ in nullspace of $S_{1}=U Z U^{T}$.
$t=u_{3}($ third column of U$)$ works.
Gives two solutions: $P_{1}=\left[\begin{array}{ll}I & 0\end{array}\right]$ and

$$
P_{2}=\left[\begin{array}{ll}
U W V^{T} & u_{3}
\end{array}\right] \text { or }\left[\begin{array}{ll}
U W^{T} V^{T} & u_{3}
\end{array}\right]
$$

The Twisted Pair

Example

$$
\begin{aligned}
& P_{2}=\left[\begin{array}{ll}
1 & t
\end{array}\right] \text { or }\left[\begin{array}{ll}
R_{2} & t
\end{array}\right], \\
& R_{2}=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& t=\left(\begin{array}{c}
0 \\
0 \\
-1
\end{array}\right)
\end{aligned}
$$

The Twisted Pair

Example

$$
\begin{aligned}
& P_{2}=\left[\begin{array}{ll}
1 & t
\end{array}\right] \text { or }\left[\begin{array}{ll}
R_{2} & t
\end{array}\right], \\
& R_{2}=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \\
& t=\left(\begin{array}{c}
0 \\
-1 \\
-1
\end{array}\right)
\end{aligned}
$$

Scale Ambiguity

Scale is arbitrary λE is a valid essential matrix

$$
\lambda E=\left[\lambda u_{3}\right]_{\times} R_{1}=\left[\lambda u_{3}\right]_{\times} R_{2} .
$$

Gives two solutions $P_{1}=\left[\begin{array}{ll}I & 0\end{array}\right]$ and

$$
P_{2}=\left[\begin{array}{ll}
U W V^{T} & \lambda u_{3}
\end{array}\right] \quad \text { or } \quad\left[\begin{array}{lll}
U W^{T} V^{T} & \lambda u_{3}
\end{array}\right]
$$

Moves cameras apart and rescales scene.

Scale Ambiguity

Example

$P_{2}=\left[\begin{array}{ll}1 & \lambda t\end{array}\right]$
$t=\left(\begin{array}{c}0 \\ 0 \\ -1\end{array}\right)$
Green - $\lambda>0$
Red $-\lambda<0$.

4 Solutions

Conclusion: One of the 4 solutions

$$
\left.\begin{array}{l}
P_{2}=\left[\begin{array}{ll}
U W V^{T} & u_{3}
\end{array}\right] \text { or }\left[U W V^{T}\right. \\
\left.-u_{3}\right] \\
\text { or }\left[U W^{T} V^{T}\right. \\
u_{3}
\end{array}\right] \text { or }\left[U W^{T} V^{T} \quad-u_{3}\right] ~ \$ ~ \$
$$

has points in front of both cameras.

4 Solutions

To do

- Work on assignment 3

