
Computer Vision Lecture 6 2020-02-05

Lecture 6: Camera Computation and the Essential Matrix

1 Computing Cameras From the Fundamental Matrix

In Lecture 5 we considered the two-view structure from motion problem, that is, given a number of measured
points in two images we want to compute both camera matrices and 3D points such that they project to the
measurements. We showed that the 3D points can be eliminated from the problem by considering the fundamental
matrix F . If x is an image point belonging to the fist image and x̄ belongs to the second then there is a 3D point
that projects to to these if and only if the epipolar constraint

x̄TFx = 0 (1)

is fulfilled. Using the projections of 8-scene points we can compute the fundamental matrix by solving a homo-
geneous least squares problem (the 8-point algorithm). What remains in order to find a solution to the two-view
structure from motion camera is to compute cameras from F and finally compute the 3D-points.

In general we may assume (see Lecture 5) that the cameras are of the form P1 = [I 0] and P2 = [A e2] where
e2 is the epipole in the second image. Since we know that FTe2 = 0 we can find e2 by computing the null space
of FT . In what follows we will show that A = [e2]×F gives the correct epipolar geometry and therefore solution
for the second camera is given by

P2 = [[e2]×F e2] . (2)

The Fundamental matrix of the camera pair P1 and P2 is according to Lecture 5 given by [t]×A = [e2]×[e2]×F
we need to show that this expression reduces to F . The epipolar line of an arbitrary point x in image 1 is

[e2]×[e2]×Fx = e2 × (e2 × (Fx))). (3)

Since e2 is in the nullspace of FT it is perpendicular to the columns of F and therefore also the vector Fx. This
means v, e2,v× e2, where v = 1

‖Fx‖Fx forms a positive oriented orthonormal basis or R3. It is now easy to see
that

e2 × (e2 × v) = −e2 × (v × e2) = −v. (4)

Therefore e2 × (e2 × (Fx))) = Fx for all x ∈ R3, which shows that [e2]×[e2]×F = F .

So in conclusion, if we have corresponding points that fulfill the epipolar constraints (1) then we can always find
3D points that project to these in the cameras P1 =

[
I 0

]
and P2 =

[
[e2]×F e2

]
Exercise 1. Find camera matrices P1, P2 such that

F =

−1 0 −1
1 1 0
0 0 0


and a 3D point X that projects to x = (0, 1, 1) in P1 and x2 = (1, 1, 1) in P2.

The choice P2 = [[e2]×F e2] may seem a little strange since the matrix [e2]×F has the nullspace e1. Therefore
we have

0 = [[e2]×F e2]

[
e1
0

]
, (5)
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which means that P ′2s camera center is a point at infinity. Since there is a projective ambiguity there are however
many choices for P2. Given that P1 = [I 0] the general formula for P2 is

P2 =
[
[e2]×F + e2v

T λe2
]
, (6)

where v is some vector in R3 and λ is a non-zero scalar. It is easy to verify that this camera pair gives the correct
fundamental matrix similar to what we did previously.

Exercise 2. If F is as in Ex 1 is there v and λ such that

P2 =
[
[e2]×F + e2v

T λe2
]

=

1 1 0 0
1 0 1 0
0 1 0 1

?

Figure 1: Two images of a chair with 14 known point correspondences. Blue ∗ are the image measurements and
red o are the reprojections. The 3D points (to the right) look strange because of the projective ambiguity (note the
difference in scale on the axes).

2 Relative Orientation: The Calibrated Case

When solving the relative orientation problem without camera calibration there is, as we saw in Lecture 3, an
ambiguity. Basically any projective transformation can be applied to the 3D-points to give a new solution. Therefore
the resulting constructions can often look strange even though the reprojections are correct (see Figure 1). To
remove this ambiguity one has to add additional knowledge about the solution to the problem. For example, if we
have some knowledge about the 3D scene, such as the distance between a few of the points, then we can apply a
transform to the solution that make these distances correct.

Alternatively we can add knowledge about the cameras. If the inner parameters K1 and K2 are known we consider
the calibrated two-view structure from motion problem. Given two sets of corresponding points xi and x̄i, i =
1, ..., n and inner parameters K1 and K2 our goal is to find [R1 t1], [R2 t2] and Xi such that

xi ∼ K1[R1 t1]Xi (7)

x̄i ∼ K2[R2 t2]Xi, (8)

and R1,R2 are rotation matrices.
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We can make two simplifications to the problem. First we normalize the cameras by multiplying equations (7) and
(8) with K−11 and K−12 respectively. Furthermore, we apply the euclidean transformation

H =

[
RT

1 −RT
1 t1

0 1

]
(9)

to the cameras (and H−1 to the 3D points). This gives us the new cameras

P1H =
[
R1 t1

] [RT
1 −RT

1 t1
0 1

]
=
[
I 0

]
(10)

P2H =
[
R2 t2

] [RT
1 −RT

1 t1
0 1

]
=

[
R2R

T
1︸ ︷︷ ︸

=R

−R2R
T
1 t1 − t2︸ ︷︷ ︸
=t

]
. (11)

Therefore we search for a solution to the equations

yi ∼ [I 0]Xi (12)

ȳi ∼ [R t]Xi, (13)

where yi = K−11 xi and ȳi = K−11 x̄i are the normalized image coordinates.

2.1 The Essential Matrix

The fundamental matrix for a pair of cameras of the form [I 0] and [R t] is given by

E = [t]×R, (14)

and is called the Essential matrix. A rotation has 3 degrees of freedom and a translation 3. Since the scale of the
essential matrix does not matter it has 5 degrees of freedom. The reduction in freedom compared to F , results in
extra constraints on the singular values of E. In addition to having det(E) = 0 the two non-zero singular values
have to be equal. Furthermore, since the scale is arbitrary we can assume that these singular values are both 1.
Therefore E has the SVD

E = Udiag([1 1 0])V T . (15)

The decomposition is not unique. We will assume that we have a singular value decomposition where det(UV T ) =
1. It is easy to ensure this; If we have an SVD as in (15) with det(UV T ) = −1 then we can simply switch the sign
of the last column of V . Alternatively we can switch to −E which then has the SVD

− E = Udiag([1 1 0])(−V )T . (16)

with det(U(−V )T ) = (−1)3 det(UV T ) = 1. Note however that if we recompute the SVD for −E we might
get another decomposition since it is not unique.

To find the essential matrix we can use a slightly modified 8-point algorithm. From 8 points correspondences we
form the M matrix (see Lecture 6) and solve the homogeneous least squares system

min
‖v‖2=1

‖Mv‖2 (17)

using SVD. The resulting vector v can be used to form a matrix Ẽ that does not necessarily have the right singular
values 1, 1, 0. We therefore compute the decomposition Ẽ = USV T and construct an essential matrix using
E = Udiag([1 1 0])V T .1

Since the essential matrix has only 5 degrees of freedom it is possible to find it using only 5 correspondences.
However as in the case of the fundamental matrix the extra constraints are non-linear which makes estimation more
difficult. (We will consider this problem in Lecture 7.)

We summarize the steps of the modified 8-point algorithm here:

1Alternatively E = Udiag([1 1 0])(−V )T if det(UV T ) = −1.
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• Extract at least 8 point correspondences.

• Normalize the coordinates using K−11 and K−12 where K1 and K2 are the inner parameters of the cameras.

• Form M and solve
min
||v||2=1

||Mv||2,

using SVD.

• Form the matrix E (and ensure that E has the singular values 1, 1, 0).

• Compute P2 from E (next section).

• Compute the scene points using triangulation (see Lecture 4).

3 Computing Cameras from E

Once we have determined the essential matrix E we need extract cameras from it. Basically we want to decompose
it into E = SR where S is a skew symmetric matrix and R is a rotation. For this purpose we will begin to
find a decomposition of diag(

[
1 1 0

]
) = ZW , where Z is skew symmetric and W is a rotation. Since W is

orthogonal we have diag(
[
1 1 0

]
) = ZW ⇔ diag(

[
1 1 0

]
)WT = Z ⇔1 0 0

0 1 0
0 0 0

w11 w21 w31

w12 w22 w32

w13 w23 w33

 =

w11 w21 w31

w12 w22 w32

0 0 0

 =

 0 −z3 z2
z3 0 −z1
−z2 z1 0

 . (18)

By inspecting the individual elements we see that w11 = w22 = 0, w31 = z2 = 0, w32 = −z1 = 0, and
w12 = z3 = −w21. Since W is a rotation (with columns of length 1) it is clear that w12 = ±1. Choose
w12 = Z3 = −1 give w21 = 1 and because the third column of W is the vector product of the first two we get the
solution

W =

0 −1 0
1 0 0
0 0 1

 and Z =

 0 1 0
−1 0 0
0 0 0

 . (19)

Similarly if we chose w12 = 1, we see that second solution is given by WT and ZT .

To decompose E we now note that

E = Udiag([1 1 0])V T = UZWV T = UZUT︸ ︷︷ ︸
:=S1

UWV T︸ ︷︷ ︸
:=R1

(20)

and similarly
E = Udiag([1 1 0])V T = UZTWTV T = UZTUT︸ ︷︷ ︸

:=S2

UWTV T︸ ︷︷ ︸
:=R2

(21)

To see that these are valid solutions we first verify that R1 and R2 are rotations. Since

RT
1 R1 = (UWTV T )TUWTV T = VWUTUWTV T = I (22)

R1 is orthogonal. Furthermore,

det(R1) = det(UWTV T ) = det(U) det(WT ) det(V T ) = det(W ) det(UV T ) = 1, (23)

and therefore R1 is a rotation. (Note that if det(UV T ) = −1 then the R1 that we obtain is not a rotation but
a rotation composed with a reflexion and therefore not a valid solution.) That S1 is skew symmetric is easy to see
since

− ST
1 = (UZUT )T = UZTUT = −UZUT = S1, (24)

and therefore S1R1 is a valid decomposition. E = S2R2 can be verified similarly.
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3.1 The Twisted Pair

To create the camera matrices corresponding to the solutions S1R1 and S2R2 we need to extract a translation
vectors from the skew symmetric matrices S1 and S2. We note that since

S1 = UZUT = −UZTUT = −S2, (25)

these are the same up to a scaling and it is therefore enough to determine t from S1. Since [t]×t = 0 the vector t
must be in the nullspace of S1 which is the third column u3 of U . We therefore obtain the solutions P1 =

[
I 0

]
P2 =

[
UWV T u3

]
or P ′2 =

[
UWTV T u3

]
. (26)

The two cameras P2 and P ′2 are called the twisted pair. The relative rotation between P2 and P ′2 is the rotation
RT

1 R2 = VWTUTUWTV T = VWTWTV T . It is not hard to verify that if v3 is the third column of V then
VWTWTV T v3 = v3 and therefore v3 is the rotation axis of RT

1 R2. The rotation angle is given by

cos(φ) =
tr(RT

2 R1)− 1

2
=

tr(WTWT )− 1

2
= −1, (27)

which yields φ = π. The camera centers of the two cameras P2 and P ′2 are

−RT
1 u3 = −VWUTu3 = −VW

0
0
1

 = −V

0
0
1

 = −v3 (28)

and

−RT
2 u3 = −VWTUTu3 = −VW

0
0
1

 = −V

0
0
1

 = −v3 (29)

respectively. Hence in both solutions we are moving from the center of P1 which is the origin in the direction−v3.
While P ′2 is rotated 180◦ around this direction with respect to P2.

Figure 2: Two examples of twisted pair solution. Note that one of P2 (green) and P ′2 (red) has the reconstructed
3D behind itself.

3.2 Scale Ambiguity

Note that if E = [t]×R then λE = [λt]×R is also a valid solution. Different λ corresponds to rescaling the
solution and since there is a scale ambiguity we cannot determine a "true" value of λ. However the sign of λ is
important since it determines whether points are in front of the cameras or not in the final reconstruction, see
Figure 3. To make sure that we can find a solution where the points are in front of both the cameras we therefore
test λ = ±1 and the twisted solution.

If u3 is the third column of U we get the four solutions

P2 = [UWV T u3] or [UWTV T u3] (from λ = 1) (30)

or [UWV T − u3] or [UWTV T − u3] (from λ = −1) (31)
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Figure 3: Reconstruction with different values of λ. Note that changing sign of λ moves the reconstructed points
that are front of the camera to the rear of it and vice versa.

When we have computed these four solutions we compute the 3D points using triangulation for all the choices
of P2 and select the one with where points are in front of both P1 and P2. Figure 4 shows the four calibrated
reconstructions obtained using the images in Figure 1. Only one of them has all the points in front of both the
cameras.

Figure 4: The 4 solutions when solving calibrated structure from motion for the chair image images in Figure 1.
Only the second one has positive depths.
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