
Computer Vision Lecture 5 2020-02-04

Lecture 5: Epipolar Geometry and the Fundamental Matrix

1 Two-View Structure from Motion

In this lecture we will consider the two-view structure from motion problem. That is, given two images
we want to compute both the camera matrices and the scene points such that the camera equations

λixi = P1Xi (1)

λ̄ix̄i = P2Xi, (2)

i = 1, ..., n, are fulfilled. In previous lectures we have considered sub-problems where either the camera
matrices are known (the triangulation problem) or the scene points are known (the resection problem).
Since the camera equations become linear in these two cases we could solve these directly by applying
DLT . The situation becomes more complicated when both the scene points and camera matrices are
unknown. The approach we will take in this lecture formulates a set of algebraic constraints that
involve only the image points and the cameras, thereby eliminating the scene points. The resulting
equations are linear and can be solved using SV D. Once the cameras are known the 3D points can
be computed using triangulation.

1.1 Problem Formulation

Given two sets of corresponding points xi and x̄i, i = 1, .., n, our goal is to find camera matrices P1

and P2 such that (1)-(2) are solved. As we observed in lecture 3, if the cameras are uncalibrated the
reconstruction can only be determined uniquely up to an unknown projective transformation. If the
cameras are P1 = [A1 t1] and P2 = [A2 t2] then we can apply the transformation

H =

[
A−11 −A−11 t1

0 1

]
(3)

to the camera equations (1)-(2). The camera matrix P1 is then transformed to

P1H =
[
A1 t1

] [ A−11 −A−11 t1
0 1

]
=
[
I 0

]
. (4)

Therefore, we can always assume that there is a solution where P1 = [I 0] and P2 = [A t].

2 Epipolar Geometry

In this section we will derive the so called epipolar constraints. In the following sections we will use
these constraints to find camera matrices that solve (1)-(2).

We first consider a point x in the first image. The scene points that can project to this image point

all lie on a line (the viewing ray of x) in 3D space, see Figure 1. If we assume that the X =

[
X
1

]
,

where X ∈ R3, are the homogeneous coordinates of a scene point projecting to x, then

λx =
[
I 0

] [ X
1

]
= X. (5)
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Figure 1: All scene points on the line project to the same point in the left camera.

Therefore the viewing ray of x can be parametrized by

X(λ) =

[
λx
1

]
. (6)

The projection of this line into the second camera is

P2X(λ) =
[
A t

] [ λx
1

]
= λAx + t. (7)

This is a line in the second image, see Figure 2. We refer to this line as the epipolar line of x. Since
all scene points that can project to x are on the viewing ray, all points in the second image that can
correspond x have to be on the epipolar line. This condition is called the epipolar constraint. For
different points x in the first image we get different viewing rays that project to different epipolar
lines. Since the viewing rays all pass through the camera center C1 of the first camera the epipolar
lines will all intersect each other in the projection e2 of the camera center C1, see Figure 2. The
projections of the camera centers e1 and e2 are called the epipoles.
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Figure 2: The projection of the viewing line into the second camera gives an epipolar line.

Exercise 1. Compute the epipoles for the camera pair P1 =
[
I 0

]
and

P2 =

 1 1 0 0
1 0 1 0
0 1 0 1

 , (8)

and verify that e2 lies on the epipolar line of x = (0, 1, 1).

For a general camera pair P1 =
[
I 0

]
, P1 =

[
A t

]
, where A invertible we have that C1 = (0, 0, 0, 1)

and C2 =

[
−A−1t

1

]
in homogeneous coordinates. Projecting into the two cameras gives e2 ∼ P2C1 =

t. and e1 ∼
[
I 0

] [−A−1t
1

]
= −A−1t.
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The expression λAx + t is a parametrization of the epipolar line of x. Note that since e2 = t we see
that e2 is on the epipolar line by letting λ = 0. We know that a line in P2 can also be represented by
a line equation lTx = 0. To find the vector l we pick two points on the line, e.g. t and Ax + t and
insert into the line equation {

lT t = 0
lT (Ax + t) = 0

. (9)

These equations tells us that l has to be perpendicular to both t and Ax + t. We can find such an l
using the vector product

l = t× (Ax + t) = t× (Ax). (10)

Since t ∼ e2 we can also write this as e2 × (Ax).

Exercise 2. If P1 = [I 0] and

P2 =

 1 1 0 0
1 0 1 0
0 1 0 1

 , (11)

which of the two points x̄1 = (1, 2, 1) and x̄2 = (1, 1, 1) in image 2 could correspond to x = (0, 1, 1) in
image 1?

A cross pruduct y × x is a linear operation on x and can therefore be represented by a matrix which
we denote [y]×. If x = (x1, x2, x3) and y = (y1, y2, y3) then their cross product is

y × x = (y2x3 − y3x2, y3x1 − y1x3, y1x2 − y2x1). (12)

In matrix form we can write this 0 −y3 y2
y3 0 −y1
−y2 y1 0


︸ ︷︷ ︸

=[y]×

 x1
x2
x3

 =

 y2x3 − y3x2
y3x1 − y1x3
y1x2 − y2x1

 (13)

The matrix [y]× is skew symmetric, that is, [y]× = −[y]T×. It is easy to see that for any 3 × 3 skew
symmetric matrix S there is a vector y such that S = [y]×.

With this notation the epipolar line can be written

l = e2 × (Ax) = [e2]×Ax. (14)

The matrix F = [e2]×A is called the fundamental matrix. It maps points in image 1 to lines in image
2. If x̄ corresponds to x then the epipolar constraint can be written

x̄T l = x̄TFx = 0. (15)

Note that F only depends on the cameras and therefore the epipolar constraints only involves the
image points and the camera P2. We will use these constraints to compute F from a number of image
correspondences. Once F has been determined the camera P2 can be extracted.

Exercise 3. Let P1 = [I 0] and

P2 =

 1 1 0 0
1 0 1 0
0 1 0 1

 . (16)

Compute the fundamental matrix F and verify that Fe1 = 0, eT2 F = 0 and det(F ) = 0.

3 Finding F: The Eight Point Algorithm

Recall that the objective of the two-view structure from motion problem is to find the scene points
and the camera P2. We will see in the next lecture that if the Fundamental matrix is known then P2

can be extracted from it. We now present a simple algorithm for estimating F .
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As we saw in the previous section, for each point correspondence xi,x̄i we get one epipolar constraint.

x̄T
i Fxi = 0. (17)

If xi ∼ (xi, yi, zi) and x̄ ∼ (x̄i, ȳi, z̄i) then we can write this as

0 = x̄T
i Fxi = F11x̄ixi + F12x̄iyi + F13x̄izi

+F21ȳixi + F22ȳiyi + F23ȳizi
+F31z̄ixi + F32z̄iyi + F33z̄izi.

(18)

Therefore each correspondence gives one linear constraint on the entries of F . In matrix form we can
write the resulting system as

x̄1x1 x̄1y1 x̄1z1 . . . z̄1z1
x̄2x2 x̄2y2 x̄2z2 . . . z̄2z2

...
...

...
. . .

...
x̄nxn x̄nyn x̄nzn . . . z̄nzn


︸ ︷︷ ︸

M


F11

F12

F13

...
F33

 =


0
0
0
...
0

 . (19)

This is a linear homogeneous system which we can solve using SVD as in Lecture 3. The matrix
F has 9 entries but the scale is arbitrary and the system therefore has 8 degrees of freedom. Each
correspondence gives one new constraint on F and we therefore need 8 correspondences to solve this
problem.

Note that it is in fact possible to solve the problem with only 7 point correspondences since we also
have the constraint det(F ) = 0. However, this constraint is a polynomial of third order and we cannot
use SVD to solve the resulting system. Therefore we use at least 8 correspondences.

Because of noise the resulting estimation F̃ of the fundamental matrix is not likely to have zero
determinant. Therefore given this estimation we chose the matrix F that solves

min
det(F )=0

‖F̃ − F‖ (20)

(where the norm is the Frobenious/sum-of-squares norm). The solution to this problem is given by
the SVD of F̃ . If

USV T = F̃ , (21)

where S = diag(σ1, σ2, σ3). Then F can be found by setting the smallest singular value σ3 = 0, that
is,

F = Udiag(σ1, σ2, 0)V T . (22)

As was the case with the resection problem, normalization is important for numerical stability. If
for example x1 and x̄1 are both in the order of a 1000 pixels then x1x̄1 ≈ 106 while z1z̄1 = 1. This
makes the matrix MTM very poorly conditioned. To improve the numerics we can use the same
normalization as in Lecture 3 (for both the cameras).

We summarize the different steps of the algorithm here:

• Extract at least 8 point correspondences.

• Normalize the coordinates (see Lecture 3).

• Form M and solve
min
||v||2=1

||Mv||2,

using svd.

• Form the matrix F (and ensure that det(F ) = 0).

• Transform back to the original (un-normalized) coordinates.

• Compute P2 from F (next lecture).

• Compute the scene points using triangulation (see Lecture 4).
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