
Computer Vision Lecture 4 2020-01-29

Lecture 4: Triangulation and Homography Estimation

1 Triangulation

The problem of finding an unknown 3D-point position X from measured projections xi, i = 1, ...n into known
cameras Pi is called triangulation. We have previously seen that if X is to project to the measurements then the
camera equations

λixi = PiXi, i = 1, ..., n. (1)

must hold. Therefore we need to find X and λi that solve these equations. For simplicity we will assume that

X is a regular point, not at infinity, with homogeneous coordinates X =

[
X
1

]
, where X =

xy
z

 are the

regular Cartesian 3D-coordinates. Each projection gives us 3 equations and for n projections we therefore have
3n equations. Each projection also introduces one new unknown, the depth λi, and therefore we have 3 + n
unknowns. To solve the problem we need

3n ≥ 3 + n⇔ n ≥ 3

2
. (2)

Thus two projections are enough.

If Pi =
[
Ai ti

]
, where Ai is 3× 3 and invertible the camera equations can be written

λixi = AiX + ti ⇔ X = −A−1i ti + λiA
−1
i xi. (3)

Note that Ci = −A−1i ti are the 3D-coordinates of the camera center of Pi (see Lecture 1). The geometric
interpretation of the above expression is that X should be on a line going though Ci with directional vector
A−1i xi. When we vary λi we get different 3D points on the line and all of them project to xi. To find the correct
X we need to determine the intersection of the lines coming from each camera as illustrated in Figure 1.

Exercise 1. Find the 3D-point X that projects to x1 =

1/2
1/2
1

 in P1 =
[
I 0

]
and x2 =

 0
1/2
1

 in P2 =I
−10

0

.

In some special cases we cannot determine a unique intersection between the lines of (3). If the camera centers
Ci, i = 1, ..., n and the 3D point X are all located on one line in 3D, the expressions (3) become identical and
all points on the 3D-line fulfill them. This is called a degenerate configuration and is illustrated to the right in
Figure 1. While it is very unlikely that all camera centers and the 3D point should be exactly on the same line in
any real case, degenerate configurations are important since problem instances that are close to degeneracy often
exhibit numerics and become very sensitive to noise. Hence in practical cases when the camera centers and the 3D
point are close to being on a line we can expect that we will get poor accuracy when we try to recover it.

1.1 Noisy Recovery using DLT

In practical cases our measurements will not be exact but will be affected by noise, and therefore we cannot expect
the viewing rays to have an exact intersection point, as illustrated in Figure 2. Therefore we need to solve the
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Figure 1: Illustration of triangulation. Left: The sought point X is in the intersection of the two viewing lines.
Right: If the camera moves so that the two viewing lines intersect for all points the problem becomes degenerate
and we cannot determine X.

Figure 2: In case of noisy measurements we cannot expect the viewing rays to intersect in a point. In such cases we
need to solve the camera equations approximately.

camera equations approximately in some sense. One way of doing this is to use the DLT method from Lecture
3. The problem is linear in the unknowns λi and X , so we can find the homogeneous least squares solution by
re-formulating the problem as

Mv = 0, (4)

with

M =


P1 −x1 0 · · · 0
P2 0 −x2 · · · 0
...

...
...

...
Pn 0 0 · · · −xn

 , (5)

and
vT =

[
XT λ1 λ2 · · · λn

]
. (6)

As in Lecture 3 we solve
min
‖v‖2=1

‖Mv‖2 (7)

by computing the singular value decomposition M = USV T of M and let v be the last column of V .
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Figure 3: Visualization of the DLT objective for 2-dimensional cameras. When the cameras approach the degenerate
case (by moving towards each other) the objective is roughly constant along the viewing direction.

Figure 4: Estimation of a 2D point from 1D images using the DLT objective. Close to degenerate cases the depth
of the point becomes uncertain.

Figure 3 shows three examples of the DLT objective for triangulation. We use 1D-cameras for visualization pur-
poses. Here a camera is a 2 × 3 matrix which takes a point in the plane P2 and projects it onto the camera line,

essentially providing a direction towards the point. For a given 2D point X =

xy
1

 we compute

f(X) = min
λ2
1+λ

2
2+‖X‖2γ2=1

∥∥∥∥∥∥M
γXλ1
λ2

∥∥∥∥∥∥
2

, (8)

and plot the result as a function of X. We also plot the cameras and the projection of the optimal 2D point in the
same figure. When the cameras are close to each other the level curves of the objective function become thin and
elongated. As a result the location of the triangulated point will be more difficult to determine when noise is added
to the problem. In the three images in Figure 4 perform the same triangulation experiment 100 times with noise
added to the image projections. The noise is the same for all the three images only the locations of the cameras
differ. The estimated 2D-points are the blue dots. When the cameras are sufficiently far apart all estimations end
up close to the true 2D-point. In contrast when the cameras are close to the degenerate case, the result becomes
very sensitive to noise and the exact distance from the cameras are difficult to determine accurately.

2 Homography Estimation

Projective transformations (or homographies) were introduced in Lecture 2. In practical computer vision problems
they occur in a number of common settings. Figure 5 shows a plane induced homography. If a set of points
from a 3D-plane is projected into two images then there is a projective transformation P2 → P2 between the two
images (see Assignment 1 for a proof ). Another example is when two images are captured by cameras that have
the same position, only differing by orientation and possibly calibration. This is useful for building panoramas (see
Section 2.3). When we are solving uncalibrated reconstruction problems all possible reconstructions are related by
a projective transformation P3 → P3 (see Lecture 3).

In homography estimation we want to find a projective transformation from Pk to Pk. We will describe the problem
for k = 2 but the procedure is exactly the same for any dimension. Given two sets of points yi and xi that are
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Figure 5: Example of a plane induced homography.

related by a homography H we want to solve

λiyi = Hxi, i = 1 . . . n. (9)

The matrix H has 9 entries, but since its scale is arbitrary we can assume that one of them is fixed. For n points we
therefore have 3n equations and 8 + n unknowns and the problem can therefore be solved if

3n ≥ 8 + n⇔ n ≥ 4. (10)

Note that in contrast to the triangulation problem, where we obtained an overdetermined system when using two
point projections, the problem can be solved exactly if n = 4. Before we compute the solution we make one
simplification. We assume that

x1 =

1
0
0

 , x2 =

0
1
0

 , x3 =

0
0
1

 and x4 =

ab
c

 , (11)

where a, b, c are some known numbers. Note that x1,x2 are points at infinity. Although we cannot (directly)
observe such points in a real image, this assumption simplifies the following derivations. We treat the general case
at the end of this section through a change of variables.

Under the assumption (11) we have

Hxi =

{
hi i = 1, 2, 3

ah1 + bh2 + ch3 i = 4
, (12)

where hi is column i from H . Therefore H must be of the form

H =
[
λ1y1 λ2y2 λ3y3

]
. (13)

To determine the unknowns λi, i = 1, 2, 3 we consider the second case of (12) which inserted in (9) gives

λ4y4 = Hx4 = λ1ay1 + λ2by2 + λ3cy3 =
[
ay1 by2 cy3

]λ1λ2
λ3

 . (14)

Note that [
ay1 by2 cy3

]
=
[
y1 y2 y3

]︸ ︷︷ ︸
:=Y1:3

a 0 0
0 b 0
0 0 c


︸ ︷︷ ︸

:=Dx4

. (15)
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Since the scale is arbitrary we can assume that λ4 = 1. The homography can therefore be uniquely determined
when the matrix Y1:3Dx4

is invertible, and is given by the formula

H = Y1:3Dλ1:3
(16)

λ1:3 = D−1x4
Y −11:3 y4, (17)

where

λ1:3 =

λ1λ2
λ3

 and Dλ1:3
=

λ1 0 0
0 λ2 0
0 0 λ3

 . (18)

In the next section we will study under what conditions the inverses above exist and what happens when they don’t.

We conclude this section by showing how to estimate H with four generally placed points. This can be achieved
through a change of coordinates. Let X1:3 be the 3 × 3 matrix with columns x1, x2 and x3. If X1:3 is invertible
then (9) can then be written

λiyi = Hxi = HX1:3︸ ︷︷ ︸
:=H̃

X−11:3xi︸ ︷︷ ︸
:=x̃i

. (19)

Since X−11:3X1:3 = I and xi, i = 1, 2, 3 are the columns of X1:3 it is now easy to see that in the new coordinates
x̃i are of the desired form (11). We can therefore instead solve for H̃ , as described above, and compute the solution
to (9) using H = H̃X−11:3 . We will return to the issue of X1:3 being invertible in Section 2.1.

2.1 Uniqueness and Degeneracy

In deriving the formulas for H we have made the assumptions that the inverses D−1x4
, Y −11:3 exist. In addition to

make the coordinate change which ensures that (11) holds we need that X−11:3 exists. To see when this holds we
recall from Linear Algebra that a matrix is invertible if and only if its columns are linearly independent. In R3 the
three vectors are linearly dependent if and only if they lie in a plane (containing the origin). That is, there is a vector
l such that lTxi = 0 for i = 1, 2, 3. In P3 the interpretation of these equations is that the points represented by xi
all lie on the same line l (see Lecture 2). Therefore the inverse X−11:3 exists as long as the three points x1, x2, x3 are
not collinear. Since a homography always maps lines to lines (see Lecture 2) Y −11:3 exists precisely when X−11:3 exist.

In addition we have to ensure that the inverse of Dx4
exists. It is clear that this is true when a 6= 0, b 6= 0 and

c 6= 0. Now suppose that for example c = 0. Then it is clear that x1,x2 and x4 are linearly dependent (as vectors
in R3). Similar arguments for a and b show that the inverses of X1:3, Y1:3 and Dx1 all exist if and only if no
combination of three points from x1, x2, x3, x4 are collinear in P2.

In general a set of points in Pn are called projectively independent if they have homogeneous coordinates that
are linearly independent as vectors in Rn+1. (Note that since the homogeneous representatives of a point can only
differ with a non-zero scaling it does not matter which representatives we choose to test projective independence.)
A set of n + 2 points in Pn is called a projective basis if no subset of n + 1 points is projectively dependent. A
projective transformation Pn → Pn is uniquely determined by the mapping of the n + 2 points of a projective
basis. In the case of n = 2 we have already seen that we need four points where no three are on a line. As a
second example consider a projective mapping P3 → P3. If we know how five points are mapped and these form a
projective basis we can uniquely determine the mapping. In this case the basis assumption amounts to no subset of
four points lie on a plane in P3.

We now consider what happens in the case of P2 when there is a subset of 3 points that are on a line. For simplicity
let us assume that the first 3 points are not on a line so that X1:3 and Y1:3 exist. In this case one of the constants
a,b or c will be 0. If for example a = 0 then (15) reduces to

λ4y4 = λ2by2 + λ3cy3. (20)

It is clear from this expression that λ1 cannot be determined in this case. However the equations can still be solved
since a = 0 corresponds to x2,x3,x4 (and therefore y2,y3,y4) being linearly dependent. From Linear Algebra we
then know that there are numbers γ2, γ3 and γ4 not all of them zero such that

γ2y2 + γ3y3 + γ4y4 = 0. (21)
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Furthermore, we must have γ4 6= 0 since otherwise γ2y2 = −γ3y3 which means that y2 and y3 are homogeneous
representatives of the same point in P2. Therefore selecting λ2 = −γ2b , λ3 = −γ3c , λ4 = γ4 and λ1 arbitrarily
gives a family of solutions, all mapping the 4 points correctly. Figure 6 shows an example of a degenerate case where
three of the four black points are on a line. Both the estimated transformations map the black points to themselves
but differ elsewhere. The first homography maps the blue grid to the green one while the second maps the blue
grid to the red one.

Figure 6: Two examples of homographies that map the four black points to themselves but differ for other points.
The blue grid (left) is mapped to the green and red grids (right) by the two transformations respectively.

2.2 Noisy Recovery using DLT

As in the case of triangulation we often have overdetermined systems with noisy measurements. In such cases we
can again apply the DLT approach. Suppose that we want to solve (9) with n ≥ 4. Let hi be row i of H , that is,

H =

 h1

h2

h3

 , (22)

and

yi =

uivi
wi

 . (23)

Here H is a 3× 3 matrix so h1, h2 and h3 are 1× 3 matrices. By stacking all our unknowns in a vector

vT =
[
h1 h2 h3 λ1 λ2 · · · λn

]
. (24)

we can write our problem as
Mv = 0, (25)

where

M =



xT1 0 0 −u1 0 · · · 0
0 xT1 0 −v1 0 · · · 0
0 0 xT1 −w1 0 · · · 0
xT2 0 0 0 −u2 · · · 0
0 xT2 0 0 −v2 · · · 0
0 0 xT2 0 −w2 · · · 0
...

...
...

...
...

...
xTn 0 0 0 0 · · · −un
0 xTn 0 0 0 · · · −vn
0 0 xTn 0 0 · · · −wn


. (26)
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To account for noise we again solve the solve the homogeneous least squares problem

min
‖v‖2=1

‖Mv‖2 (27)

using the singular value decomposition of M as described in Lecture 3.

2.3 Panoramic stitching

As an example of homography estimation we will show how we can stitch together a number of images taken from
the same position (camera center). For ease of notation we will assume that we have calibrated cameras and that the
image coordinates are normalized using the inverse of the calibration matrices. Since we have captured the images
in the same point and we are free to choose a global coordinate system, we will assume that the camera center is
at the origin. This means that for two corresponding image points xi and yi being projections of the 3D point

Xi =

[
Xi

1

]
we have the following system of equations

γixi = [R1 0]

[
Xi

1

]
, (28)

ηiyi = [R2 0]

[
Xi

1

]
, (29)

where γi and ηi are unknown (non-zero) scalars. This gives us{
γixi = R1Xi

ηiyi = R2Xi
⇔
{
Xi = γiR

T
1 xi

ηiyi = R2Xi
⇔
{

Xi = γiR
T
1 xi

ηiyi = γiR2R
T
1 xi

. (30)

This means that we can write the last equation as

λiyi = Hxi, (31)

with λi =
ηi
γi

and H = R2R
T
1 . This shows that we can transfer points from the first image plane to the second

by the use of a homography. We know from the previous sections that we can estimate this transformation from
at least four point correspondences. Once we have estimated the homography, all other points in an image can be
transferred using it.

The unnormalized points x̃i and ỹi are related to the normalized ones by xi = K−11 x̃i and yi = K−12 ỹi
respectively. Therefore we have

λiK
−1
2 ỹi = R2R

T
1K
−1
1 x̃i ⇔ λiỹi = K2R2R

T
1K
−1
1 x̃i, (32)

which means that the unnormalized points are mapped by a homography of the following form

H = K2R2R
T
1K
−1
1 . (33)

Figures 7-9 shows how we can use homographies to build panoramas from multiple images. In this caseH21, which
transforms points in image 2 to Image 1, is estimated from green matches and H32, which transforms points in
image 3 to points in Image 2, is estimated from red matches. Figure 8 shows the effects of transforming Image 2
and 3 using the homographies H21 and H31 = H21H32. These transformations show where the pixels would have
been placed had images 2 and 3 been captured with camera 1. When these transformations have been applied we
can extend Image 1 with pixels from the other images.
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Figure 7: Original images with matches between image 1 and 2 (red) and between 2 and 3 (green). The matches
can be used to compute two homographies, H21 which maps pixels in image 2 to image 1 and H32 which maps
image 3 to image 2.

Figure 8: The homographies H21 and H21H32 can be used to transform the pixel of images 2 and 3 respectively,
to the coordinate system of the first camera.

Figure 9: When images 2 and 3 has been transformed we can add the images together.
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