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Todays Lecture

Camera Calibration

Repetition: The camera equations.

Repetition: Structure from motion.

Projective vs. Euclidean Reconstruction.

The inner parameters - K .

Finding the camera matrix.

DLT - Direct Linear Transformation.

Normalization of uncalibrated cameras.

Radial distortion
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Repetition

The camera equations:
λx = K

[
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]︸ ︷︷ ︸
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K - intrinsic parameters
R,t - extrinsic parameters
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Repetition

The structure from motion problem:

Given Images

4 images out of a sequence with 435
images.

Compute 3D Model

Carl Olsson Computer Vision: Lecture 3 2020-01-28 4 / 35



Repetition

The structure from motion problem (main goal of the course):
Solve the camera equations:

λijxij = PiXj , ∀i , j .

Find both camera matrices Pi , and 3D points Xi !

Two versions:

Projective reconstruction: Nothing is known about Pi .

Euclidean reconstruction: Pi = Ki

[
Ri ti

]
, where Ki is known!
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Projective vs. Euclidean Reconstruction

Projective

The reconstruction is determined up to a projective transformation.
If λx = PX, then for any projective transformation

X̃ = H−1X

we have
λx = PHH−1X = PHX̃.

PH is also a valid camera.
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Projective vs. Euclidean Reconstruction

Calibrated Cameras

A camera
P = K [R t] ,

where the inner parameters K are known is called calibrated. If we change
coordinates in the image using

x̃ = K−1x,

we get a so called normalized (calibrated) camera

x̃ = K−1K [R t]X = [R t]X.
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Projective vs. Euclidean Reconstruction

Euclidean

The reconstruction is determined up to a similarity transformation.
If λx = [R t]X, then for any similarity transformation

X̃ = H−1X =

[
sQ v
0 1

]−1
X

we have
λ

s
x = [R t]

[
Q v
0 1

s

]
X̃ = [RQ Rv +

t

s
]X̃.

Since RQ is a rotation this is a normalized camera.
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Projective vs. Euclidean Reconstruction

Projective Euclidean

Arch of triumph, Paris. The reconstructions have exactly the same
reprojection error. But the projective coordinate system makes things look
strange.
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Projective vs. Euclidean Reconstruction

Demo.
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The Inner Parameters -K

The matrix K is the upper triangular matrix:

K =

 γf sf x0
0 f y0
0 0 1

 .
f - focal length

γ - aspect ratio

s - skew

(x0, y0) - principal points
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The Inner Parameters -K

The focal length f  fx
fy
1

 =

 f 0 0
0 f 0
0 0 1

 x
y
1


Re scales the images (e.g. meters → pixels).
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The Inner Parameters -K

The principal point (x0, y0) fx + x0
fy + y0

1

 =

 f 0 x0
0 f y0
0 0 1

 x
y
1


Re centers the image. Typically transforms the point (0, 0, 1) to the
middle of the image.
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The Inner Parameters -K

Aspect ratio  γfx + x0
fy + y0

1

 =

 γf 0 x0
0 f y0
0 0 1

 x
y
1


Pixels are not always squares but can be rectangular. In such cases the
scaling in the x-direction should be different from the y-direction.

Skew  γf sf x0
0 f y0
0 0 1



Corrects for tilted pixels. Typically zero.
Carl Olsson Computer Vision: Lecture 3 2020-01-28 14 / 35



Finding K

1 Solve the resection problem: Find P from the camera equations

λixi = PXi ,

when both xi and Xi are known (for all i).
(Structure form motion with known 3D points.)

2 Use RQ-factorization to extract K from P.
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RQ-factorization

Theorem

If A is an n × n matrix then there is an orthogonal matrix Q and a right
triangular matrix R such that A = RQ.

(If A is invertible and the diagonal elements are chosen the be positive,
then the factorization is unique.)

Note: In our case we will use K for the triangular matrix and R for the
rotation.
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Finding K

See lecture notes.

Carl Olsson Computer Vision: Lecture 3 2020-01-28 17 / 35



Finding K

Exercise 1: If

P =

3000 0 −1000 1

1000 2000
√

2 1000 2
2 0 2 3


find f and R3.

Exercise 2: Determine e, R2 and d for P in Ex 1.

Exercise 3: Determine a,b,c and R1 for P in Ex 1.
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Direct Linear Transformation - DLT

Finding the camera matrix (The Resection Problem)

Use images of a known object to eliminate the projective ambiguity. If Xi

are 3d-points of a known object, and xi corresponding projections we have

λ1x1 = PX1

λ2x2 = PX2
...

λNxN = PXN .

There are 3N equations and 11 + N unknowns. We need
3N ≥ 11 + N ⇒ N ≥ 6 points to solve the problem.

Carl Olsson Computer Vision: Lecture 3 2020-01-28 19 / 35



Direct Linear Transformation - DLT

Matrix Formulation

P =

 pT1
pT2
pT3


where pi are the rows of P The first equality is

XT
1 p1 − λ1x1 = 0

XT
1 p2 − λ1y1 = 0
XT

1 p3 − λ1 = 0,

where x1 = (x1, y1, 1). In matrix form

 XT
1 0 0 −x1

0 XT
1 0 −y1

0 0 XT
1 −1




p1
p2
p3
λ1

 =

 0
0
0
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Direct Linear Transformation - DLT

Matrix Formulation

More equations:

XT
1 0 0 −x1 0 0 . . .

0 XT
1 0 −y1 0 0 . . .

0 0 XT
1 −1 0 0 . . .

XT
2 0 0 0 −x2 0 . . .

0 XT
2 0 0 −y2 0 . . .

0 0 XT
2 0 −1 0 . . .

XT
3 0 0 0 0 −x3 . . .

0 XT
3 0 0 0 −y3 . . .

0 0 XT
3 0 0 −1 . . .

...
...

...
...

...
...

. . .


︸ ︷︷ ︸

=M



p1
p2
p3
λ1
λ2
λ3
...


︸ ︷︷ ︸

=v

= 0
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Direct Linear Transformation - DLT

Homogeneous Least Squares

See lecture notes...
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Singular values decomposition

Theorem

Each m × n matrix M (with real coefficients) can be factorized into

M = USV T ,

where U and V are orthogonal (m ×m and n × n respectively),

S =

[
diag(σ1, σ2, ..., σr ) 0

0 0

]
,

σ1 ≥ σ2 ≥ ... ≥ σr > 0 and r is the rank of the matrix.

Very useful tool in this course!
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Direct Linear Transformation - DLT

Homogeneous Least Squares

See lecture notes...
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Exercise 4

If M = USV T where3 0 0
0 2 0
0 0 1

 and V =

1 0 0

0 1
2

−
√
3

2

0
√
3
2

1
2


find a vector v of length 1 that minimizes ‖Mv‖ and the minimal value.

Carl Olsson Computer Vision: Lecture 3 2020-01-28 25 / 35



Direct Linear Transformtation - DLT

Algorithm for minimizing ‖Mv‖2 with ‖v‖ = 1:

1 Compute the factorization

M = USV T

(in Matlab).

2 Select the solution
v = last column of V .
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Direct Linear Transformation - DLT

Improving the Numerics (Normalization of uncalibrated cameras)

The matrix contains entries xi , yj and ones. Since xi and yi can be about a
thousand, the numerics are often greatly improved by translating the
coordinates such that their “center of mass” is zero and then rescaling the
coordinates to be roughly 1.

Change coordinates according to

x̃ =

 s 0 −sx̄
0 s −sȳ
0 0 1

 x.

Solve the homogeneous linear least squares system and transform
back to the original coordinate system.

Similar transformations for the 3D-points Xi may also improve the
results.
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Pose estimation using DLT

3D points measured using scanning arm.
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Pose estimation using DLT

14 points used for computing the camera matrix.
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Pose estimation using DLT

14 points used for computing the camera matrix.
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Texturing the chair

Project the rest of the points into the image.
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Texturing the chair

Form triangles. Use the texture from the image.
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Textured chair
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Radial Distortion

Not modeled by the K -matrix.
Cannot be removed by a projective mapping since
lines are not mapped onto lines (see Szeliski).
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Todo

Finish Assignment 1.

Start working on Assignment 2.
Theory for E1,CE1,E2,E3,E4,E5,CE2 is done.
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