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Lecture 11: Global Optimization

1 Projective Least Squares

In Lecture 9 we studied local optimization methods for multiple view geometry problems. Under the assumption
of Gaussian image noise we optimized the maximum likelihood function∑

i,j

(rij(v))2 =
∑
ij

∥∥∥∥(x1
ij −

R1
iXj + t1i

R3
iXj + t3i

, x2
ij −

R2
iXj + t2i

R3
iXj + t3i

)∥∥∥∥2

. (1)

In general this problem is difficult to solve since the involved terms are quotients of quadratic functions. In this
lecture we will study some special cases that we can optimize globally by making a slight modification to the
problem. Specifically, we will assume that the residuals are of the form

ri(v) =

∥∥∥∥∥
(
aTi v + ãi
cTi v + c̃i

,
bTi v + b̃i
cTi v + c̃i

)∥∥∥∥∥ , (2)

where cTi v + c̃i > 0, that is, each coordinate is a quotient of affine functions. Instead of solving the least squares
formulation we will consider the optimization problem

minv maxi ri(v) (3)

s.t. cTi v + c̃i > 0, (4)

which can be solved globally optimally because of some convexity properties.

Below we give two examples of problems where the residuals are of the type (2).

Triangulation In this problem we know the camera matrices Pi = [Ai ti] and image points xi and want to find
the scene point X . The residuals are of the form

ri(X) =

∥∥∥∥(x1
i −

A1
iX + t1i

A3
iX + t3i

, x2
i −

A2
iX + t2i

A3
iX + t3i

)∥∥∥∥ . (5)

To see that this expression is of the correct type (2) we can re write it as∥∥∥∥( (x1
iA

3
i −A1

i )X + x1
i t

3
i − t1i

A3
iX + t3i

,
(x2
iA

3
i −A2

i )X + x2
i t

3
i − t2i

A3
iX + t3i

)∥∥∥∥ . (6)

The constraint A3
iX + t3i > 0 means that the scene point should be in front of the camera.

Resection In the resection problem we want to estimate the camera parameters A and t from scene points Xi and
their projections (x1

i , x
2
i ). The residuals of this problem are

ri(A, t) =

∥∥∥∥(x1
i −

A1Xi + t1

A3Xi + t3
, x2
i −

A2Xi + t2

A3Xi + t3

)∥∥∥∥ . (7)

Structure from Motion with Known Camera Orientations If the camera orientations of all the cameras are known
(in practice computed with some other method such as the one described in Section ??) then we can solve for
both the 3D points and the camera positions simultaneously. In this case the unknowns are X and t which
gives residuals of the form

ri(X, t) =

∥∥∥∥(x1
i −

A1Xi + t1

A3Xi + t3
, x2
i −

A2Xi + t2

A3Xi + t3

)∥∥∥∥ . (8)
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2 Convex Optimization

In this section we review some properties of convex functions and sets that will be useful for solving (3)-(4).

2.1 Convex Sets

A set C ∈ Rn is called convex if the line segment joining any two points in C is contained in C. That is, if
x, y ∈ C then λx+ (1− λ)y ∈ C for all λ with 0 ≤ λ ≤ 1.

We call a point x of the form

x =

n∑
i=1

λixi, (9)

where
∑n
i=1 λi = 1, 0 ≤ λi ≤ 1 and xi ∈ C, a convex combination of the points x1, ..., xn. A convex set

always contains every convex combination of its points. Furthermore, it can be shown that a set is convex only if it
contains all its convex combinations. Figure 1 shows simple examples of the notions introduced.

Figure 1: Left: A convex set. Right: A non-convex set.

Next we will state two special cases of convex sets that will be useful to us.

The halfspace. A halfspace is a set of the form

{x ∈ Rn; aTx ≤ b}, (10)

where a 6= 0, i.e., it is the solution set of a nontrivial affine inequality. The boundary of the half space is the
hyperplane {x ∈ Rn; aTx = b}. It is straight forward to verify that these sets are convex.

The second order cone. The second order cone in Rn+1 is the set

{(x, t) ∈ Rn+1; ||x|| ≤ t}. (11)

From the general properties of norms it follows that the second order cone is a convex set in Rn+1.

If f : Rm 7→ Rn is an affine mapping then the set C ′ = {x; f(x) ∈ C} is convex in Rm if C is convex in Rn.
That is, convexity is preserved under affine mappings. When applied to the second order cone we get sets of the
type

{x; ||Ax+ b||2 ≤ cTx+ d}. (12)

Convexity is also preserved under intersection. Thus a set C that is given by several of the constraints above (half
spaces and cone-constraints) is a convex set.
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2.2 Convex Functions

A function f : C 7→ R is called convex if C is a convex set, and for all x, y ∈ C and 0 ≤ λ ≤ 1, we have

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y). (13)

The geometric interpretation of this definition is that the line segment between the points (x, f(x)) and (y, f(y))
should lie above the graph of f . Figure 2 shows the geometric interpretation of the definition.

Figure 2: Left: Graph of a convex function. The line segment joining two points (x, f(x)) and (y, f(y)) lies
above the graph. Right: Graph of a non-convex function.

Theorem 1. If f is convex on a convex set C then any local minimum is also global.

Proof. Asume that x is a local minimizer. Then there is a local neighborhood around x such that

f(x) ≤ f(y) (14)

for all y such that ‖x− y‖ ≤ δ. Suppose that x is not the global minimizer. Then there is an x∗ such that

f(x∗) < f(x). (15)

Since C is convex we can form the line segment between x∗ and x and look at the values of f .

f(λx∗ + (1− λ)x) ≤ λf(x) + (1− λ)f(x∗) < λf(x) + (1− λ)f(x) = f(x), (16)

if 0 < λ ≤ 1. Now if we choose λ small enough such that y = λx∗ + (1− λ)x fulfills ‖x− y‖ ≤ δ we see that x
cannot be a local minimizer since

f(x) > f(y). (17)

3 Solving the Min-Max Problem

We now return to the min-max problem (3)-(4). By adding an extra variable γ we can rewrite the problem as

minγ,v γ (18)

s.t. ri(v) ≤ γ, ∀i. (19)

Since we minimize γ and γ ≥ ri(v) for all i, γ has to take the same value as the largest residual maxi ri(v).
Therefore the two formulations are equivalent. Since cTi v + c̃i > 0 and we can write the problem as

minγ,v γ (20)

s.t.
∥∥∥(aTi v + ãi, b

T
i v + b̃i

)∥∥∥ ≤ γ(cTi v + c̃i), ∀i. (21)
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For a fixed γ the constraint (21) of the type (12) and therefore convex. Furthermore the intersection of all these
constraints is also convex. This makes it possible to determine if there is a set of variables v that fulfill all the
constraints for a given γ. Specifically, we can solve the convex program

mins,v s (22)

s.t.
∥∥∥(aTi v + ãi, b

T
i v + b̃i

)∥∥∥ ≤ γ(cTi v + c̃i) + s, ∀i. (23)

If the optimal s > 0 then it is not possible to find a v that fulfills all the constraints at the same time. In this case
we know that the current γ is smaller than minv maxi ri(v). Otherwise if the optimal s ≤ 0 we know that the
current γ is larger than minv maxi ri(v). This makes it possible to search for the minv maxi ri(v) by solving a
sequence of convex problems.

Below we outline a simple procedure, called bisection, that finds the optimal solution.

1. Let γl and γu be lower and upper bounds on the optimal error.

2. Check if there is a solution such that
ri(v) ≤ γu + γl

2
, ∀i

(convex optimization problem).

3. If there is set γu = γu+γl
2 , otherwise set γl = γu+γl

2 .

4. If γu − γl > tol (some predefined tolerance) goto 2.

The result is an interval [γl, γu] that is guaranteed to contain the optimal value.

4 Rotation Averaging

The methods that we described in the previous section can be used to solve the structure from motion problem if
we have estimates for the camera rotations by optimizing over camera positions and 3D points. For this to be useful
we need a method that can accurately estimate camera rotations which we will describe in this section.

For each pair of cameras that have a sufficient number of matches we can solve the (calibrated) relative pose problem
(see Lecture 6). This gives us two cameras P1 =

[
I 0

]
and P2 =

[
R12 t12

]
. The rotation R12 essentially tells

us how we should rotate camera 1 to get camera 2. Similarly, if we solve the relative pose between cameras 2 and
3 we get the solution P2 =

[
I 0

]
and P3 =

[
R23 t23

]
. Note that the solution to the relative pose problem is

only defined up to a similarity transformation. That is, if we have one solution we may rotate translate and scale
the solution to obtain a new one. Now let’s say that the camera orientations are R1,R2 and R3 in some common

coordinate system. Then, by applying the rigid transformation

[
RT1 0
0 1

]
to the first solution we get

[
I 0

]
=
[
R1 0

] [RT1 0
0 1

]
(24)

and [
R12 t12

]
=
[
R12R1 t12

] [RT1 0
0 1

]
(25)

That is R2 = R12R1. Similarly by applying

[
RT2 0
0 1

]
to the second camera pair we get R3 = R23R2 =

R23R12R1, which gives us estimates for the three camera orientations in the same coordinate system.

Now suppose that we also solve for the relative orientation between cameras 3 and 1 giving us the additional
equation R1 = R31R3. The system is now over-determined and due to noise it will in general not be possible to
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find an exact solution to all these equations at once. Least squares rotation averaging attempts to find the rotations
that minimizes the problem

minR1,R2,...,Rn
‖RijRi −Rj‖2 (26)

such that RTi Ri = I ∀i = 1, ..., n. (27)

This is a quadratic objective function with quadratic equallity constraints which in general results in a non-convex
problem. In the following section we will describe how such problems can be addressed using Lagrangian duality.

5 Duality

Suppose that we have an a quadratic objective function q(x) = xT Ãx+ 2bTx+ c, where the variable x ∈ Rn. By
extending x to Rn+1 and letting the extra coordinate be one we can write the objective as q(x) = xTAx where

A =

[
Ã b
bT c

]
. (28)

Similarly suppose that we have quadratic functions qi(x) = xTAix− 1 and we want to solve

minx q(x) (29)

such that qi(x)− 1 = 0. (30)

We will call this problem the primal problem. To eliminate the constraint we form the Lagrangian L(x, λ) =
q(x) +

∑
i λi(qi(x)− 1) and consider

min
x
L(x, λ) (31)

for a given value of λ. Let x∗ be the minimizer of of (31). If x∗ fulfills the constraints qi(x∗) = 0 then we
have found the minimizer of the original problem since L(x, λ) = q(x) for all x that fulfill qi(x) = 0. If the
minimizer does not fulfill the constraints then we found a solution to that was better than all other points fulfilling
the constraints. In both cases we have that L(x∗, λ) < minx q(x) such that qi(x) = 0. That is for each value of λ
we get a lower bound on the optimal value of the primal problem. Lagrangian duality consists in trying to find the
largest lower bound by solving

max
λ

min
x
L(x, λ). (32)

We will refer to this as the dual problem. When both the objective and the constraints are quadratic it is possible to
solve the inner minimization in closed from since L(x, λ) = xT (A +

∑n
i=1 λiAi)x −

∑n
i=1 λi. The minimum

of this function is

L(x∗, λ) =

{
−
∑n
i=1 if A+

∑n
i=1 λiAi � 0

−∞ otherwise
(33)

Since the dual problem maximizes with respect to λ we do not need to consider the second case. The dual problem
is then

maxλ −
n∑
i=1

λi (34)

such that A+

n∑
i=1

λiAi � 0. (35)

This problem has a linear objective function and a convex constraint and is therefore convex and can be reliably
solved with standard solvers.

For rotation averaging the dual problem has the from

maxΛ −trace(Λ) (36)

such that Λ−M � 0, (37)
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where

M =


0 R12 . . . R1n

R21 0 . . . R2n

...
. . .

...
Rn1 Rn2 . . . 0

 and Λ =


Λ1 0 0 . . .
0 Λ2 0 . . .
0 0 Λ3 . . .
...

...
...

. . .

 . (38)

While the dual problem is in general only a lower bound on the primal problem it can be shown that for the
rotation averaging problem it is tight if the solution has small enough error residuals. Specifically, if the rotation
angle of the rotation RTj RijRi is smaller than 42.9◦ then the lower bound is tight.
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