
Computer Vision Lecture 10 2020-02-19

Lecture 10: Factorization and Dimensionality Reduction

1 Dynamic Scenes and Linear Basis Models

Previously we have considered image data generated by viewing a rigid scene in a moving camera. In this section
we will consider images depicting more general deforming objects. Solving for both camera and object motions is
an ill posed problem if points are allowed to move arbitrarily. However, in real scenes point motions are typically
highly correlated. Figure 1 shows for images from a dataset consisting of points tracked through a sequence off
hand. While all the points are allowed to move only a small subset of simple motions give rise to reasonable hand
shapes. Restricting the set of shapes and motions regularizes the problem and makes it solvable.

Figure 1: Four (out of 40) images of a deformable model with 56 tracked point. By concatenating x- and y-
coordinates from all images each track can be seen as a data point in an 80 dimensional space.

From a mathematical point of view we can see the coordinates from each track as a data point in a high dimensional
space. Let (xij , yij) be the coordinates of point j in image i. We form the measurement matrix M by

M =



x11 x12 x13 . . . x1n
y11 y12 y13 . . . y1n
x21 x22 x23 . . . x2n
y21 y22 y23 . . . y2n

...
...

...
. . .

...
xm1 xm2 xm3 . . . xmn

ym1 ym2 ym3 . . . ymn


. (1)

Here each column corresponds to the coordinates of a point track and every two consecutive rows correspond to an
image. The columns of M can be seen as data points in a 2m-dimensional space. To model dependence between
points a common approach is to assume that the data points can be written as a linear combination of a few basis
columns, or equivalently, to assume that the columns of M belong to a low dimensional subspace.

In linear algebra we have the following useful concepts:

• The column space of M consists of all linear combinations of columns in M .

• The row space of M consists of all linear combinations of rows in M .

• The rank of M is the dimension of the row and column spaces.
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Exercise 1. Show that the columns B1 =

 1
2
1

 and B2 =

 2
3
1

 form a basis for the column space of

M =

 1 2 2 0
2 3 2 1
1 1 0 1

 , (2)

and determine its rank.

Figure 2: Left - The columns of M seen as points in R3. Middle - The factorization 2D basis B1 and B2 spanning
a plane that all points belong to. Right - When a coordinate of a new data point is missing it can be recovered by
enforcing that the points lie on the detected plane.

Since the columns of M have 3 entries they can be interpreted as points in R3, see Figure 2. The fact that we
can write all the columns of M as a linear product of the basis vectors B1 and B2 shows that they all belong to a
2-dimensional subspace spanned by B1 and B2.

Exercise 2. Find a 3 × 2 matrix B and a 2 × 4 matrix C such that M = BCT and determine a basis for the row
space of M .

As we have seen previously we can interpret the columns of M as data points in R3 and B as a basis for the 2-
dimensional column space. Alternatively we can consider the rows of M as data points in R4 and C as a basis for
the row space. In this case the matrix B contains the coefficients used to form the data points in M from the basis
in C. The dimension of these two spaces is the same as the rank of the matrix. For the data shown in Figure 1 the
row space will consist of a set of possible hand-shapes whereas the column space consists of a set of point trajectories.

The expression M = BCT is called a factorization of M and B and C are the factors. Without any additional

constraints there are many possible factorizations. For example if we let B̃ = BH and C̃ = CH−1
T

= CH−T

we get
B̃C̃T = BHH−1CT = BCT = M, (3)

for any invertible matrix H .

2 Low Rank Approximation

When using real data our measurements are usually corrupted by noise. Therefore the measurement matrix is
normally of full rank and it is not possible to find any subspace containing the data points unless the whole space
is used. In order to reduce the dimensionality of the data we therefore have to remove noise. Assuming the we add
Gaussian noise to a matrix with rank r to get the measurement matrix M the maximum likelihood estimator is

min
rank(X)=r

‖X −M‖2F , (4)
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that is, we want to find the matrix X that is closest to M in a least squares sense and has rank(X) = r.

The solution to this problem can be obtained from the SVD of M .

Theorem 1 (Ekhart-Young 1936). If rank(M) = k > r and M has the singular value decomposition M = USV T

with

S =

[
diag(σ1, σ2, ..., σk) 0

0 0

]
, (5)

then the solution to (4) is given by X = USrV
T where

Sr =

[
diag(σ1, σ2, ..., σr, 0, 0, ...) 0

0 0

]
. (6)

To find the best rank r approximation of M we thus take its SVD and set all but the first r singular values to zero.
We can directly obtain a factorization X = BCT from the SVD X = USrV

T . Let U ′ and V ′ be the first r
columns of U and V and S′r be the top r × r block of Sr. Since all but the first r columns of U vanish in the
multiplication USr, and similarly all but the first r rows of V T vanish in SrV

T , it is clear that

X = USrV
T = U ′S′rV

′T . (7)

Thus we can for example let B = U ′S′r and C = V ′ to obtain X = BCT .

Figure 3: Left - The measurement matrix for the hand data set in Figure 1. Middle - A rank 5 approximation of the
measurement matrix. Right - The difference between the measurement matrix and the rank 5 approximation.

Figure 1 shows the measurement matrix for the hand data set from Figure 1. The left image shows the original noisy
measurement matrix and the middle image shows the low rank approximation obtained using SVD as described
above. The difference is shown in the right image, note the different scales. While the two matrices are very similar
the first one has 80 · 56 = 4480 elements while the second one can be represented with (80 + 56) · 5− 52 = 665
numbers.

If the assumption that all hand shapes can be written as a linear combination of five basis shapes is accurate, we can
use the obtained factorization to compute new hand shapes. To generate a new image we need to know the x- and
y- coordinates of all the points. According to our assumption these should be linear combinations of the rows of
CT . We therefore should have (

x1 x2 . . . xn
y1 y2 . . . yn

)
= BnewC

T , (8)

where (x1, y1), (x2, y2), ... are the unknown point coordinates and Bnew is a 2 × 5 matrix of parameters that
specify the point coordinates. Thus we have a linear function f(Bnew) := BnewC

T that can be used to generate
new images. It can be difficult to find reasonable values for the parameters in Bnew since there are many possible
choices of CT that can be obtained from the factorization. One way to generate reasonable values is to instead
specify the coordinates of a few (in this case 5) points and determine the values of Bnew from these. If we for
example specify the first 5 point positions we get(

x1 x2 . . . x5
y1 y2 . . . y5

)
= BnewC

T
5×5, (9)
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where C5×5 are the first five rows of C. Assuming that C5×5 is invertible we get

Bnew =

(
x1 x2 . . . x5
y1 y2 . . . y5

)
C−T5×5. (10)

Inserting (10) in (8) gives a new linear function that takes 5 point positions and returns the coordinates for all the
points 56.

The choice of using the first five points to construct the function above is arbitrary and we may use any collection
of 5 points. For numerical reasons it is often beneficial to use points that are evenly distributed in the scene. In
Figure 4 we selected the five marked with a red dot and varied the coordinates of one of them. The blue curves
show the positions obtained for all points by using (10) and (8). As long as we stay in the vicinity of the previously
observed shapes the silhouettes look reasonable, however if we move too far away from previously observed shapes
the result may start to look unreasonable, as in the right example of Figure 4).

Figure 4: Modifying the point coordinates of 5 of the observed points to generate new shapes using the computed
row space of CT .

3 Structure from Motion with Affine Cameras

If we use the so called affine camera model the structure from motion problem is closely related to factorization.
In the affine camera model viewing rays are assumed to be perpendicular to the image plane, see Figure 5. If
the observed scene points are roughly at the same distance from the camera this model often works well as an
approximation of the pinhole camera model.

Figure 5: Left - A regular pinhole camera where all viewing rays go through the camera center. Right - The affine
camera model where the viewing rays are parallel to the normal of the image ray.

If P is the camera matrix of an affine camera then its third row is of the form [0 0 0 t3]. Since the scale of the
camera matrix is arbitrary we may assume that t3 = 1, and therefore the camera matrix has the form

P =

[
A t
0 1

]
, (11)
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where A is a 2 × 3 matrix and t is a 2 × 1 vector. By using regular Cartesian coordinates for both image points
and scene points the camera equations can be simplified. If xij is the projection of the scene point Xj in the affine
cameras Pi then the projection can be written

xij = AiXj + ti. (12)

To find he maximum likelihood estimate we therefore need to solve

min

n∑
i=1

m∑
j=1

‖xij −AiXj + ti‖2. (13)

Dy differentiating with respect to ti it can be seen that the optimal ti is given by

ti = x̄i −AiX̄,

where X̄ = 1
m

∑
j Xj and x̄i = 1

m

∑
j xij . To simplify the problem we therefore change coordinates so that all

these mean values are zero by translating all image points and scene points. Using x̃ij = xij−x̄i and X̃i = Xi−X̄ ,
gives the simplified problem

min
∑
ij

||x̃ij −AiX̃j ||2. (14)

In matrix form we can write this as

min

∥∥∥∥∥∥∥∥∥∥∥∥∥∥


x̃11 x̃12 . . . x̃1m
x̃21 x̃22 . . . x̃2m

...
...

. . .
...

x̃n1 x̃n2 . . . x̃nm


︸ ︷︷ ︸

M

−


A1

A2

...
An

 [X̃1 X̃2 . . . X̃m

]
︸ ︷︷ ︸

rank 3 matrix

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

. (15)

Since the Ai has only 3 columns the second term will be rank 3 matrix. Thus our problem is to find the matrix of
rank 3 that best approximates M and factor it into AXT where A contains the cameras and XT the 3D points.
As described in the previous section the best approximating matrix can be found by computing the SVD of M and
setting all but the first 3 singular values to zero.

We summarize the algorithm for affine cameras here:

1. Re-center all images so that the center of mass of the image points is zero in each image.

2. Form the measurement matrix M .

3. Compute the SVD:
M = USV T . (16)

4. A solution can be found by extracting the cameras from U(:, 1 : 3) and the structure from S(1 : 3, 1 :
3) ∗ V (:, 1 : 3)′.

5. Transform back the solution to the original image coordinates.

Note that the approach only works when all points are visible in all images. Furthermore, the camera model is
affine, which is a simplification. This is often a good approximation when the scene point have roughly the same
depth.
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4 The Missing Data Problem

Now lets consider the degrees of freedom (DOF) of the set of matrices that can be writtenBCT ifB is of sizem×r
and C is n × r. The two factors have (m + n)r elements in total, however since the product (3) is independent
of the r × r matrix H we get (m + n)r − r2. In contrast a general m × n matrix has mn elements. Since
mn = (m+ n)n− n2 = (m+ n)m−m2 it is clear that BCT has fewer degrees of freedom if r < m or r < n.
In the example in Exercise 1 we have mn = 12 and (m+n)r− r2 = 10. Thus BCT can be seen as a compressed
representation where we can specify the content of M using fewer values than its total number of elements.

The fact that BCT has fewer DOF than a general matrix of size m×n makes it possible to recover M even if only
a subset of the elements of M is known.

Exercise 3. Find the elements m15 and m26 of

M =

 1 2 2 0 m15 1
2 3 2 1 1 m26

1 1 0 1 0 2

 , (17)

such that rank(M) = 2.

To the right Figure 2 we give a geometric interpretation of the above exercise. Then varying m15 and m26 we
obtain the points of two lines. If the unknown points are assumed to belong to the same subspace as the rest of the
columns of M they have to lie in the intersections between the lines and the plane.

When some elements of M are unknown we cannot use the SVD to recover a low rank approximation of M . If W
is a matrix that has wij = 1 if mij is known and wij = 0 otherwise we seek a solution to

min
B,C
‖W � (BCT −M)‖2F , (18)

where � denotes element-wise multiplication. This problem has to be solved for relatively high levels of missing
data using iterative local methods. Figure 6 shows a solution recovered from a measurement matrix containing
roughly 50% of the data from the hand data set.

Figure 6: Left - The measurement matrix with roughly 50% missing entries for the hand data set in Figure 1. Middle
- A rank 5 approximation obtained using local optimization. Right - The difference between the true measurement
matrix (without missing data) and the obtained rank 5 approximation.
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