
Computer Vision Lecture 8 2020-02-12

Lecture 8: RANSAC and Minimal Solvers

1 The Outlier Problem

In previous lectures we have studied the algebraic equations that govern projective camera systems. Under the
assumption that the data given to us in the form of point correspondences is correct, we have derived algorithms
for approximately solving these in the presence of moderate noise. However, since correspondences are determined
automatically this will not be true in practice. A typical situation is shown in Figure 1 where correspondences
between two images have been determined using SIFT descriptors. In practice we have to expect that the data
contains (at least) a small portion of incorrect matches. We refer to these as outliers and the rest as inliers.

Figure 1: The Outlier Problem. When automatically detecting correspondences using descriptors such as SIFT
there will always be a portion of incorrect matches. Green lines in the figure correspond to correct matches and red
lines correspond to outliers.

As we saw in Lecture 7 the outliers typically do not fulfill the Gaussian noise assumption for the particular problem
that we are trying to solve, and they can severely degrade the quality of the estimation. To address this issue we can
use robust loss-functions. However, these can be sensitive to initialization and can often only handle a relatively
small portion of outliers. Therefore we need a method for removing outliers as well as providing reliable starting
solutions that can be locally refined.

2 RANSAC

Random sample consensus (RANSAC) is a method for removing outliers. The idea is simple; If the number of
outliers is small, then if we pick a small subset of the measurements at random, we are likely to pick an outlier free
set.

The outline of the algorithm is as follows:

1. Randomly select a small subset of measurements and solve the problem using only these.

1



Computer Vision Lecture 8 2020-02-12

2. Evaluate the error residuals for the rest of the measurements under the solution from 1. The Consensus Set
for this solution is the set of measurements with error residuals less than some predefined threshold.

3. Repeat a number of times and select the solution that gives the largest consensus set.

The probability of randomly selecting a set of inliers depends on the size of the set and the proportion of inliers.

Exercise 1. Assume that we want to fit a line to a set of points. We randomly select 2 points and fit a line to these
in each RANSAC iteration. Suppose that 10% of the points are outliers. How many iterations are required to find
at least one set of only inliers with probability p = 95%? You may assume that the set of points is large such that
the portion of outliers do not change when removing a point. (Hint: First compute the probability of failure.)

Exercise 2. Same question as before but now we select 8 point correspondences to estimate a Fundamental matrix.

In practice it is a good idea to run more iterations than what is needed since, because of noise, not all inlier sets
work equally well for estimating the solution. For example in the case of line estimation; if the two inlier points
used to estimate the line are very close to each other then the line estimate can be very poor due to noise. Therefore
the estimation may still generate a small consensus set.

3 Minimal Solvers and Solution of Polynomial Equation Systems

The more measurements we use in each RANSAC iteration the more iterations we need to run for finding good
inlier sets. Therefore it is essential to use as few measurements as possible. Minimal solvers are a class of algebraic
solvers that compute solutions from a minimal amount of data. In Lecture 6 we computed the Essential matrices
from 8 or more point correspondences. However the essential matrix has only 5 degrees of freedom and a minimal
solver for this problem therefore only uses 5 points. The 8-point algorithm is more general in that it works for any
number of correspondences above 8 whereas the minimal solver only works for precisely 5. Still, in the context of
a RANSAC algorithm the minimal solver is preferable.

Minimal solvers often need to find solutions to systems of non-linear equations. Next we will present a method for
solving polynomial systems of equations. The idea is to transform the problem into an eigenvalue problem.

For simplicity we will first consider a system of two equations in two variables.{
x2 − y − 3 = 0
xy − x = 0.

(1)

By factoring out x from the second equation it can be seen that the system has three roots, namely (0,−3), (2, 1)
and (−2, 1).

In the following sections we will present a method for automatically finding these roots, that work under fairly
general conditions. A polynomial p of degree n can represented using a monomial vector m(x, y) containing all
monomials of degree at most n and a coefficient vector cp. For example, the polynomial p(x, y) = 1 + 2x+ 3y+
4x2 + 5xy + 6y2 can be represented by cTpm(x, y), where

cp =


1
2
3
4
5
6

 and m(x, y) =


1
x
y
x2

xy
y2

 . (2)

Using the monomials in m(x, y) and a coefficient vector we can represent any second degree polynomial. The
collection of monomials in m(x, y) is called a monomial basis. The approach we will present is based on the
observation that if we insert a root (x0, y0) in the monomial vector m(x, y) then the resulting vector can be found
by computing eigenvectors of a particular matrix.

2



Computer Vision Lecture 8 2020-02-12

3.1 The Action Matrix

We define Tx to be an operator that takes a polynomial p(x, y) and multiplies it with x. If we apply Tx to the three
monomials 1, x, y we get

1 7→ x (3)

x 7→ x2 (4)

y 7→ xy. (5)

Now let us assume that (x0, y0) is a solution to (1). The result of applying Tx to the above monomials can then be
simplified if we insert (x0, y0),

1 7→ x0 (6)

x0 7→ x20 = y0 + 3 (7)

y0 7→ x0y0 = x0. (8)

Now suppose that a first order polynomial p is given by the coefficient vector cp = (c1p, c
2
p, c

3
p) and monomial

vector m(x, y) = (1, x, y). By q(x, y) we denote the result of applying Tx to p(x, y). Because of the reductions
(6)-(8) we get

q(x0, y0) = c1px0 + c2p(y0 + 3) + c3px0 = 3c2p1 + (c1p + c3p)x0 + c2py0. (9)

We see that if (x0, y0) solves (1) then because of the reductions we can represent q(x0, y0) using the vector
m(x0, y0) and a coefficient vector cq . The coefficient vector can be found by identifying the monomials in (9), c1q

c2q
c3q

 =

 3c2p
c1p + c3p
c3q

 =

 0 3 0
1 0 1
0 1 0


︸ ︷︷ ︸

=Mx

 c1p
c2p
c3p

 . (10)

The matrix Mx is called the action matrix for the mapping Tx. Given the coefficients of p(x, y) it computes the
coefficients of x0p(x0, y0) provided that (x0, y0) solves the system (1). Under certain conditions it is possible to
compute the roots of the system from this matrix.

3.2 Finding the Roots.

Next we will show that the roots of the system (1) are eigenvalues to the action matrix Mx. For any polynomial p
we have

x0p(x0, y0) = x0c
T
pm(x0, y0). (11)

Furthermore,

x0p(x0, y0) = q(x0, y0) = cTq m(x0, y0) = (Mxcp)
Tm(x0, y0) = cTpM

T
x m(x0, y0). (12)

Since this is true for any degree one polynomial (and therefore any coefficient matrix cq of size 3× 1) we must have
that

x0m(x0, y0) = MT
x m(x0, y0). (13)

Therefore we can conclude that if (x0, y0) is a root of (1) then m(x0, y0) is an eigenvector of MT
x with eigenvalue

x0.

Exercise 3. Verify that m(x0, y0) is an eigenvector of

MT
x =

 0 1 0
3 0 1
0 1 0

 (14)

for all the three roots (0,−3), (2, 1) and (−2, 1) of the system (1).

3



Computer Vision Lecture 8 2020-02-12

3.3 Algorithm

Based on the above derivations we now give an algorithm for finding the roots of a system of polynomials.

1. Select a basis of monomials.

2. Apply the mapping Tx to the monomial basis and reduce the result until the resulting expressions consists
only of monomials from the basis.

3. Construct the action matrix Mx.

4. Compute eigenvalues and eigenvectors of MT
x .

5. Extract solutions from the eigenvectors.

The theory from Section 3.2 says that the solutions will be among the eigenvectors. It does however not guarantee
that there are no other eigenvectors. Therefore we might have to check the extracted solutions by inserting into the
system of equations.

Furthermore, if the eigenvalues are not distinct there might be infinitely many eigenvectors to search. For example,
if the x-coordinate of two of the roots are the same then MT

x will have a double eigenvalue. If we cannot find the
correct eigenvector then the eigenvalue will still give us some information, since it is not possible to have a root
with x-coordinate that is not an eigenvalue MT

x .

3.3.1 What degree of polynomials do we need?

In the above example we only considered monomials of degree 1 in (6)-(8). This worked since all the equations
resulting from multiplication with x could be reduced to monomials of degree 1. Therefore we could represent
both p(x0, y0) and x0p(x0, y0) with the monomial basis 1, x0, y0. If this is possible or not depends on the system
of equations. In general the basis has to be selected large enough so that all the reductions result in terms that are
present in the basis.

The theory still holds even if we should not select the smallest possible monomial basis. For the system (1) we can
consider all second degree polynomials. For example we can use the reductions:

1 7→ x0 (15)

x0 7→ x20 (16)

y0 7→ x0y0 (17)

x20 7→ x30 = x0(y0 + 3) = x0y0 + 3x0 (18)

x0y0 7→ x20y0 = x20 (19)

y20 7→ x0y
2
0 = x0y0. (20)

Here we made reductions so that all the terms on the right hand side have degree 2 or less. Since all the monomials
on the right hand side are also present on the left hand side we can construct an action matrix from these reductions.
Note that some of these terms can be reduced further. However, the theory from Section 3.2 holds regardless if we
do this or not. Further reduction would result in a different action matrix.

The resulting action matrix is in this case the 6× 6 matrix

Mx =


0 0 0 0 0 0
1 0 0 3 0 0
0 0 0 0 0 0
0 1 0 0 1 0
0 0 1 1 0 1
0 0 0 0 0 0

 . (21)

The transpose of this matrix has eigenvalues λ = −2, 0, 2 which agrees with our roots. The eigenvalue 0 does
however have multiplicity four and therefore there is no unique eigenvector to this value. Hence we might not be
able to find the solution (0,−3) using the eigenvectors of Mx.

4



Computer Vision Lecture 8 2020-02-12

3.3.2 Using other mappings than Tx.

In section 3.1 we chose to construct the action matrix for multiplication with x. However, in principle any mapping
Tq(x,y) could be used. The choice of q does however affect the reductions (6)-(8). For example suppose that we use
Ty instead. We get

1 7→ y0 (22)

x0 7→ x0y0 (23)

y0 7→ y20 (24)

x20 7→ x20y0 = x20 (25)

x0y0 7→ x0y
2
0 = x0y0 (26)

y20 7→ y30 = y20(x20 − 3) = x20 − 3y20 . (27)

Here it does not seem possible to use only 1st order monomials since the degree of y20 can not be reduced further
using the equations in (1). (It is however possible to generate new equations from (1) that can be used for further
reduction. However this is more complicated and we do not pursue this further.)

The resulting action matrix is in this case the 6× 6 matrix

My =


0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 1
0 1 0 0 1 0
0 0 1 0 0 −3

 . (28)

The transpose of this matrix has eigenvalues −3, 1, 0. Since there are two roots with y coordinate 1 the eigenvalue
1 will have at least multiplicity two. Therefore we can only extract the solution to (0,−3) from this eigenspace.

A simple heuristic for generating action matrices with more distinct eigenvalues is to use a mapping Tq(x,y) where
q(x, y) is a random combination of x and y. For example 0.5MT

x + 0.5MT
y (with Mx and My from (21) and

(28) respectively) has five distinct eigenvalues.

Another trick that modifies the eigenspace is to drop some of the monomials. In (28) rows 1 and 2 are all zeros.
This means that 1 and x0 do not occur in any of the expressions after the reductions. Therefore we can remove
these from the system. The new action matrix is

My =


0 0 0 0
0 1 0 1
0 0 1 0
1 0 0 −3

 . (29)

Note however, that the monomial vector is now m(x, y) = (y, x2, xy, y2) and therefore the eigenvector will not
contain the value of x0.

4 The 5-point solver

In this section we will construct a minimal solver for the problem of finding an Essential matrix. Given 5 point
correspondences we will use the following equations:

x̄Ti Exi = 0, i = 1, ..., 5. (30)

det(E) = 0, (31)

2EETE − trace(EET )E = 0. (32)

5



Computer Vision Lecture 8 2020-02-12

The third constraint (32) actually consists of 9 polynomial equations since it is a matrix expression. Any matrix E
that has a singular value decomposition of the form

E = U

 σ 0 0
0 σ 0
0 0 0


︸ ︷︷ ︸

=S

V T (33)

will fulfill this constraint. This can be seen by inserting (33) into (32). Furthermore, it can be shown that any
matrix that fulfills (32) must have a singular value decomposition as in (33).

To find the solutions of (30)-(32) we will first use (30) to reduce the number of variables. We construct an M
matrix of size 5 × 9 from the 5 epipolar constraints, similar to what we did in Lecture 6. In contrast to the eight
point algorithm, the M matrix is in itself not enough to determine all the 8 parameters of the essential matrix since
it only represents 5 equations. Since the dimension of the nullspace of M is 4 we can find 4 linearly independent
vectors vi, i = 1, ..., 4 such that

M(α1v1 + α2v2 + α3v3 + α4v4) = 0, (34)

for any choice of coefficients α1, ..., α4. Reshaping these vectors into matrices we get

x̄Ti (α1E1 + α2E2 + α3E3 + α4E4)xi = 0, i = 1, ..., 5. (35)

What remains is to find the coefficients α1, ..., α4 such that (31) and (32) are fulfilled. Note that since the scale of
the essential matrix is arbitrary, we can assume that (for example) α1 = 1.

To determine the coefficients α2, ..., α4 we will use the method presented in the previous section. Equation (32)
consists of 9 third order polynomials in α2, α3, α4. In addition we have (31) which consists of 1 third degree
polynomial. To construct the action matrix we first need to compute the coefficients of these polynomials. These
can easily be determined by rewriting (32)

2EETE − trace(EET )E =

4∑
i=1

4∑
j=1

4∑
k=1

αiαjαk
(
2EiE

T
j Ek − trace(EiE

T
j )Ek

)
. (36)

For each of the 9 constraints in (32) we can extract coefficients for the monomial αiαjαk using this expression.
Note that the monomials occur several times in this sum. For example, (i, j, k) = (1, 1, 2) and (i, j, k) =
(1, 2, 1) both yield αiαjαk = α2

1α2 = α2. There are 64 terms in the sum but only 20 distinct monomials. The
determinant constraint can be handled in the same way using the expression

det(E) =

4∑
i=1

4∑
j=1

4∑
k=1

αiαjαk
(
ei11e

j
22e

k
33 + ei12e

j
23e

k
31 + ei13e

j
21e

k
32

−ei11e
j
23e

k
32 − ei12e

j
21e

k
33 − ei13e

j
22e

k
31

)
, (37)

where eiab is element (a, b) in matrix Ei. In summary we construct a 10× 20 matrix that contains the coefficients
of all the 10 polynomials. The columns of this matrix correspond to the coefficients of the monomials:

{α3
4, α3α

2
4, α

2
3α4, α

3
3, α2α

2
4, α2α3α4, α2α

2
3, α

2
2α4, α

2
2α3, α

3
2, α

2
4, α3α4, α

2
3, α2α4, α2α3, α

2
2, α4, α3, α2, 1}.

(38)
The 10 first monomials are of degree 3 and the rest are of lower degree. If we modify the coefficient matrix by
performing Gaussian elimination we can determine reductions for each of these terms, see Figure 2. For example,
after elimination, the first row of the matrix only contains α3

4 from the third order monomials and can therefore be
used to replace this term with lower order terms. To create an action matrix we use the 10 equations represented by
the new coefficient matrix to compute reductions of all the third order monomials. In this case it does not matter
if we use Tα2

, Tα3
or Tα4

, since reductions to second order or less for all third order monomials are availible in the
modified coefficient matrix.

In summary the 5-point solver consists of the following steps:

6



Computer Vision Lecture 8 2020-02-12

Figure 2: Shape of the 10×20 coefficient matrix before (left) and after elimination (right). A ’*’ means the element
is non-zero.

1. Construct the 5 × 9 matrix M from the 5 point correspondences. (Note that the image points should be
normalized as in Lecture 6.)

2. Compute the 4 vectors that span the nullspace of M and reshape them to the matrices E1, E2, E3, E4.

3. Using the expressions (36) and (37) compute coefficients for all monomials and construct the 10 × 20
coefficient matrix. (The monomial order does not have to be the same as (38), however the first 10 terms
needs to be the 3rd order monomials.)

4. Perform Gaussian elimination on the coefficient matrix.

5. Construct the action matrix for either Tα2 , Tα3 or Tα4 using the reductions available in the modified coeffi-
cient matrix.

Figure 3 shows a comparison between the 5-point solver and the 8-point solver. For the pair of images depicted in
the first row of the figure we apply a 1000 iterations of RANSAC. In the histograms on the second row we plot the
size of the consensus set in each iteration. It can be seen that the 5-point solver generally finds consensus sets with
a larger number of inliers.

(a) (b) (c)

Figure 3: First row: The best solution obtained from the 5-point solver. Yellow ’*’ is an image point, green ’o’ is
the reprojection of an inlier and red ’o’ is a reprojection of an outlier. Second row: Histogram over the size of the
consensus set in each iteration of a 1000-iteration-RANSAC, using (a) - 5 points, (b) - 8 points and (c) - 10 points.

7


	The Outlier Problem
	RANSAC
	Minimal Solvers and Solution of Polynomial Equation Systems
	The Action Matrix
	Finding the Roots.
	Algorithm
	What degree of polynomials do we need?
	Using other mappings than Tx.


	The 5-point solver

