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Todays Lecture

Stereo

Stereo cameras

Disparity and depth

Dense matching

Normalized cross correlation

The plane sweep approach

Regularization

Silhouettes, Visual hull.
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Dense Stereo

Goal

Estimate the depth in every pixel. Dense depth map.

Requires every point in the image to be matched!
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Dense Stereo

Rectified images

Assumptions:

The image-planes are parallel, and the second camera center is
translated in the x-direction of the first. (Can always be achieved by
transforming the images.)

The cameras have the same inner parameters.

P1 = K [I 0] and P2 = K

I
 b

0
0
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Rectified Cameras
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Rectified Cameras
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Epipolar lines are parallel to the x-axis.
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Rectified Cameras
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Difference between the x-coordinates of xl and xr is called the disparity.
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Disparity and Depth

See lecture notes.
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Disparity vs. Depth

Disparity (in pixels) vs. depth when fxb = 1. Higher resolution
when the depth is small/the disparity is large.
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Normalized Cross Correlation

Why not SIFT?

Need measurements everywhere.

Cameras known ⇒ don’t need scale, rotation invariance.

NCC

If I1 and I2 are gray levels of two patches,

NCC (I1, I2) =
1

n − 1

n∑
i=1

(I1(xi )− Ī1)(I2(xi )− Ī2)

σ(I1)σ(I2)
,

Ī1,Ī2 - mean values of each patch.
σ(I1),σ(I2) - standard deviations of each patch.

Invariant to translation and rescaling of the grayvalues. (Good for
handeling different lighting conditions.)
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Normalized Cross Correlation
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Normalized Cross Correlation
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Normalized Cross Correlation

Demonstration.
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Depth Map Estimation

Given images and Cameras, how do we compute a dense surface estimate?
(Need to find matches for all the pixels in the image.)
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Depth Map Estimation
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Plane Sweep Algorithm

Given 2 cameras. How do we find the depths of all the pixels?
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Plane Sweep Algorithm

Try giving all the pixels the same depth.
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Plane Sweep Algorithm

Project into the second image and compare.
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Plane Sweep Algorithm

Difference between the original image and
the projection.
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Plane Sweep Algorithm

Try several different depths.
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Plane Sweep Algorithm
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Plane Sweep Algorithm

Carl Olsson Computer Vision: Lecture 12 2020-02-26 23 / 69



Plane Sweep Algorithm
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Plane Sweep Algorithm
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Plane Sweep Algorithm
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Plane Sweep Algorithm
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Plane Sweep Algorithm
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Plane Sweep Algorithm
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Plane Sweep Algorithm
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Plane Sweep Algorithm
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Plane Sweep Algorithm
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Plane Sweep Algorithm
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Plane Sweep Algorithm
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Plane Sweep Algorithm

Carl Olsson Computer Vision: Lecture 12 2020-02-26 35 / 69



Plane Sweep Algorithm

Carl Olsson Computer Vision: Lecture 12 2020-02-26 36 / 69



Plane Sweep Algorithm
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Plane Sweep Algorithm
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Plane Sweep Algorithm
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Plane Sweep Algorithm

Gives a function of depth for each pixel:
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Plane Sweep Algorithm

Gives a function of depth for each pixel:
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Energy Minimization & Regularization

Select the best value for each pixel

min
d

∑
i

Ei (di )

independently of its neighbors.
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Energy Minimization & Regularization

Neighboring pixels tend to have similar depth. Add a regularization term

min
d

∑
i

∑
j∈N (i)

Eij(di , dj) +
∑
i

Ei (di )

Each pixel can be seen as a node in a graph. Eij can be seen as an edge
cost for the edge between nodes i and j .

i j
Eij

Can minimize the energy using graph algorithms, e.g. graph cuts, message
passing.
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Energy Minimization & Regularization

Penalize neighbors that have different depth

min
d

∑
i

∑
j∈N (i)

min(|di − dj |, tr) +
∑
i

Ei (di )
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Energy Minimization & Regularization

Taylor:
dj ≈ di +∇dT

i (xj − xi )

xi , xj are the coordinates of the pixels i , j . Therefore

|di − dj |

penalizes tilted planes.

Use

|di +∇dT
i (xj − xi )− dj | ≈ |

1

2
(xj − xi )

T∇2di (xj − xi )|

instead. 2nd derivative is zero for affine functions.
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Energy Minimization & Regularization

min
d

∑
i

∑
j∈N (i)

min(|di +∇dT
i (xj − xi )− dj |, tr) +

∑
i

Ei (di )
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Movie
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Dense Surface Reconstruction

Combine all the depth maps into one surface. (Voxel carving algorithm.)

...

Carl Olsson Computer Vision: Lecture 12 2020-02-26 48 / 69



More Movies
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Silhouettes and Visual Hull

The viewed object can be constrained to lie within the viewing cone.
(Viewing cone = all rays through the camera center and the
interior of the projection.)

Visual hull = intersection of all viewing cones.
Largest volume contained in the intersection.
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Voxel Carving

Problem

Given cameras P and segmented silhouettes compute a volumetric
representation of the viewed object.

Algorithm

For each image, project the (center of the) voxels into the image and
determine which ones belong to the exterior of the object.

Remove the voxels that belongs to the exterior of the object in at
least one image.
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Voxel Carving

Example.

Starting voxel centers.
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Voxel Carving

Example.

Project voxels into image.
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Voxel Carving

Example.

Discard vocels in the exterior.
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Voxel Carving

Example.

New images.
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Voxel Carving
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Voxel Carving
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New images.
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Voxel Carving
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Voxel Carving

Example.
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Voxel Carving

Example.

New images.
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Voxel Carving

Example.

Project voxels into image.
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Voxel Carving

Example.

Discard vocels in the exterior.
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Voxel Carving

Example.

And so on...
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Voxel Carving

Example.

And on...
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Voxel Carving

Project texture on it.
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