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Todays Lecture

Reconstruction and Global Optimization

@ Framework
@ Convex Optimization
@ Triangulation

@ The Bisection Algorithm
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Minimizing Reprojection Error

Under the assumption that image points are corrupted by Gaussian noise,
minimize the reprojection error.

The reprojection error <

In regular coordinates
(x = (x,y)) the projection is

P1X P2X

P3X’ P3X )’
P, P2, P3 are the rows of P.
The reprojection error is

I X_ﬂ _ﬂ ||2
p3xY " pix ) I

4
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Framework

Framework: Affine Projective Estimation

(a] x + 3))2 + (b] x + b;)?
(cTx+ &)2

, ' x+&>0.

r,-(x) =

Solve either the projective least-squares problem

min Zr,(x

{x;c x+&>0, Vi}
or the min-max problem (easier)

min max r;(x).
{x;¢fx+&>0, Vi} i
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Framework

Quotients of Affine Functions

If ) .
—A'— f
P=| —A2— ¢ and X = [)ﬂ .
| A t3
Then )
o PX P
P3x Y~ P3X

x1(A3X + t3) — (AX + t1) x(A3X + t3) — (A%X + to)
A3X + t3 ’ A3X + t3

is known!
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Framework Examples: Triangulation

@ Image data (2D points - x)

e Cameras (P)
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@ Structure (3D points - X)

x1(A3X+1t3)— (A X+1)
A3X +t3

X2 A3X+t3) (A2X+t2)
A3X+t3

|Il ]II2

Quotients of affine functions in
X!
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Framework Examples: Resection (uncalibrated)

@ Image data (2D points - x) e Cameras (P)

a4

@ Structure (3D points - X)

X1(A3X+t3)—(A1X+t1)
| AAtE 12
X2(A3X+t3)—(A2X+t2)
A3X+t3

Quotients of affine functions in
A, t!
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Framework Examples: SfM with Known Orientations

@ Image data (2D points - u)
; - Earaan

e Camera orientations (A)

| m\a%@“u
i,

@ Structure (U), Positions (t).

Ny

e

245,

x1 (A3 XH-13)— (A X +-11)
|| ASX+t3 ||2
X2 A3X+t3) (A2X+t2)
X1t ™
<

Quotients of affine functions in X

and t! \ 1:{)
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Framework

Framework: Affine Projective Estimation

Why use the projective least-squares formulation?

min Zr,(x

{x;c x+&>0, Vi}

o Geometrically meaningful goal function (minimize reprojection error).
e Statistically optimal (under the assumption of Gaussian noise).

Why the min-max problem?

min max ri(x).
{x;cT x+&>0, Vi} i

o Geometrically meaningful goal function (minimize reprojection error).

o Easier to minimize due to convexity properties.

AP~
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Global Optimization

See lecture notes.
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Global Optimization

Checking if there is
Xe({X n(X)<ée, PP>d}
icl
is a convex problem:
mingx S
smMMtHQMW—PMKQP%J%XW§eWx+g Viel

P.X>6, Viel.

If s > 0 then the set is empty!
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Global Optimization: Triangulation
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Global Optimization: Triangulation
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Global Optimization: Triangulation
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Global Optimization: Triangulation

X

The 3D point must lie in the intersection of the cones.
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Global Optimization: Triangulation

@

Reduce the size of the cones < lower the permitted error.
As long as there is a point in the intersection.
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Global Optimization: Triangulation

9

No point in the intersection.
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Global Optimization: Triangulation

Algorithm

Minimizes the maximal reprojection error. Finds the smallest possible e for
which there is a solution X with all reprojection errors is less than €. That
is, solves

min max r;(X).
X i

© Let ¢; and ¢, be lower and upper bound on the optimal error.
@ Check if there is a solution such that

€yt € .
ri(X) < ! 2 lv Vi
(convex optimization problem). )
O |If there is set €, = “F<, otherwise set ¢, = <L, \

Q If e, — € > tol (some predefined tolerance) goto 2.

I~

o’
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Global Optimization

Generalizations
Works for other problems as well:
@ Computing camera matrix given 3D-points and projections.
Xj ~ P X,'
~— ~~

known unknown known

@ Homography estimation.

.~ H X:
yi I

known unknown known

@ Structure and motion if camera orientations are known.

>

o

R; it
~~— known unknown] N~

known unknown
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