Computer Vision: Lecture 12

Carl Olsson

2020-02-26

Carl Olsson

Todays Lecture

Reconstruction and Global Optimization

- Framework
- Convex Optimization
- Triangulation
- The Bisection Algorithm

Minimizing Reprojection Error

Under the assumption that image points are corrupted by Gaussian noise, minimize the reprojection error.

The reprojection error

In regular coordinates $(\mathbf{x} = (x, y))$ the projection is

$$\left(\frac{P^1\mathbf{X}}{P^3\mathbf{X}},\frac{P^2\mathbf{X}}{P^3\mathbf{X}}\right)$$

 P^1, P^2, P^3 are the rows of P. The reprojection error is

$$||\left(x-\frac{P^{1}\mathbf{X}}{P^{3}\mathbf{X}},y-\frac{P^{2}\mathbf{X}}{P^{3}\mathbf{X}}\right)||^{2}.$$

Framework: Affine Projective Estimation

$$r_i(x) = rac{(a_i^T x + \tilde{a}_i)^2 + (b_i^T x + \tilde{b}_i)^2}{(c_i^T x + \tilde{c}_i)^2},$$

$$c_i^T x + \tilde{c}_i > 0.$$

Solve either the projective least-squares problem

$$\min_{\{x;c_i^T x + \tilde{c}_i > 0, \forall i\}} \sum_i r_i(x),$$

or the min-max problem (easier)

$$\min_{\{x;c_i^T x + \tilde{c}_i > 0, \forall i\}} \max_i r_i(x).$$

Framework

Quotients of Affine Functions

lf

$$P = \begin{bmatrix} -A^1 - t_1 \\ -A^2 - t_2 \\ -A^3 - t_3 \end{bmatrix}$$
 and $\mathbf{X} = \begin{bmatrix} X \\ 1 \end{bmatrix}$.

Then

$$\left\| \left(x - \frac{P^{1}\mathbf{X}}{P^{3}\mathbf{X}}, y - \frac{P^{2}\mathbf{X}}{P^{3}\mathbf{X}} \right) \right\|^{2} =$$

$$\left\|\left(\frac{x_1(A^3X+t_3)-(A^1X+t_1)}{A^3X+t_3},\frac{x_2(A^3X+t_3)-(A^2X+t_2)}{A^3X+t_3}\right)\right\|^2$$

Least squares problem with quotients of affine functions. If either A of a strength is known!

Framework Examples: Triangulation

Estimate

• Structure (3D points - X)

Quotients of affine functions in X!

020-02-26 6 /

Framework Examples: Resection (uncalibrated)

Estimate • Cameras (P) $\begin{bmatrix} \frac{x_1(A^3X+t_3)-(A^1X+t_1)}{A^3X+t_3} \\ \frac{x_2(A^3X+t_3)-(A^2X+t_2)}{A^3X+t_3} \end{bmatrix}$

Quotients of affine functions in *A*, *t*!

Framework Examples: SfM with Known Orientations

Framework: Affine Projective Estimation

Why use the projective least-squares formulation?

$$\min_{\{x;c_i^T x + \tilde{c}_i > 0, \forall i\}} \sum_i r_i(x),$$

Geometrically meaningful goal function (minimize reprojection error).
Statistically optimal (under the assumption of Gaussian noise).
Why the min-max problem?

$$\min_{\{x;c_i^T x + \tilde{c}_i > 0, \forall i\}} \max_i r_i(x).$$

• Geometrically meaningful goal function (minimize reprojection error).

• Easier to minimize due to convexity properties.

Carl Olsson

Global Optimization

See lecture notes.

Global Optimization

Checking if there is

$$\mathbf{X} \in \bigcap_{i \in I} \{\mathbf{X}; \quad r_i(\mathbf{X}) \le \epsilon^2, \quad P_i^3 \ge \delta\}$$

is a convex problem:

min_{s,**X**} s
such that
$$\left\| \left((x_i P_i^3 - P_i^1) \mathbf{X}, (y_i P_i^3 - P_i^2) \mathbf{X} \right) \right\| \le \epsilon P_i^3 \mathbf{X} + s, \quad \forall i \in I$$

 $P_i \mathbf{X} \ge \delta, \quad \forall i \in I.$

If s > 0 then the set is empty!

The 3D point must lie in the intersection of the cones.

Reduce the size of the cones \Leftrightarrow lower the permitted error. As long as there is a point in the intersection.

No point in the intersection.

Algorithm

Minimizes the maximal reprojection error. Finds the smallest possible ϵ for which there is a solution X with all reprojection errors is less than ϵ . That is, solves

 $\min_{X} \max_{i} r_i(X).$

() Let ϵ_I and ϵ_u be lower and upper bound on the optimal error.

Oneck if there is a solution such that

$$r_i(X) \leq \frac{\epsilon_u + \epsilon_l}{2}, \quad \forall i$$

(convex optimization problem).

3 If there is set $\epsilon_u = \frac{\epsilon_u + \epsilon_l}{2}$, otherwise set $\epsilon_l = \frac{\epsilon_u + \epsilon_l}{2}$.

If $\epsilon_u - \epsilon_l > tol$ (some predefined tolerance) goto 2.

Global Optimization

Generalizations

Works for other problems as well:

Computing camera matrix given 3D-points and projections.

• Homography estimation.

Structure and motion if camera orientations are known.

