Computer Vision: Lecture 12

Carl Olsson

2020-02-26

Todays Lecture

Reconstruction and Global Optimization

- Framework
- Convex Optimization
- Triangulation
- The Bisection Algorithm

Minimizing Reprojection Error

Under the assumption that image points are corrupted by Gaussian noise, minimize the reprojection error.

The reprojection error

In regular coordinates
$(\mathbf{x}=(x, y))$ the projection is

$$
\left(\frac{P^{1} \mathbf{X}}{P^{3} \mathbf{X}}, \frac{P^{2} \mathbf{X}}{P^{3} \mathbf{X}}\right)
$$

P^{1}, P^{2}, P^{3} are the rows of P.

The reprojection error is

$$
\left\|\left(x-\frac{P^{1} \mathbf{X}}{P^{3} \mathbf{X}}, y-\frac{P^{2} \mathbf{X}}{P^{3} \mathbf{X}}\right)\right\|^{2}
$$

Framework

Framework: Affine Projective Estimation

$$
r_{i}(x)=\frac{\left(a_{i}^{T} x+\tilde{a}_{i}\right)^{2}+\left(b_{i}^{T} x+\tilde{b}_{i}\right)^{2}}{\left(c_{i}^{T} x+\tilde{c}_{i}\right)^{2}}, \quad c_{i}^{T} x+\tilde{c}_{i}>0
$$

Solve either the projective least-squares problem

$$
\min _{\left\{x ; c_{i}^{T} x+\tilde{c}_{i}>0, \forall i\right\}} \sum_{i} r_{i}(x),
$$

or the min-max problem (easier)

$$
\min _{\left\{x ; c_{i}^{T} x+\tilde{c}_{i}>0, \forall i\right\}} \max _{i} r_{i}(x) .
$$

Framework

Quotients of Affine Functions

If

$$
P=\left[\begin{array}{ll}
-A^{1}- & t_{1} \\
-A^{2}- & t_{2} \\
-A^{3}- & t_{3}
\end{array}\right] \quad \text { and } \quad \mathbf{X}=\left[\begin{array}{c}
X \\
1
\end{array}\right] .
$$

Then

$$
\begin{gathered}
\left\|\left(x-\frac{P^{1} \mathbf{X}}{P^{3} \mathbf{X}}, y-\frac{P^{2} \mathbf{X}}{P^{3} \mathbf{X}}\right)\right\|^{2}= \\
\left\|\left(\frac{x_{1}\left(A^{3} X+t_{3}\right)-\left(A^{1} X+t_{1}\right)}{A^{3} X+t_{3}}, \frac{x_{2}\left(A^{3} X+t_{3}\right)-\left(A^{2} X+t_{2}\right)}{A^{3} X+t_{3}}\right)\right\|^{2}
\end{gathered}
$$

Least squares problem with quotients of affine functions. If either A. is known!

Framework Examples: Triangulation

Given

- Image data (2D points $-x$)

- Cameras (P)

Estimate

- Structure (3D points - X)

$$
\left\|\left[\begin{array}{c}
\frac{x_{1}\left(A^{3} X+t_{3}\right)-\left(A^{1} X+t_{1}\right)}{A^{3} X+t_{3}} \\
\frac{x_{2}\left(A^{3} X+t_{3}\right)-\left(A^{2} X+t_{2}\right)}{A^{3} X+t_{3}}
\end{array}\right]\right\|^{2}
$$

Quotients of affine functions in X !

Framework Examples: Resection (uncalibrated)

Given

- Image data (2D points $-x$)

Estimate

- Cameras (P)

- Structure (3D points - X)

$$
\left\|\left[\begin{array}{l}
\frac{x_{1}\left(A^{3} X+t_{3}\right)-\left(A^{1} X+t_{1}\right)}{A^{3} X+t_{3}} \\
\frac{x_{2}\left(A^{3} X+t_{3}\right)-\left(A^{2} X+t_{2}\right)}{A^{3} X+t_{3}}
\end{array}\right]\right\|^{2}
$$

Quotients of affine functions in A, t !

Framework Examples: SfM with Known Orientations

Given

- Image data (2D points $-u$)

- Camera orientations (A)

Estimate

- Structure (U), Positions (t).

$$
\left\|\left[\begin{array}{c}
\frac{x_{1}\left(A^{3} X+t_{3}\right)-\left(A^{1} X+t_{1}\right)}{A^{3} X+t_{3}} \\
\frac{x_{2}\left(A^{3} X+t_{3}\right)-\left(A^{2} X+t_{2}\right)}{A^{3} X+t_{3}}
\end{array}\right]\right\|^{2}
$$

Quotients of affine functions in X and t !

Framework

Framework: Affine Projective Estimation

Why use the projective least-squares formulation?

$$
\min _{\left\{x ; c_{i}^{T} x+\tilde{c}_{i}>0, \forall i\right\}} \sum_{i} r_{i}(x),
$$

- Geometrically meaningful goal function (minimize reprojection error).
- Statistically optimal (under the assumption of Gaussian noise).

Why the min-max problem?

$$
\min _{\left\{x ; c_{i}^{T} x+\tilde{c}_{i}>0, \forall i\right\}} \max _{i} r_{i}(x) .
$$

- Geometrically meaningful goal function (minimize reprojection error).
- Easier to minimize due to convexity properties.

Global Optimization

See lecture notes.

Global Optimization

Checking if there is

$$
\mathbf{X} \in \bigcap_{i \in I}\left\{\mathbf{X} ; \quad r_{i}(\mathbf{X}) \leq \epsilon^{2}, \quad P_{i}^{3} \geq \delta\right\}
$$

is a convex problem:

$$
\min _{s, \mathrm{X}} \quad s
$$

such that $\left\|\left(\left(x_{i} P_{i}^{3}-P_{i}^{1}\right) \mathbf{X},\left(y_{i} P_{i}^{3}-P_{i}^{2}\right) \mathbf{X}\right)\right\| \leq \epsilon P_{i}^{3} \mathbf{X}+s, \quad \forall i \in I$

$$
P_{i} \mathbf{X} \geq \delta, \quad \forall i \in I
$$

If $s>0$ then the set is empty!

Global Optimization: Triangulation

Global Optimization: Triangulation

Global Optimization: Triangulation

Global Optimization: Triangulation

The 3D point must lie in the intersection of the cones.

Global Optimization: Triangulation

Reduce the size of the cones \Leftrightarrow lower the permitted error. As long as there is a point in the intersection.

Global Optimization: Triangulation

No point in the intersection.

Global Optimization: Triangulation

Algorithm

Minimizes the maximal reprojection error. Finds the smallest possible ϵ for which there is a solution X with all reprojection errors is less than ϵ. That is, solves

$$
\min _{X} \max _{i} r_{i}(X) .
$$

(1) Let ϵ_{I} and ϵ_{U} be lower and upper bound on the optimal error.
(2) Check if there is a solution such that

$$
r_{i}(X) \leq \frac{\epsilon_{u}+\epsilon_{l}}{2}, \quad \forall i
$$

(convex optimization problem).
(3) If there is set $\epsilon_{u}=\frac{\epsilon_{u}+\epsilon_{I}}{2}$, otherwise set $\epsilon_{I}=\frac{\epsilon_{u}+\epsilon_{I}}{2}$.
(9) If $\epsilon_{u}-\epsilon_{I}>$ tol (some predefined tolerance) goto 2 .

Global Optimization

Generalizations

Works for other problems as well:

- Computing camera matrix given 3D-points and projections.

- Homography estimation.

- Structure and motion if camera orientations are known.

$$
\underbrace{\mathbf{x}_{i j}}_{\text {known }} \sim[\underbrace{R_{i}}_{\text {known }} \underbrace{t_{i}}_{\text {unknown }}] \underbrace{\mathbf{X}_{j}}_{\text {unknown }}
$$

