Computer Vision: Lecture 10

 $\mathsf{Carl}\ \mathrm{Olsson}$

2020-02-19

Carl Olsson

Todays Lecture

Low rank models

- Factorization
- Low Rank Approximation
- Affine Cameras
- The Missing data problem
- Non-rigid SfM

Four (out of 40) images of a deformable model with 56 tracked point.

- Point movements are not independent
- No explicit model
- Extract linear model from observed data

 (x_{ij}, y_{ij}) - coordinates of point j in image i. Measurement matrix

	(x_{11})	<i>x</i> ₁₂	<i>x</i> ₁₃		<i>x</i> _{1<i>n</i>}	
	<i>Y</i> 11	<i>Y</i> 12	<i>Y</i> 13		У1n	
	<i>x</i> ₂₁	<i>x</i> ₂₂	<i>x</i> ₂₃		x _{2n}	
M =	<i>Y</i> 21	y 22	<i>Y</i> 23		У2n	
	÷	÷	÷	۰.	÷	
	<i>x</i> _{m1}	x _{m2}	x _{m3}		x _{mn}	
	y_{m1}	Уm2	Уm3		y _{mn}	Ϊ

Column = point in \mathbb{R}^{2m} . Row = point in \mathbb{R}^n .

Assumption: Each column can be written as a linear combination of a few basis elements $B_1, B_2, ..., B_r$.

Alternatively: The columns of M belong to a r-dimensional ($r \ll 2m$) subspace spanned by the basis elements $B_1, B_2, ..., B_r$

From linear algebra:

- The **column space** of *M* consists of all linear combinations of columns in *M*.
- The row space of M consists of all linear combinations of rows in M
- The rank of *M* is the dimension of the row and column spaces:

2020-02-19

Exercise 1

Show that the columns
$$B_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$
 and $B_2 = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$ form a basis for the column space of
$$M = \begin{pmatrix} 1 & 2 & 2 & 0 \\ 2 & 3 & 2 & 1 \\ 1 & 1 & 0 & 1 \end{pmatrix},$$

and determine its rank.

Find a 3×2 matrix B and a 2×4 matrix C such that $M = BC^T$ and determine a basis for the row space of M.

- $M = BC^T$ factorization
- B, C factors
- B basis for column space
- C basis for row space
- rank(M) = number of basis elements (in C and B).
- Factorization not unique:

$M = BC^{\mathsf{T}} = BHH^{-1}C^{\mathsf{T}} = \tilde{B}\tilde{C}^{\mathsf{T}}.$

Find a 3×2 matrix B and a 2×4 matrix C such that $M = BC^T$ and determine a basis for the row space of M.

- $M = BC^T$ factorization
- B, C factors
- B basis for column space
- C basis for row space
- rank(M) = number of basis elements (in C and B).
- Factorization not unique:

$$M = BC^{\mathsf{T}} = BHH^{-1}C^{\mathsf{T}} = \tilde{B}\tilde{C}^{\mathsf{T}}.$$

Generating New Shapes

Assumption all hand shapes are in the subspace spanned by C.

 $(x_1, y_1), (x_2, y_2), \dots$ unknown point coordinates $B_{\text{new}} - 2 \times 5$ matrix of parameters

$$\begin{pmatrix} x_1 & x_2 & \dots & x_n \\ y_1 & y_2 & \dots & y_n \end{pmatrix} = f(B_{\text{new}}) := B_{\text{new}} C^T,$$

Low Rank Approximation

M is usually not low rank due to noise.Remove noise before factorization.ML estimate under Gaussian noise:

$$\min_{\operatorname{rank}(X)=r} \|X - M\|_F^2,$$

Ekhart-Young 1936: If rank(M) = k > r and M has the SVD $M = USV^T$ with

$$S = \begin{bmatrix} \mathsf{diag}(\sigma_1, \sigma_2, ..., \sigma_k) & 0 \\ 0 & 0 \end{bmatrix},$$

then the solution to is given by $X = US_r V^T$ where

$$S_r = \begin{bmatrix} \operatorname{diag}(\sigma_1, \sigma_2, ..., \sigma_r, 0, 0, ...) & 0 \\ 0 & 0 \end{bmatrix}$$

Only the first r columns of U and V affect the product US_rV^T .

A factorization $X = BC^T$ is obtained by letting $B = U'S'_r$ and C where U' = U(:, 1:r), V' = V(:, 1:r), $S'_r = S_r(1:r, 1:r)$

Low Rank Approximation

Hand dataset:

Exersice 3. (Missing data)

Find the elements m_{15} and m_{26} of

such that rank(M) = 2.

Missing data

Left - The measurement matrix with roughly 50% missing entries for the hand data set. *Middle* - A rank 5 approximation obtained using local optimization. *Right* - The difference between the true measurement matrix (without missing data) and the obtained rank 5 approximation.

Affine Cameras

Affine camera

Projection in regular coordinates

$$x_{ij}=A_iX_j+t_i.$$

2020-02-19 14

Affine Cameras

Solving Structure and Motion via Factorization

Suppose x_{ij} is the projection of X_j in image *i*. The maximum likelihood solution is obtained by minimizing

$$\sum_{ij}||x_{ij}-(A_iX_j+t_i)||^2$$

The optimal t_i is given by

$$t_i=\bar{x}_i-A_i\bar{X},$$

where $\bar{X} = \frac{1}{m} \sum_{j} X_{j}$ and $\bar{x}_{i} = \frac{1}{m} \sum_{j} x_{ij}$.

Solving Structure and Motion via Factorization

Changing coordinates, $\tilde{x}_{ij} = x_{ij} - \bar{x}_i$ and $\tilde{X}_i = X_i - \bar{X}$, gives

$$\sum_{ij}||\tilde{x}_{ij}-\mathsf{A}_i\tilde{X}_j||^2.$$

In matrix form

Affine Cameras

Algorithm

- Re center all images such that the center of mass of the points is zero.
- Form the measurement matrix *M*.
- Compute the svd:

$$[U, S, V] = svd(M);$$

- A solution is given by the cameras in U(:, 1:3) and the structure in S(1:3, 1:3) * V(:, 1:3)'.
- Transform back to the original image coordinates.

Factorization

- Requires all points to be visible in all images.
- Could work for perspective cameras if all points have roughly the same distance to the cameras.

2020-02-19

Affine Cameras

Demonstration...

Carl Olsson

Problems where the 3D points move have higher rank than 3.

Shape Basis Assumption:

The 3D point positions can be written as a linear combination of basis shapes

$$\begin{bmatrix} X_1^t & X_2^t & \dots & X_n^t \end{bmatrix} = \sum_{k=1}^K \alpha_k^t B_k$$

 X_i^t - position of scene point *i* at time *t*. B_k - basis shape *k* (matrix of size $3 \times n$, independent of *t*) α_k^t - coefficients at time *t*.

2020-02-19

In matrix form: The 3D point positions can be written as a linear combination of basis shapes

$$\begin{bmatrix} X_1^1 & X_2^1 & \dots & X_n^1 \\ X_1^2 & X_2^2 & \dots & X_n^2 \\ \vdots & \vdots & & \vdots \\ X_1^T & X_2^T & \dots & X_n^T \end{bmatrix} = \begin{bmatrix} \alpha_1^1 & \alpha_2^1 & \dots & \alpha_K^1 \\ \alpha_1^2 & \alpha_2^2 & \dots & \alpha_K^2 \\ \vdots & \vdots & & \vdots \\ \alpha_1^T & \alpha_2^T & \dots & \alpha_K^T \end{bmatrix} \underbrace{\begin{bmatrix} B_1 \\ B_2 \\ \vdots \\ B_K \end{bmatrix}}_{3K \times n}$$

The rank of the matrix (3 times the number of basis elements) describes the complexity of the point motions.

Examples:

Carl Olsson

With affine cameras (assuming translations have been eliminated):

$$\begin{bmatrix} x_1^t & x_2^t & \dots & x_n^t \end{bmatrix} = A_t \sum_{k=1}^K \alpha_k^t B_k$$

 x_i^t projection of point *i* at time *t*. In matrix form:

$$\begin{bmatrix} x_1^1 & x_2^1 & \dots & x_n^1 \\ x_1^2 & x_2^2 & \dots & x_n^2 \\ \vdots & \vdots & \ddots & \vdots \\ x_1^T & x_2^T & \dots & x_n^T \end{bmatrix} = \begin{bmatrix} \alpha_1^1 A_1 & \alpha_2^1 A_1 & \dots & \alpha_K^1 A_1 \\ \alpha_1^2 A_2 & \alpha_2^2 A_2 & \dots & \alpha_K^2 A_2 \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_1^T A_T & \alpha_2^T A_T & \dots & \alpha_K^T A_T \end{bmatrix} \begin{bmatrix} B_1 \\ B_2 \\ \vdots \\ B_K \end{bmatrix}$$

2020-02-19

Non-rigid Reconstruction

Carl Olsson

Computer Vision: Lecture 10

2020-02-19 23

Projective Factorization

The factorization approach can also be used for solving

$$\lambda_{ij}\mathbf{x}_{ij}=P_iX_j,$$

if the depth λ_{ij} is also known! Minimze

$$\sum_{ij} |\lambda_{ij} \mathbf{x}_{ij} - P_i X_j|^2.$$

Note: This is not a minimization of the reprojection errors (not maximal likelihood estimator).

Projective Factorization

In matrix form

Find the best rank 4 approximation of *M*. Use svd:

- [U, S, V] = svd(M);
- The cameras are in U(:, 1: 4).
- The points are in S(1:4,1:4) * V(:,1:4)'.

