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Dynamic Scenes

S SR S &

Four (out of 40) images of a deformable model with 56 tracked point.

@ Point movements are not independent
@ No explicit model

@ Extract linear model from observed data
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Dynamic Scenes

(xij» ¥ij) - coordinates of point j in image .
Measurement matrix

X11  X12 X133 ... Xip
yin Y12 Y13 ... VYin
X21  X22  X23 ... Xop
M = Yor Y22 Y23 ... Yon
Xml Xm2 Xm3 ... Xmn
Ymi Ym2 Ym3 --- Ymn

Column = point in R?™.
Row = point in R".
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Linear Basis Assumption

Assumption: Each column can be written as a linear combination of a few
basis elements By, By, ..., B,.

Alternatively: The columns of M belong to a r-dimensional (r << 2m)
subspace spanned by the basis elements By, By, ..., B,

From linear algebra:

@ The column space of M consists of all linear combinations of
columns in M.
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Exercise 1

1 2
Show that the columns By = | 2 and B =| 3 form a basis for
1 1
the column space of
1220
M=1|2 3 2 1],
1101

and determine its rank.
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Exercise 2

Find a 3 x 2 matrix B and a 2 x 4 matrix C such that M = BCT and
determine a basis for the row space of M.
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Exercise 2

Find a 3 x 2 matrix B and a 2 x 4 matrix C such that M = BCT and
determine a basis for the row space of M.

M = BCT - factorization
B, C - factors

B - basis for column space

°
°

°

@ C - basis for row space

@ rank(M) = number of basis elements (in C and B).
°

Factorization not unique:

M=BCT =BHH cT = BC".
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Generating New Shapes
Assumption all hand shapes are in the subspace spanned by C.

(x1,¥1), (x2, ¥2), ... unknown point coordinates
Brew - 2 X 5 matrix of parameters

<X1 X2 Y Xn) — f(Bnew) = BneWCT,
yi Y2 ... Yn
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Low Rank Approximation

M is usually not low rank due to noise.
Remove noise before factorization.
ML estimate under Gaussian noise:

i X — M|?
i, | 7
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Low Rank Approximation

Ekhart-Young 1936: If rank(M) = k > r and M has the SVD M = USV'T

with
S — diag(al,az,...,ak) 0
N 0 0|’

then the solution to is given by X = US, VT where

s diag(o1,02,...,0,,0,0,...) 0
T 0 0|

Only the first r columns of U and V affect the product US, V.

where U'=U(;,1:r), V =V(,1:r),5 =5(1:r,1:r)
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Low Rank Approximation

Hand dataset:

rank(M) = 56 rank(X) = 5
80 - 56 = 4480 (80 +56) - 5 — 52 = 665
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Exersice 3. (Missing data)

Find the elements my5 and myg of

M =

_ N
= W N

such that rank(M) = 2.
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Missing data
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Left - The measurement matrix with roughly 50% missing entries for the
hand data set. Middle - A rank 5 approximation obtained using local
optimization. Right - The difference between the true measurement matrix
(without missing data) and the obtained rank 5 approximation.
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Affine Cameras

Pinhole camera Affine camera

At
Paffine—|:0 1:|7 A—2x3

Projection in regular coordinates

Xijj = A,'XJ' + t;.
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Affine Cameras

Solving Structure and Motion via Factorization

Suppose xj; is the projection of X; in image /. The maximum likelihood
solution is obtained by minimizing

D lxi — (A + )]
;

The optimal t; is given by
ti =X — A X,

X — 1 . 2. — L -
where X = 3. X; and X = .- > x;.
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Affine Cameras

Solving Structure and Motion via Factorization

Changing coordinates, X;; = x;; — X; and X; = X; — X, gives
> 1% — A2
i

In matrix form

)~<11 )~<12 .. )?1,-,7 A1
$o1 X2 ... Som Al . . 5
I — (X1 X Xum] |
)?nl )?n2 ce )?nm An
M rank Z;rmatrix :
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Affine Cameras

Algorithm

@ Re center all images such that the center of mass of the points is zero.
@ Form the measurement matrix M.
o Compute the svd:
[U,S, V] = svd(M);
@ A solution is given by the cameras in U(:,1 : 3) and the structure in
5(1:3,1:3) V(;,1:3).

@ Transform back to the original image coordinates.

v

@ Requires all points to be visible in all images. .

@ Could work for perspective cameras if all points have roughly the \
same distance to the cameras.
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Affine Cameras

Demonstration...
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Non-Rigid Structure from Motion

Problems where the 3D points move have higher rank than 3.

Shape Basis Assumption:

The 3D point positions can be written as a linear combination of basis
shapes

K

(XF X5 ... X =) oiB
k=1

X! - position of scene point / at time t.

B - basis shape k (matrix of size 3 x n, independent of t)

a} - coefficients at time t.
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Non-Rigid Structure from Motion

In matrix form: The 3D point positions can be written as a linear
combination of basis shapes

1 1 1 1 1 1
X]. X2 ce . Xn al az “e e CVK B]_
Xz X3 ... X? B a3 a3 ... axl| | B
XXy ooXx] of of ... af| Bk
3Kxn

The rank of the matrix (3 times the number of basis elements) describes
the complexity of the point motions.
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Non-Rigid Structure from Motion

Examples:

rank 3 rank 5
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Non-Rigid Structure

With affine cameras (assuming translations have been eliminated):

K
t ot t] — t
[xl Xy ... Xn]*AtE oy By
k=1

x! projection of point i at time t.
In matrix form:

1 1 1 1 1 1
X12 x22 .. xg a%Al a%Al . Oé£<A1 B;
XXy e Xp | ajAr  asAr Az B,
T T T T T T
X; Xy ... X, o AT o AT ... AT | Bk
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Non-rigid Reconstruction
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Projective Factorization

The factorization approach can also be used for solving
AjjXij = PiXj,

if the depth \j; is also known!
Minimze
> xg — Pixl.
i

Note: This is not a minimization of the reprojection errors (not maximal
likelihood estimator).
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Projective Factorization

In matrix form

A11X11 A12X12 ... AipX1n Py
A21X21  A22X22 ... A2pX2p P> )
, _ P X Xe o X
4 rows
AmiXml Am2Xm2  ---  AmnXmn Pm
M 4 columns

Find the best rank 4 approximation of M.
Use svd:

e [U,S, V] =svd(M),
@ The cameras are in U(:,1:4).
@ The points are in S(1:4,1:4)* V(:;,1:4).
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