Computer Vision: Lecture 10

Carl Olsson

2020-02-19

Todays Lecture

Low rank models

- Factorization
- Low Rank Approximation
- Affine Cameras
- The Missing data problem
- Non-rigid SfM

Dynamic Scenes

Four (out of 40) images of a deformable model with 56 tracked point.

- Point movements are not independent
- No explicit model
- Extract linear model from observed data

Dynamic Scenes

$\left(x_{i j}, y_{i j}\right)$ - coordinates of point j in image i.
Measurement matrix

$$
M=\left(\begin{array}{ccccc}
x_{11} & x_{12} & x_{13} & \ldots & x_{1 n} \\
y_{11} & y_{12} & y_{13} & \ldots & y_{1 n} \\
x_{21} & x_{22} & x_{23} & \ldots & x_{2 n} \\
y_{21} & y_{22} & y_{23} & \ldots & y_{2 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
x_{m 1} & x_{m 2} & x_{m 3} & \ldots & x_{m n} \\
y_{m 1} & y_{m 2} & y_{m 3} & \ldots & y_{m n}
\end{array}\right)
$$

Column $=$ point in $\mathbb{R}^{2 m}$. Row $=$ point in \mathbb{R}^{n}.

Linear Basis Assumption

Assumption: Each column can be written as a linear combination of a few basis elements $B_{1}, B_{2}, \ldots, B_{r}$.

Alternatively: The columns of M belong to a r-dimensional ($r \ll 2 m$) subspace spanned by the basis elements $B_{1}, B_{2}, \ldots, B_{r}$

From linear algebra:

- The column space of M consists of all linear combinations of columns in M.
- The row space of M consists of all linear combinations of rowsinn M
- The rank of M is the dimension of the row and column spaces.

Exercise 1

Show that the columns $B_{1}=\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right)$ and $B_{2}=\left(\begin{array}{l}2 \\ 3 \\ 1\end{array}\right)$ form a basis for the column space of

$$
M=\left(\begin{array}{llll}
1 & 2 & 2 & 0 \\
2 & 3 & 2 & 1 \\
1 & 1 & 0 & 1
\end{array}\right)
$$

and determine its rank.

Exercise 2

Find a 3×2 matrix B and a 2×4 matrix C such that $M=B C^{T}$ and determine a basis for the row space of M.

Exercise 2

Find a 3×2 matrix B and a 2×4 matrix C such that $M=B C^{T}$ and determine a basis for the row space of M.

- $M=B C^{T}$ - factorization
- B, C - factors
- B - basis for column space
- C - basis for row space
- $\operatorname{rank}(M)=$ number of basis elements (in C and B).
- Factorization not unique:

$$
M=B C^{T}=B H H^{-1} C^{T}=\tilde{B} \tilde{C}^{T} .
$$

Generating New Shapes

Assumption all hand shapes are in the subspace spanned by C.
$\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots$ unknown point coordinates
$B_{\text {new }}-2 \times 5$ matrix of parameters

$$
\left(\begin{array}{llll}
x_{1} & x_{2} & \ldots & x_{n} \\
y_{1} & y_{2} & \ldots & y_{n}
\end{array}\right)=f\left(B_{\text {new }}\right):=B_{\text {new }} C^{T},
$$

Low Rank Approximation

M is usually not low rank due to noise.
Remove noise before factorization.
ML estimate under Gaussian noise:

$$
\min _{\operatorname{rank}(X)=r}\|X-M\|_{F}^{2}
$$

Low Rank Approximation

Ekhart-Young 1936: If $\operatorname{rank}(M)=k>r$ and M has the SVD $M=U S V^{T}$ with

$$
S=\left[\begin{array}{cc}
\operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k}\right) & 0 \\
0 & 0
\end{array}\right]
$$

then the solution to is given by $X=U S_{r} V^{T}$ where

$$
S_{r}=\left[\begin{array}{cc}
\operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{r}, 0,0, \ldots\right) & 0 \\
0 & 0
\end{array}\right] .
$$

Only the first r columns of U and V affect the product $U S_{r} V^{T}$.
A factorization $X=B C^{T}$ is obtained by letting $B=U^{\prime} S_{r}^{\prime}$ and where $U^{\prime}=U(:, 1: r), V^{\prime}=V(:, 1: r), S_{r}^{\prime}=S_{r}(1: r, 1: r)$

Low Rank Approximation

Hand dataset:

$\operatorname{rank}(X)=5$
$(80+56) \cdot 5-5^{2}=665$

Exersice 3. (Missing data)

Find the elements m_{15} and m_{26} of

$$
M=\left(\begin{array}{cccccc}
1 & 2 & 2 & 0 & m_{15} & 1 \\
2 & 3 & 2 & 1 & 1 & m_{26} \\
1 & 1 & 0 & 1 & 0 & 2
\end{array}\right)
$$

such that $\operatorname{rank}(M)=2$.

Missing data

Left - The measurement matrix with roughly 50% missing entries for the hand data set. Middle - A rank 5 approximation obtained using local optimization. Right - The difference between the true measurement matrix (without missing data) and the obtained rank 5 approximation.

Affine Cameras

Pinhole camera

Affine camera

$$
P_{\mathrm{affine}}=\left[\begin{array}{cc}
A & t \\
0 & 1
\end{array}\right], \quad A-2 \times 3
$$

Projection in regular coordinates

$$
x_{i j}=A_{i} X_{j}+t_{i}
$$

Affine Cameras

Solving Structure and Motion via Factorization

Suppose $x_{i j}$ is the projection of X_{j} in image i. The maximum likelihood solution is obtained by minimizing

$$
\sum_{i j}\left\|x_{i j}-\left(A_{i} X_{j}+t_{i}\right)\right\|^{2}
$$

The optimal t_{i} is given by

$$
t_{i}=\bar{x}_{i}-A_{i} \bar{x}
$$

where $\bar{X}=\frac{1}{m} \sum_{j} X_{j}$ and $\bar{x}_{i}=\frac{1}{m} \sum_{j} x_{i j}$.

Affine Cameras

Solving Structure and Motion via Factorization

Changing coordinates, $\tilde{x}_{i j}=x_{i j}-\bar{x}_{i}$ and $\tilde{X}_{i}=X_{i}-\bar{X}$, gives

$$
\sum_{i j}\left\|\tilde{x}_{i j}-A_{i} \tilde{X}_{j}\right\|^{2}
$$

In matrix form

$$
\| \underbrace{\left[\begin{array}{cccc}
\tilde{x}_{11} & \tilde{x}_{12} & \ldots & \tilde{x}_{1 m} \\
\tilde{x}_{21} & \tilde{x}_{22} & \ldots & \tilde{x}_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
\tilde{x}_{n 1} & \tilde{x}_{n 2} & \ldots & \tilde{x}_{n m}
\end{array}\right]}_{M}-\underbrace{\left[\begin{array}{c}
A_{1} \\
A_{2} \\
\vdots \\
A_{n}
\end{array}\right]\left[\begin{array}{llll}
\tilde{x}_{1} & \tilde{x}_{2} & \ldots & \tilde{x}_{m}
\end{array}\right] \|^{2}}_{\text {rank 3 matrix }}
$$

Affine Cameras

Algorithm

- Re center all images such that the center of mass of the points is zero.
- Form the measurement matrix M.
- Compute the svd:

$$
[U, S, V]=\operatorname{svd}(M)
$$

- A solution is given by the cameras in $U(:, 1: 3)$ and the structure in $S(1: 3,1: 3) * V(:, 1: 3)^{\prime}$.
- Transform back to the original image coordinates.

Factorization

- Requires all points to be visible in all images.
- Could work for perspective cameras if all points have roughly the same distance to the cameras.

Affine Cameras

Demonstration...

Non-Rigid Structure from Motion

Problems where the 3D points move have higher rank than 3.

Shape Basis Assumption:

The 3D point positions can be written as a linear combination of basis shapes

$$
\left[\begin{array}{llll}
X_{1}^{t} & X_{2}^{t} & \ldots & X_{n}^{t}
\end{array}\right]=\sum_{k=1}^{K} \alpha_{k}^{t} B_{k}
$$

X_{i}^{t} - position of scene point i at time t.
B_{k} - basis shape k (matrix of size $3 \times n$, independent of t)
α_{k}^{t} - coefficients at time t.

Non-Rigid Structure from Motion

In matrix form: The 3D point positions can be written as a linear combination of basis shapes

$$
\left[\begin{array}{cccc}
X_{1}^{1} & X_{2}^{1} & \ldots & X_{n}^{1} \\
X_{1}^{2} & X_{2}^{2} & \ldots & X_{n}^{2} \\
\vdots & \vdots & & \vdots \\
X_{1}^{T} & X_{2}^{T} & \ldots & X_{n}^{T}
\end{array}\right]=\left[\begin{array}{cccc}
\alpha_{1}^{1} & \alpha_{2}^{1} & \ldots & \alpha_{K}^{1} \\
\alpha_{1}^{2} & \alpha_{2}^{2} & \ldots & \alpha_{K}^{2} \\
\vdots & \vdots & & \vdots \\
\alpha_{1}^{T} & \alpha_{2}^{T} & \ldots & \alpha_{K}^{T}
\end{array}\right] \underbrace{\left[\begin{array}{c}
B_{1} \\
B_{2} \\
\vdots \\
B_{K}
\end{array}\right]}_{3 K \times n}
$$

The rank of the matrix (3 times the number of basis elements) describes the complexity of the point motions.

Non-Rigid Structure from Motion

Examples:

rank 3

rank 5

Non-Rigid Structure from Motion

With affine cameras (assuming translations have been eliminated):

$$
\left[\begin{array}{llll}
x_{1}^{t} & x_{2}^{t} & \ldots & x_{n}^{t}
\end{array}\right]=A_{t} \sum_{k=1}^{K} \alpha_{k}^{t} B_{k}
$$

x_{i}^{t} projection of point i at time t.
In matrix form:

$$
\left[\begin{array}{cccc}
x_{1}^{1} & x_{2}^{1} & \ldots & x_{n}^{1} \\
x_{1}^{2} & x_{2}^{2} & \ldots & x_{n}^{2} \\
\vdots & \vdots & & \vdots \\
x_{1}^{T} & x_{2}^{T} & \ldots & x_{n}^{T}
\end{array}\right]=\left[\begin{array}{cccc}
\alpha_{1}^{1} A_{1} & \alpha_{2}^{1} A_{1} & \ldots & \alpha_{K}^{1} A_{1} \\
\alpha_{1}^{2} A_{2} & \alpha_{2}^{2} A_{2} & \ldots & \alpha_{K}^{2} A_{2} \\
\vdots & \vdots & & \vdots \\
\alpha_{1}^{T} A_{T} & \alpha_{2}^{T} A_{T} & \ldots & \alpha_{K}^{T} A_{T}
\end{array}\right] \underbrace{\left[\begin{array}{c}
B_{1} \\
B_{2} \\
\vdots \\
B_{K}
\end{array}\right], ~}
$$

Non-rigid Reconstruction

Projective Factorization

The factorization approach can also be used for solving

$$
\lambda_{i j} \mathbf{x}_{i j}=P_{i} X_{j}
$$

if the depth $\lambda_{i j}$ is also known!
Minimze

$$
\sum_{i j}\left|\lambda_{i j} x_{i j}-P_{i} X_{j}\right|^{2}
$$

Note: This is not a minimization of the reprojection errors (not maximal likelihood estimator).

Projective Factorization

In matrix form

Find the best rank 4 approximation of M.
Use svd:

- $[U, S, V]=\operatorname{svd}(M)$;
- The cameras are in $U(:, 1: 4)$.
- The points are in $S(1: 4,1: 4) * V(:, 1: 4)^{\prime}$.

