Centre for Mathematical Sciences

Mathematics, Faculty of Science

Solutions

1. Separation of variables gives the solution

$$
u(x, t)=\sin (2 x) \cos (2 t)+\frac{3}{4} \sin (x) \sin (t)-\frac{1}{12} \sin (3 x) \sin (3 t)
$$

(note that $\sin ^{3}(x)=\frac{3}{4} \sin (x)-\frac{1}{4} \sin (3 x)$).
2. We have

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{U} u^{2} \mathrm{~d} x & =2 \int_{U} u u_{t} \mathrm{~d} x \\
& =2 \int_{U} u \Delta u \mathrm{~d} x-2 \int_{U} \sum_{i=1}^{n} b_{i} u u_{x_{i}}-2 \int_{U} c u^{2} \mathrm{~d} x \\
& =-2 \int_{U}|D u|^{2} \mathrm{~d} x-2 \int_{U} c u^{2} \mathrm{~d} x+2 \int_{\partial U} u \frac{\partial u}{\partial v} \mathrm{~d} S-\int_{\partial U} u^{2} b \cdot v \mathrm{~d} S \\
& =-2 \int_{U}|D u|^{2} \mathrm{~d} x-2 \int_{U} c u^{2} \mathrm{~d} x \\
& \leq 0
\end{aligned}
$$

where $b=\left(b_{1}, \ldots, b_{n}\right)$ and we have used the equalities $\operatorname{div}\left(u^{2} b\right)=\operatorname{div}\left(u^{2} b_{1}, \ldots, u^{2} b_{n}\right)=$ $\sum_{i=1}^{n} 2 u u_{x_{i}} b_{i}$ and $\left.u\right|_{\partial U}=0$.
3. a) This is a first-order equation, which can be solved using the method of characteristics. The projected characteristics are of the form $x=a e^{s}, y=b e^{-s}$ and $z=c e^{-s}$. Note that the projected characteristics don't cross the x-axis. It is convenient to choose $b=1$ so that the characteristics cross the line $\{y=1\}$ when $s=0$. This implies that $y=e^{-s}$. Using the initial condition we get that $c=\sin (a)$, where $a=x e^{-s}=x y$. Hence, $c=\sin (x y)$. Finally $z=c e^{-s}=y \sin (x y)$. A direct calculation shows that this is indeed a solution to the problem. Note that the solution is uniquely determined in the upper half-plane, since every point there lies on a unique characteristic which passes through the line $\{y=1\}$
b) It is clear that the formula $u(x, y)=y \sin (x y)$ in fact defines a solution in the whole of \mathbb{R}^{2}. So does e.g.

$$
u(x, y)= \begin{cases}y \sin (x y), & y \geq 0 \\ 0, & y<0\end{cases}
$$

(there are infinitely many different extensions). This is consistent with the fact that the characteristics don't cross the x-axis.
4. a) In order to show that L is uniformly elliptic, we need to find a constant $\theta>0$ such that

$$
\xi_{1}^{2}-2 \xi_{1} \xi_{2}+2 \xi_{2}^{2} \geq \theta\left(\xi_{1}^{2}+\xi_{2}^{2}\right)
$$

for each $\left(\xi_{1}, \xi_{2}\right) \in \mathbb{R}^{2}$ and $\left(x_{1}, x_{2}\right) \in U$. This follows e.g. by noting that

$$
\xi_{1}^{2}-2 \xi_{1} \xi_{2}+2 \xi_{2}^{2} \geq\left(1-\frac{1}{a}\right) \xi_{1}^{2}+(2-a) \xi_{2}^{2}
$$

for any $a>0$ and choosing $1<a<2$ (with $\theta=\min \left\{1-\frac{1}{a}, 2-a\right\}$).
b) Suppose now that $u \in C^{2}(U) \cap C(\bar{U})$ is a solution to the problem and that $u(x)>1$ somewhere in U. Let $V=\{x \in U: u(x)>1\} \neq \emptyset$. Then $L u<0$ on V and $u=1$ on ∂V (note that $\partial V \cap \partial U=\emptyset$). Hence, the maximum of u is \bar{V} is attained on ∂V by the weak maximum principle, giving the contradiction $u \leq 1$ in V. A similar argument shows that $u \geq-1$. Thus $|u| \leq 1$ in U.
5. a) Since $u \in H_{\text {per }}^{1}$ it has a Fourier series expansion $u=\sum_{k \in \mathbb{Z}} \hat{\mathbb{}}_{k} e^{i k x}$ with convergence in $L_{\text {per }}^{2}$ (in fact, uniform convergence). Moreover, $u^{\prime}=\sum_{k \in \mathbb{Z}} i k \hat{u}_{k} e^{i k x}$ with convergence in $L_{\text {per }}^{2}$. By Parseval's formula, we have that

$$
\int_{-\pi}^{\pi}(u(x))^{2} \mathrm{~d} x=2 \pi \sum_{k \in \mathbb{Z}}\left|\hat{u}_{k}\right|^{2}
$$

and

$$
\int_{-\pi}^{\pi}\left(u^{\prime}(x)\right)^{2} \mathrm{~d} x=2 \pi \sum_{k \in \mathbb{Z}} k^{2}\left|\hat{u}_{k}\right|^{2} .
$$

Moreover, $\hat{u}_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} u(x) \mathrm{d} x=0$ by assumption. It follows that

$$
\int_{-\pi}^{\pi}(u(x))^{2} \mathrm{~d} x=2 \pi \sum_{k \in \mathbb{Z} \backslash\{0\}}\left|\hat{u}_{k}\right|^{2} \leq 2 \pi \sum_{k \in \mathbb{Z}} k^{2}\left|\hat{u}_{k}\right|^{2}=\int_{-\pi}^{\pi}\left(u^{\prime}(x)\right)^{2} \mathrm{~d} x .
$$

b) Multiply the equation by v, integrate by parts and use the boundary conditions.
c) Taking $v(x) \equiv 1$ shows the necessity. Let H be the closed subspace $\left\{u \in H_{\text {per }}^{1}(\mathbb{R}): \int_{-\pi}^{\pi} u(x) \mathrm{d} x=\right.$ $0\}$ of $H_{\text {per }}^{1}(\mathbb{R})$ (which is also a Hilbert space with the inherited inner product). Then

$$
B[u, v]=\int_{-\pi}^{\pi} a(x) u^{\prime}(x) v^{\prime}(x) \mathrm{d} x, \quad u, v \in H
$$

satisfies the conditions of the Lax-Milgram theorem due to part a) and the conditions on $a(x)$, and

$$
v \mapsto \int_{-\pi}^{\pi} f(x) v(x) \mathrm{d} x
$$

defines a bounded linear functional on H. Hence there is a unique $u \in H$ such that

$$
\begin{equation*}
\int_{-\pi}^{\pi} a(x) u^{\prime}(x) v^{\prime}(x) \mathrm{d} x=\int_{-\pi}^{\pi} f(x) v(x) \mathrm{d} x \tag{1}
\end{equation*}
$$

for all $v \in H$ by the Lax-Milgram theorem (or in fact by Riesz' representation theorem). We have still not verified that u is a weak solution, since this requires the identity (1) to hold for all $v \in H_{\text {per }}^{1}$ (not just the subspace H). However, the condition $\int_{-\pi}^{\pi} f(x) \mathrm{d} x=0$ guarantees that (1) continues to hold if v does not have zero average.

