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Solutions

1. Separation of variables gives the solution
. 3. . 1 . .
u(x,t) = sin(2x) cos(2¢) + 1 sin(x) sin(¢) — D sin(3x) sin(3¢)

(note that sin®(x) = 2 sin(x) — 1 sin(3x)).

2. We have
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where b = (by,...,b,) and we have used the equalities div(u?b) = div(u®by,...,u*b,) =
Z?:l 2””xibi and M‘QU =0.

3. a) This is a first-order equation, which can be solved using the method of characteristics.
The projected characteristics are of the form x = ae®, y = be™ and z = ce™*. Note that
the projected characteristics don’t cross the x-axis. It is convenient to choose b = 1 so that
the characteristics cross the line {y = 1} when s = 0. This implies that y = ¢~*. Using
the initial condition we get that ¢ = sin(a), where a = xe™* = xy. Hence, ¢ = sin(xy).
Finally z = ce™ = ysin(xy). A direct calculation shows that this is indeed a solution to
the problem. Note that the solution is uniquely determined in the upper half-plane, since
every point there lies on a unique characteristic which passes through the line {y = 1}

b) Itis clear that the formula u(x,y) = ysin(xy) in fact defines a solution in the whole of R,
So does e.g.

ysin(xy), y >0,
u(x,y) = 0 y<0

(there are infinitely many different extensions). This is consistent with the fact that the
characteristics don’t cross the x-axis.
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In order to show that L is uniformly elliptic, we need to find a constant 6 > 0 such that

& 2816 +28 > 0(&7 +&7)

for each (&;,&) € R? and (x1,x,) € U. This follows e.g. by noting that
1
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for any a > 0 and choosing 1 < a < 2 (with 8 = min{1— 1,2 —a}).

Suppose now that u € C2(U)NC(TU) is a solution to the problem and that «(x) > 1 some-
whereinU. LetV ={x€ U: u(x) > 1} #0. Then Lu <0OonV and u = 1 on dV (note that
dV NoU = 0). Hence, the maximum of « is V is attained on dV by the weak maximum
principle, giving the contradiction # < 1 in V. A similar argument shows that u > —1.
Thus |u| <1inU.

Since u € H[}er it has a Fourier series expansion u = Y., iize’** with convergence in le)er
(in fact, uniform convergence). Moreover, u' = ¥y, ikiize’™ with convergence in L2,.. By

per*
Parseval’s formula, we have that
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Moreover, iy = 5 7 u(x) dx = 0 by assumption. It follows that
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Multiply the equation by v, integrate by parts and use the boundary conditions.
Taking v(x) = 1 shows the necessity. Let H be the closed subspace {u € Hpe, (R): 7 u(x)dx=
0} of H., (R) (which is also a Hilbert space with the inherited inner product). Then

per

T

Blu,v] :/ a(x)u' (x)v'(x)dx, u,v€H,
-7

satisfies the conditions of the Lax-Milgram theorem due to part a) and the conditions on

a(x), and
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defines a bounded linear functional on H. Hence there is a unique u € H such that
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for all v € H by the Lax-Milgram theorem (or in fact by Riesz’ representation theorem).
We have still not verified that u is a weak solution, since this requires the identity (1) to
hold for all v € H[}er (not just the subspace H). However, the condition [, f(x)dx =0
guarantees that (1) continues to hold if v does not have zero average.



