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Solutions

1. Separation of variables gives the solution

u(x, t) = sin(2x)cos(2t)+
3
4

sin(x)sin(t)− 1
12

sin(3x)sin(3t)

(note that sin3(x) = 3
4 sin(x)− 1

4 sin(3x)).

2. We have

d
dt

∫
U

u2 dx = 2
∫

U
uut dx

= 2
∫

U
u∆udx−2

∫
U

n

∑
i=1

biuuxi−2
∫

U
cu2 dx

=−2
∫

U
|Du|2 dx−2

∫
U

cu2 dx+2
∫

∂U
u

∂u
∂ν

dS−
∫

∂U
u2b ·ν dS

=−2
∫

U
|Du|2 dx−2

∫
U

cu2 dx

≤ 0,

where b = (b1, . . . ,bn) and we have used the equalities div(u2b) = div(u2b1, . . . ,u2bn) =

∑
n
i=1 2uuxibi and u|∂U = 0.

3. a) This is a first-order equation, which can be solved using the method of characteristics.
The projected characteristics are of the form x = aes, y = be−s and z = ce−s. Note that
the projected characteristics don’t cross the x-axis. It is convenient to choose b = 1 so that
the characteristics cross the line {y = 1} when s = 0. This implies that y = e−s. Using
the initial condition we get that c = sin(a), where a = xe−s = xy. Hence, c = sin(xy).
Finally z = ce−s = ysin(xy). A direct calculation shows that this is indeed a solution to
the problem. Note that the solution is uniquely determined in the upper half-plane, since
every point there lies on a unique characteristic which passes through the line {y = 1}

b) It is clear that the formula u(x,y) = ysin(xy) in fact defines a solution in the whole of R2.
So does e.g.

u(x,y) =

{
ysin(xy), y≥ 0,
0, y < 0

(there are infinitely many different extensions). This is consistent with the fact that the
characteristics don’t cross the x-axis.

Please, turn over!



4. a) In order to show that L is uniformly elliptic, we need to find a constant θ > 0 such that

ξ
2
1 −2ξ1ξ2 +2ξ

2
2 ≥ θ(ξ 2

1 +ξ
2
2 )

for each (ξ1,ξ2) ∈ R2 and (x1,x2) ∈U . This follows e.g. by noting that

ξ
2
1 −2ξ1ξ2 +2ξ

2
2 ≥

(
1− 1

a

)
ξ

2
1 +(2−a)ξ 2

2 ,

for any a > 0 and choosing 1 < a < 2 (with θ = min{1− 1
a ,2−a}).

b) Suppose now that u ∈C2(U)∩C(U) is a solution to the problem and that u(x)> 1 some-
where in U . Let V = {x∈U : u(x)> 1} 6= /0. Then Lu < 0 on V and u = 1 on ∂V (note that
∂V ∩ ∂U = /0). Hence, the maximum of u is V is attained on ∂V by the weak maximum
principle, giving the contradiction u ≤ 1 in V . A similar argument shows that u ≥ −1.
Thus |u| ≤ 1 in U .

5. a) Since u ∈ H1
per it has a Fourier series expansion u = ∑k∈Z ûkeikx with convergence in L2

per

(in fact, uniform convergence). Moreover, u′ = ∑k∈Z ikûkeikx with convergence in L2
per. By

Parseval’s formula, we have that∫
π

−π

(u(x))2 dx = 2π ∑
k∈Z
|ûk|2

and ∫
π

−π

(u′(x))2 dx = 2π ∑
k∈Z

k2|ûk|2.

Moreover, û0 =
1

2π

∫
π

−π
u(x)dx = 0 by assumption. It follows that∫

π

−π

(u(x))2 dx = 2π ∑
k∈Z\{0}

|ûk|2 ≤ 2π ∑
k∈Z

k2|ûk|2 =
∫

π

−π

(u′(x))2 dx.

b) Multiply the equation by v, integrate by parts and use the boundary conditions.
c) Taking v(x)≡ 1 shows the necessity. Let H be the closed subspace {u∈H1

per(R) :
∫

π

−π
u(x)dx=

0} of H1
per(R) (which is also a Hilbert space with the inherited inner product). Then

B[u,v] =
∫

π

−π

a(x)u′(x)v′(x)dx, u,v ∈ H,

satisfies the conditions of the Lax-Milgram theorem due to part a) and the conditions on
a(x), and

v 7→
∫

π

−π

f (x)v(x)dx

defines a bounded linear functional on H. Hence there is a unique u ∈ H such that∫
π

−π

a(x)u′(x)v′(x)dx =
∫

π

−π

f (x)v(x)dx, (1)

for all v ∈ H by the Lax-Milgram theorem (or in fact by Riesz’ representation theorem).
We have still not verified that u is a weak solution, since this requires the identity (1) to
hold for all v ∈ H1

per (not just the subspace H). However, the condition
∫

π

−π
f (x)dx = 0

guarantees that (1) continues to hold if v does not have zero average.


