

Centre for Mathematical Sciences

Mathematics, Faculty of Science

Solutions

1. Separation of variables gives the solution

$$u(x,t) = \sin(2x)\cos(2t) + \frac{3}{4}\sin(x)\sin(t) - \frac{1}{12}\sin(3x)\sin(3t)$$

(note that $\sin^3(x) = \frac{3}{4}\sin(x) - \frac{1}{4}\sin(3x)$).

2. We have

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{U} u^{2} \, \mathrm{d}x = 2 \int_{U} u u_{t} \, \mathrm{d}x$$

$$= 2 \int_{U} u \Delta u \, \mathrm{d}x - 2 \int_{U} \sum_{i=1}^{n} b_{i} u u_{x_{i}} - 2 \int_{U} c u^{2} \, \mathrm{d}x$$

$$= -2 \int_{U} |Du|^{2} \, \mathrm{d}x - 2 \int_{U} c u^{2} \, \mathrm{d}x + 2 \int_{\partial U} u \frac{\partial u}{\partial v} \, \mathrm{d}S - \int_{\partial U} u^{2} b \cdot v \, \mathrm{d}S$$

$$= -2 \int_{U} |Du|^{2} \, \mathrm{d}x - 2 \int_{U} c u^{2} \, \mathrm{d}x$$

$$< 0.$$

where $b = (b_1, ..., b_n)$ and we have used the equalities $\operatorname{div}(u^2b) = \operatorname{div}(u^2b_1, ..., u^2b_n) = \sum_{i=1}^n 2uu_{x_i}b_i$ and $u|_{\partial U} = 0$.

- 3. a) This is a first-order equation, which can be solved using the method of characteristics. The projected characteristics are of the form $x = ae^s$, $y = be^{-s}$ and $z = ce^{-s}$. Note that the projected characteristics don't cross the x-axis. It is convenient to choose b = 1 so that the characteristics cross the line $\{y = 1\}$ when s = 0. This implies that $y = e^{-s}$. Using the initial condition we get that $c = \sin(a)$, where $a = xe^{-s} = xy$. Hence, $c = \sin(xy)$. Finally $z = ce^{-s} = y\sin(xy)$. A direct calculation shows that this is indeed a solution to the problem. Note that the solution is uniquely determined in the upper half-plane, since every point there lies on a unique characteristic which passes through the line $\{y = 1\}$
 - **b)** It is clear that the formula $u(x,y) = y\sin(xy)$ in fact defines a solution in the whole of \mathbb{R}^2 . So does e.g.

$$u(x,y) = \begin{cases} y\sin(xy), & y \ge 0, \\ 0, & y < 0 \end{cases}$$

(there are infinitely many different extensions). This is consistent with the fact that the characteristics don't cross the *x*-axis.

4. a) In order to show that L is uniformly elliptic, we need to find a constant $\theta > 0$ such that

$$\xi_1^2 - 2\xi_1\xi_2 + 2\xi_2^2 \ge \theta(\xi_1^2 + \xi_2^2)$$

for each $(\xi_1, \xi_2) \in \mathbb{R}^2$ and $(x_1, x_2) \in U$. This follows e.g. by noting that

$$\xi_1^2 - 2\xi_1\xi_2 + 2\xi_2^2 \ge \left(1 - \frac{1}{a}\right)\xi_1^2 + (2 - a)\xi_2^2,$$

for any a > 0 and choosing 1 < a < 2 (with $\theta = \min\{1 - \frac{1}{a}, 2 - a\}$).

- b) Suppose now that $u \in C^2(U) \cap C(\overline{U})$ is a solution to the problem and that u(x) > 1 somewhere in U. Let $V = \{x \in U : u(x) > 1\} \neq \emptyset$. Then Lu < 0 on V and u = 1 on ∂V (note that $\partial V \cap \partial U = \emptyset$). Hence, the maximum of u is \overline{V} is attained on ∂V by the weak maximum principle, giving the contradiction $u \leq 1$ in V. A similar argument shows that $u \geq -1$. Thus $|u| \leq 1$ in U.
- **5.** a) Since $u \in H^1_{per}$ it has a Fourier series expansion $u = \sum_{k \in \mathbb{Z}} \hat{u}_k e^{ikx}$ with convergence in L^2_{per} (in fact, uniform convergence). Moreover, $u' = \sum_{k \in \mathbb{Z}} ik\hat{u}_k e^{ikx}$ with convergence in L^2_{per} . By Parseval's formula, we have that

$$\int_{-\pi}^{\pi} (u(x))^2 dx = 2\pi \sum_{k \in \mathbb{Z}} |\hat{u}_k|^2$$

and

$$\int_{-\pi}^{\pi} (u'(x))^2 dx = 2\pi \sum_{k \in \mathbb{Z}} k^2 |\hat{u}_k|^2.$$

Moreover, $\hat{u}_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} u(x) dx = 0$ by assumption. It follows that

$$\int_{-\pi}^{\pi} (u(x))^2 dx = 2\pi \sum_{k \in \mathbb{Z} \setminus \{0\}} |\hat{u}_k|^2 \le 2\pi \sum_{k \in \mathbb{Z}} k^2 |\hat{u}_k|^2 = \int_{-\pi}^{\pi} (u'(x))^2 dx.$$

- **b)** Multiply the equation by v, integrate by parts and use the boundary conditions.
- c) Taking $v(x) \equiv 1$ shows the necessity. Let H be the closed subspace $\{u \in H^1_{per}(\mathbb{R}) : \int_{-\pi}^{\pi} u(x) dx = 0\}$ of $H^1_{per}(\mathbb{R})$ (which is also a Hilbert space with the inherited inner product). Then

$$B[u,v] = \int_{-\pi}^{\pi} a(x)u'(x)v'(x) dx, \quad u,v \in H,$$

satisfies the conditions of the Lax-Milgram theorem due to part \mathbf{a}) and the conditions on a(x), and

$$v \mapsto \int_{-\pi}^{\pi} f(x)v(x) \, \mathrm{d}x$$

defines a bounded linear functional on H. Hence there is a unique $u \in H$ such that

$$\int_{-\pi}^{\pi} a(x)u'(x)v'(x) dx = \int_{-\pi}^{\pi} f(x)v(x) dx,$$
 (1)

for all $v \in H$ by the Lax-Milgram theorem (or in fact by Riesz' representation theorem). We have still not verified that u is a weak solution, since this requires the identity (1) to hold for all $v \in H^1_{per}$ (not just the subspace H). However, the condition $\int_{-\pi}^{\pi} f(x) dx = 0$ guarantees that (1) continues to hold if v does not have zero average.