LUND

UNIVERSITY

Centre for Mathematical Sciences

Mathematics, Faculty of Science

Solutions

1. Separation of variables gives the solution

$$
u(x, t)=\frac{t}{2}+\frac{1}{4} \cos (2 x) \sin (2 t)
$$

2. By definition, we have to verify that

$$
\int_{\mathbb{R}^{2}} u(x, t)\left(\partial_{t} \partial_{x} \varphi(x, t)+\partial_{t} \varphi(x, t)\right) d x d t=\varphi(0,0)
$$

for each $\varphi \in C_{c}^{\infty}\left(\mathbb{R}^{2}\right)$. We have

$$
\int_{\mathbb{R}^{2}} u(x, t) \partial_{t} \varphi(x, t) d x d t=\int_{0}^{\infty} \int_{0}^{\infty} e^{x} \partial_{t} \varphi(x, t) d t d x=-\int_{0}^{\infty} e^{x} \varphi(x, 0) d x
$$

On the other hand

$$
\begin{aligned}
\int_{\mathbb{R}^{2}} u(x, t) \partial_{t} \partial_{x} \varphi(x, t) d x d t & =\int_{0}^{\infty} \int_{0}^{\infty} e^{x} \partial_{t} \partial_{x} \varphi(x, t) d t d x=-\int_{0}^{\infty} e^{x} \partial_{x} \varphi(x, 0) d x \\
& =\varphi(0,0)+\int_{0}^{\infty} e^{x} \varphi(x, 0) d x
\end{aligned}
$$

Thus, the sum of the two terms equals $\varphi(0,0)$, as required.
3. Following the hint, we have

$$
u(x, t)=\frac{1}{(4 \pi t)^{n / 2}} \int_{\mathbb{R}^{n}} e^{-\frac{|x-y|^{2}}{4 t}} g(y) d y
$$

Differentiating under the integral sign with respect to x_{j}, we find that

$$
\begin{aligned}
\partial_{x_{j}} u(x, t) & =-\frac{1}{(4 \pi t)^{n / 2}} \int_{\mathbb{R}^{n}} \frac{\left(x_{j}-y_{j}\right)}{2 t} e^{-\frac{|x-y|^{2}}{4 t}} g(y) d y \\
& =-\frac{1}{2 \sqrt{t}} \frac{1}{(4 \pi t)^{n / 2}} \int_{\mathbb{R}^{n}} \frac{\left(x_{j}-y_{j}\right)}{\sqrt{t}} e^{-\frac{|x-y|^{2}}{4 t}} g(y) d y .
\end{aligned}
$$

Making the change of variables $z=(x-y) / \sqrt{t}$, we obtain

$$
\partial_{x_{j}} u(x, t)=-\frac{1}{2 \sqrt{t}} \frac{1}{(4 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} z_{j} e^{-\frac{\mid z^{2}}{4}} g(x-\sqrt{t} z) d z .
$$

Hence, we get

$$
\left|\partial_{x_{j}} u(x, t)\right| \leq \frac{C\|g\|_{\infty}}{\sqrt{t}}
$$

with

$$
C=\frac{1}{2(4 \pi)^{n / 2}} \int_{\mathbb{R}^{n}}\left|z_{j}\right| e^{-\frac{\mid z^{2}}{4}} d z
$$

4. a) We use the method of characteristics. The characteristic equations are

$$
\left\{\begin{array}{l}
\dot{x}=x \\
\dot{y}=-1 \\
\dot{z}=z^{2}
\end{array}\right.
$$

Solving the first two equations we obtain $x(s)=x^{0} e^{s}, y(s)=-s+y^{0}$. Since we have the boundary condition $u(x, 0)=g(x)$, it is convenient to choose $y^{0}=0$. We then use x^{0} to parametrize the x-axis and require that $z(0)=g\left(x^{0}\right)$ to enforce the boundary condition $u(x, 0)=g(x)$. The equation $\dot{z}=z^{2}$ is separable, and we find that

$$
z\left(s ; x^{0}\right)=\frac{z\left(0 ; x^{0}\right)}{1-z\left(0 ; x^{0}\right) s}=\frac{g\left(x^{0}\right)}{1-g\left(x^{0}\right) s}
$$

This gives a solution formula in terms of the characteristic coordinates x^{0} and s. In order to express the solution in terms of x and y, we solve the equations $x\left(s ; x^{0}\right)=x$ and $y\left(s ; x^{0}\right)=y$ for s and x^{0}, finding that $s=-y$ and $x^{0}=x e^{-s}=x e^{y}$. Thus,

$$
\begin{equation*}
u(x, y)=\frac{g\left(x e^{y}\right)}{1+y g\left(x e^{y}\right)} \tag{1}
\end{equation*}
$$

Computing

$$
\begin{gathered}
u(x, 0)=g(x) \\
u_{x}(x, y)=\frac{g^{\prime}\left(x e^{y}\right) e^{y}}{1+y g\left(x e^{y}\right)}-\frac{g\left(x e^{y}\right) g^{\prime}\left(x e^{y}\right) y e^{y}}{\left(1+y g\left(x e^{y}\right)\right)^{2}}
\end{gathered}
$$

and

$$
u_{y}(x, y)=\frac{g^{\prime}\left(x e^{y}\right) x e^{y}}{1+y g\left(x e^{y}\right)}-\frac{g\left(x e^{y}\right) g^{\prime}\left(x e^{y}\right) x y e^{y}}{\left(1+y g\left(x e^{y}\right)\right)^{2}}-\frac{\left(g\left(x e^{y}\right)\right)^{2}}{\left(1+y g\left(x e^{y}\right)\right)^{2}}
$$

we see that u really is a solution. Note that the denominator $1+y g\left(x e^{y}\right)$ is strictly positive for $y \geq 0$ since $g \geq 0$.
b) Since each point in \mathbb{R}^{2} lies on a unique projected characteristic intersecting the x-axis, it follows from the method of characteristics that any solution has to be of the form (1) and that it is defined as long as $y g\left(x e^{y}\right)>-1$. Note that the projected characteristics can be expressed as $x=x^{0} e^{-y}$. Thus $g\left(x e^{y}\right)$ is constant along each projected characteristic (equal to $g\left(x^{0}\right)$). If $g\left(x^{0}\right)<0$, we therefore find that u will blow-up along the projected characteristic through $\left(x^{0}, 0\right)$ at $y=-\frac{1}{g\left(x^{0}\right)}$ (and $\left.x=x^{0} e^{\frac{1}{g\left(x_{0}\right)}}\right)$. In particular, if g is bounded from below, the solution will exist on the maximal set $\mathbb{R} \times\left[0, y_{\text {max }}\right)$ where

$$
y_{\max }=-\frac{1}{\inf _{x \in \mathbb{R}} g(x)}
$$

5. a) Suppose that u and v are both solutions and set $w=u-v$. We have to show that $w=0$. Note that w solves the problem

$$
\begin{aligned}
& L w=0 \text { in } U \\
& \frac{\partial w}{\partial v}+w=0 \\
& \text { on } \partial U
\end{aligned}
$$

If w does not vanish identically, we must either have $\max _{\bar{U}} w>0$ or $\min _{\bar{U}} w<0$ (or both). Assume that $\max _{\bar{U}} w>0$ (otherwise consider $-w$). It follows from the weak maximum
principle that w attains its maximum on ∂U. Thus there is a point $x^{0} \in \partial U$ with $\max _{\bar{U}} w=$ $w\left(x^{0}\right)>0$. At such a point we must also have $\frac{\partial w}{\partial v}\left(x^{0}\right) \geq 0$ since $w(x) \leq w\left(x^{0}\right)$ for all $x \in U$. But then

$$
\frac{\partial w}{\partial v}\left(x^{0}\right)+w\left(x^{0}\right)>0,
$$

contradicting the boundary condition.
b) We can e.g. take $n=1, U=(-1,1)$ and $L u=-u^{\prime \prime}$ (an ordinary differential operator). Then $u(x)=x$ satisfies $L u=0$ for all x and $u^{\prime}(1)-u(1)=1-1=0,-u^{\prime}(-1)-u(-1)=$ $-1-(-1)=0$. So we don't have uniqueness (no matter what f and g are).

