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Solutions

1. Separation of variables gives the solution

t 1
u(x,1) = >+ Zcos(Zx) sin(21).

2. By definition, we have to verify that
/ u(x1)(20,p(x.) + dp(.)) dxdt = p(0.,0)
R
for each ¢ € C(R?). We have

/ u(x,t)a,(p(x,t)dxdt:/ / e 9 p(x,t)dtdx = —/ e @(x,0)dx.
R? 0o Jo Jo
On the other hand

/ u(x,1)0,0:@(x,t)dxdt = /m /m € 0,0, (x,1)dtdx = —/mexaxq)(x,O) dx
R2 0 Jo 0
= (p(0,0)+/ ¢ o(x,0)dx.
0

Thus, the sum of the two terms equals ¢(0,0), as required.

3. Following the hint, we have

1 e
ulx, 1) = 7/,16 wg(y)dy.

(47t)n/2
Differentiating under the integral sign with respect to x;, we find that
_ 1 (xj—yj) bk
doulet) = s [ e ) dy

11 (xj—y)) bl
= ; dy.
2\5(47;,);1/2/” N g(y)dy

Making the change of variables z = (x —y)/+/f, we obtain

1 1 _kP2
Ox;u(x,1) = —MW/R”ZJe Tglx—1z)dz.
Hence, we get
C oo
laxju(x,t)| < Hg\};,

with

1 lz[2
C= 7/ le” 4 dz.
2Tyl Je 11T

Please, turn over!



4.

a)

b)

a)

We use the method of characteristics. The characteristic equations are

X =x,
_).) = _17
i=2.
Solving the first two equations we obtain x(s) = x%°, y(s) = —s+". Since we have the

boundary condition u(x,0) = g(x), it is convenient to choose y° = 0. We then use x° to
parametrize the x-axis and require that z(0) = g(x°) to enforce the boundary condition
u(x,0) = g(x). The equation z = z* is separable, and we find that

coy_ 20 g(x%)
3(six”) = 1—2z(0;x0)s 1 —g(x0)s’

This gives a solution formula in terms of the characteristic coordinates x” and s. In order to
express the solution in terms of x and y, we solve the equations x(s; x°) = x and y(s;x°) =y

for s and x°, finding that s = —y and x° = xe™ = xe”. Thus,
8(xe”)
ux,y) = ————. 1
Computing
u(x,0) = g(x),
'(xe”)e” xe¥)g' (xe¥)ye
uny) = =& (xe”)e”  g(xe”)g' (xe”)y

1+yg(xe)  (1+yg(xe))?

and
(x.y) g (xe")xe”  g(xe’)g (xe¥)xye”  (g(xe"))?
Uyl X, == - - S )
P Tygee)  (ygle)? T (T+yg(xe))?
we see that u really is a solution. Note that the denominator 1+ yg(xe”) is strictly positive

for y > 0 since g > 0.

Since each point in R? lies on a unique projected characteristic intersecting the x-axis,
it follows from the method of characteristics that any solution has to be of the form (1)
and that it is defined as long as yg(xe”) > —1. Note that the projected characteristics can
be expressed as x = x’¢™. Thus g(xe’) is constant along each projected characteristic
(equal to g(x?)). If g(x°) < 0, we therefore find that u will blow-up along the projected

1
characteristic through (x°,0) at y = —@ (and x = x%#®)). In particular, if g is bounded
from below, the solution will exist on the maximal set R X [0, ymax) Where

1

)

Suppose that « and v are both solutions and set w = u —v. We have to show that w = 0.
Note that w solves the problem

Lw=0 inU,
ow

—+w=0 ondU.
ov

If w does not vanish identically, we must either have maxgw > 0 or mingw < 0 (or both).
Assume that maxgw > 0 (otherwise consider —w). It follows from the weak maximum



b)

principle that w attains its maximum on dU. Thus there is a point x € dU with maxgw =
w(x) > 0. At such a point we must also have g—v‘f(xo) > 0 since w(x) < w(x?) forallx € U.

But then 5
%(xo) +w(x) >0,

contradicting the boundary condition.

We can e.g. take n =1, U = (—1,1) and Lu = —u” (an ordinary differential operator).
Then u(x) = x satisfies Lu =0 forall x and o/ (1) —u(1) =1—-1=0, —u/'(—1) —u(-1) =
—1—(—1) =0. So we don’t have uniqueness (no matter what f and g are).



