PDE Lecture

Power series solutions
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Power series solutions, Evans 4.6
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From last week
I" smooth (n— 1) dim. hypersurface in U. Unit normal v.

Cauchy problem for kth order quasilinear equation:

Z aa(Dkflu,...,u,x)Dau—l-ao(Dk*lu,...,u,x) =0 inU (1)
|a|=k

u %1y
U= 80, E:gla EERE W:gk—l Onra (2)

ag € COO(U)
g0.---.gk1: T — It Cauchy data.
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From last week
I" smooth (n— 1) dim. hypersurface in U. Unit normal v.
Cauchy problem for kth order quasilinear equation:

Z aa(Dkflu,...,u,x)Dau—l-ao(Dk*lu,...,u,x) =0 inU (1)
|a|=k

u akflu
u=go, E:glv cee W:gk—l onT, (2)
g S (jaj(l]).
80,----8c-1: I' = R Cauchy data.
Definition
The surface I' is noncharacteristic for the PDE (1) provided

Y auv®#0 onT.
|a|=k
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Theorem (Cauchy-Kovalevskaya Theorem, v. 1)

LetT, ay and g; be analytic near x° € " and assume thatT is
noncharacteristic for (1). Then 3 unique analytic solution u to
the Cauchy problem (1), (2) near x°.
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LetT, ay and g; be analytic near x° € " and assume thatT is
noncharacteristic for (1). Then 3 unique analytic solution u to
the Cauchy problem (1), (2) near x°.

The theorem is proved by transforming (1), (2) to

n—1

Uy, = Z Bj(uvx/)uxj +C(ll7x/), |x| <r

J
u=0, X[ <rx,=0
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Assume {B;} and c are real analytic. There exists r >0 and a
unique real analytic functionu =Y ,uax® solving (3).
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Theorem (Cauchy-Kovalevskaya Theorem, v. 1)

LetT, ay and g; be analytic near x° € " and assume thatT is
noncharacteristic for (1). Then 3 unique analytic solution u to
the Cauchy problem (1), (2) near x°.

The theorem is proved by transforming (1), (2) to
n—1
u, = Z Bj(u,x')uxj +e(u,x), |x|<r

J
u=0, X[ <rx,=0

and then using

Theorem (Cauchy-Kovalevskaya Theorem, v. 2)

Assume {B;} and c are real analytic. There exists r >0 and a
unique real analytic functionu =Y ,uax® solving (3).

Today: something about the proof.
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Real analytic functions
Definition

f: R" — R is (real) analytic near x if there exists r > 0 and
constants {f,} such that

fx) = Zfa(X—xo)a, lx —xo| < r.

11 got this wrong in the lecture.
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Real analytic functions

Definition
f: R" — R is (real) analytic near x if there exists r > 0 and
constants {f,} such that

flx) = Zfa(X—xo)a, |x —xo| <.

Remarks:

» By convergence we will mean absolute convergence, since
one otherwise has to specify the order of summation.
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Real analytic functions

Definition
f: R" — R is (real) analytic near x if there exists r > 0 and
constants {f,} such that

flx) = Zfa(X—xo)a, |x —xo| <.

Remarks:
» By convergence we will mean absolute convergence, since
one otherwise has to specify the order of summation.

> f analytic = f € C~ near x and f, = 2Ltx)

» Maximal region of convergence is more complicated for
n>1,e.9. Yi(x1x:)* converges abs. for |xjx;| < 1.

» If the series converges absolutely for some x it will
converge absolutely for y on the ray between x, and x, but
not necessarily for |y —xq| < |x — x|’

11 got this wrong in the lecture.
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Example
If r >0,
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Example
If r >0,
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Abs. conv. for |x| < r/y/n (so that |x; +---+x,| <r)
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Majorants
Definition

If f =Y ofox® g =Y ogax* are power series, we say that g
majorizes f, written g > f, if go > |fo| Vor.
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Majorants
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If f =Y ofax® g =Yqgax® are power series, we say that g
majorizes f, written g > f, if go > |fu| Var.

Remark: The majorant g has nonnegative coefficients!
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Majorants

Definition

If f =Y ofox® g =Y ogax* are power series, we say that g
majorizes f, written g > f, if go > |fo| Vor.

Remark: The majorant g has nonnegative coefficients!
Lemma

1. Ifg>f and g converges for |x| < r, then so does f.

2. Iff converges for |x| < r and 0 < s\/n < r, thenf has an
‘explicit’ majorant for |x| < s/+/n.

Proof
1. Yo fax® < Yo galxr|® - [ |% < oo,
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2. Let s be as in the statement of the lemma and set y :=
s(1,...,1). Then [y| =sy/n < r and hence Y, foy* converges.
Therefore 4C s.t.

fay® < C Va.
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2. Let s be as in the statement of the lemma and set y :=
s(1,...,1). Then |y| =sy/n < r and hence Y, foy* converges
Therefore 4C s.t.

fur® < C Va.
Thus
< C __C _cl
Ifal < yI oy slel = T lal g
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2. Let s be as in the statement of the lemma and set y :=
s(1,...,1). Then [y| =sy/n < r and hence Y, foy* converges.
Therefore 4C s.t.

fay® < C Va.
Thus c c !
fal < W = Jal < Csla‘(;”
But then
|
g(x) = e ff-~+xn) = C; s|2|to'“x“
majorizes f for |x| < s//n. O
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Proof of Cauchy-Kovalevskaya, v. 2
For notational simplicity, consider the case m =1 (u = u scalar-
valued). Then

n—1
Uy, = Z bj(u,x Yuy, +c(u,x'), |x| <r
=1

(4)

u=>0, X | <r,x,=
0 ! 0
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Write u =Y o uqgx®, |x| < r for some r to be found,

Z 7,(szyx“; and c¢(z,x) ch,;zyx‘s |z| + |¥] <s.
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For notational simplicity, consider the case m =1 (u = u scalar-
valued). Then
n—1

Uy, = Z bj(u,x')uxj +e(u,x), |x|<r
=1 (4)

u=0, IX| <rx,=0
Write u =Y o uqgx®, |x| < r for some r to be found,
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Proof of Cauchy-Kovalevskaya, v. 2

For notational simplicity, consider the case m =1 (u = u scalar-
valued). Then
n—1
Uy, = Z bj(u,x')uxj +e(u,x), |x|<r
J=1 4)

u=0, IX| <rx,=0
Write u =Y o uqgx®, |x| < r for some r to be found,
bj(z,x') = ij#ﬁz”x‘s and c¢(z,x) ch,;zyx‘s |z| + ] < s.

w=00n {x, =0} = ug = 240 if ¢, = 0. u,,(0) = ¢(0,0).
Differentiate PDE w.r.t. x;, 1 g i<n-—1:

n—1
T Z (bjux,.xj + bj iy, —{—ijzuxiuxj) +Cy, + Cly,
=

Gives uy,, (0) = ¢y, (0,0)
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Induction = ,
D%u(0) = D% ¢(0,0)
ifa=(c,1).
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Induction =
D%u(0) = D% ¢(0,0)

ifa=(c,1).

In general, by differentiating the equation several times with re-
spect to x,:

l)a
v = D2ul0)
al

q« polynomial with nonnegative coefficients and B, < oy, — 1.

=qa(- 1 Djys, - 1Cy5s - UB,- ),
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Induction =
D%u(0) = D% ¢(0,0)

ifa=(c,1).

In general, by differentiating the equation several times with re-
spect to x,:

l)a
v = D2ul0)
al

q« polynomial with nonnegative coefficients and B, < oy, — 1.

=qa(- 1 Djys, - 1Cy5s - UB,- ),

Suppose b]’f > bj, ¢* > ¢, with

b; = ij’i%azyxa and ¢ = Zc;ﬁz’/xs, 2| + x| <5
7.6 7.6
and consider the new BVP

n—1
w; =Y, bj’-‘(u*,x’)u;j +cf (X)), fxl<r 5)
=1

u* =0, |X'| < r,x, =0.
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Suppose u* =Y, uyx* is a solution. Then
lua| < ug

by induction over a,,.
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Suppose u* =Y, uyx* is a solution. Then
lua| < ug

by induction over a,,.

Clear for a;, = 0 (both 0).

Induction step:

‘l/ta’ = ’q(x('"7bj.,’y,57"'vcy,(‘iv"'vuﬁa"')‘
<qal---|bjysls--sleysl-- -5 lugl,...)  nonneg. coeft.
Sqa(...,b;y75,...,c;75,...,uE,...) B <a,—1

%
_ua
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Suppose u* =Y, uyx* is a solution. Then
lua| < ug

by induction over a,,.

Clear for a;, = 0 (both 0).
Induction step:

‘l/ta’ = ’q(x('"7bj.,’y,57"'vcy,(‘iv"'vuﬁa"')‘

<qal---|bjysls--sleysl-- -5 lugl,...)  nonneg. coeft.
Sqa(...,b;y75,...,c;75,...,uE,...) B <a,—1
:l/l:;

Thus u* > u and it remains to prove existence of u*.

Choose
N N Cr
b =c" =
J r—xi+...+Fx-1)—z
with C suff. large, r > 0 suff. small and |x'| + |z| < r.
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We then get
Cr

u;, = Zu +1], [xI<r
r—(xi Xn—1)
' et

*

u =0, |X'| < r,x,=0.

(6)
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We then get
Cr

u = u—i—l,x<r
X,
r—(x Xn—1)
' T

u =0, |X'| < r,x,=0.

(6)

Look for solution u* = v*(x; + - - 4+ x,x,). Gives

Cr
V= (1 (- DY),

vi=0, t=0.
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We then get
Cr

Uy = Zu +1], [xI<r
r—(x Xn—1)
' T

u" =0, |X'| < r,x,=0.

(6)

Look for solution u* = v*(x; + - - 4+ x,x,). Gives
Cr
V= (1 (= 1)),

vi=0, t=0.

Can be solved using method of characteristics:

Vi(s,1) = %(r— s—[(r— s)2 — 2nCrt]1/2)
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We then get

Cr
u = u,+1], |x<r
o=t xe) (Z > u

u =0, |X'| < r,x,=0.
(6)
Look for solution u* = v*(x; + - - 4+ x,x,). Gives
Cr
V= (1 (= D),
vi=0, t=0.

Can be solved using method of characteristics:

Vi(s,1) = %(r— s—[(r— s)2 — 2nCrt]1/2)

Hence

1
u' = (= () = (= (a4 +x,-1))% —2nCrx,]'1?).
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Analytic for |x| < r if r > 0 is suff. small.
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Analytic for |x| < r if r > 0 is suff. small.

u* > u = power series for u converges for |x| < r.
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Analytic for |x| < r if r > 0 is suff. small.
u* > u = power series for u converges for |x| < r.

Power series of uy, and Y b;(u, x)uy, +c(u,x) agree at x =0 =
they agree for |x| < r.
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