PDE Lecture

Power series solutions

May 19

Power series solutions, Evans 4.6

From last week

Γ smooth $(n-1)$ dim. hypersurface in U. Unit normal v.

From last week

Γ smooth $(n-1)$ dim. hypersurface in U. Unit normal v.
Cauchy problem for k th order quasilinear equation:

$$
\begin{gather*}
\sum_{|\alpha|=k} a_{\alpha}\left(D^{k-1} u, \ldots, u, x\right) D^{\alpha} u+a_{0}\left(D^{k-1} u, \ldots, u, x\right)=0 \quad \text { in } U \tag{1}\\
u=g_{0}, \quad \frac{\partial u}{\partial v}=g_{1}, \quad \ldots, \quad \frac{\partial^{k-1} u}{\partial v^{k-1}}=g_{k-1} \quad \text { on } \Gamma \tag{2}
\end{gather*}
$$

$a_{\alpha} \in C^{\infty}(U)$.
$g_{0}, \ldots, g_{k-1}: \Gamma \rightarrow \mathbb{R}$ Cauchy data.

From last week

Γ smooth $(n-1)$ dim. hypersurface in U. Unit normal v.
Cauchy problem for k th order quasilinear equation:

$$
\begin{gather*}
\sum_{|\alpha|=k} a_{\alpha}\left(D^{k-1} u, \ldots, u, x\right) D^{\alpha} u+a_{0}\left(D^{k-1} u, \ldots, u, x\right)=0 \quad \text { in } U \tag{1}\\
u=g_{0}, \quad \frac{\partial u}{\partial v}=g_{1}, \quad \ldots, \quad \frac{\partial^{k-1} u}{\partial v^{k-1}}=g_{k-1} \quad \text { on } \Gamma \tag{2}
\end{gather*}
$$

$a_{\alpha} \in C^{\infty}(U)$.
$g_{0}, \ldots, g_{k-1}: \Gamma \rightarrow \mathbb{R}$ Cauchy data.
Definition
The surface Γ is noncharacteristic for the PDE (1) provided

$$
\sum_{|\alpha|=k} a_{\alpha} v^{\alpha} \neq 0 \quad \text { on } \Gamma
$$

Theorem (Cauchy-Kovalevskaya Theorem, v. 1)
Let Γ, a_{α} and g_{k} be analytic near $x^{0} \in \Gamma$ and assume that Γ is noncharacteristic for (1). Then \exists unique analytic solution u to the Cauchy problem (1), (2) near x^{0}.

Theorem (Cauchy-Kovalevskaya Theorem, v. 1)

Let Γ, a_{α} and g_{k} be analytic near $x^{0} \in \Gamma$ and assume that Γ is noncharacteristic for (1). Then \exists unique analytic solution u to the Cauchy problem (1), (2) near x^{0}.

The theorem is proved by transforming (1), (2) to

$$
\left\{\begin{align*}
\mathbf{u}_{x_{n}} & =\sum_{j=1}^{n-1} \mathbf{B}_{j}\left(\mathbf{u}, x^{\prime}\right) \mathbf{u}_{x_{j}}+\mathbf{c}\left(\mathbf{u}, x^{\prime}\right), & & |x|<r \tag{3}\\
\mathbf{u} & =0, & & \left|x^{\prime}\right|<r, x_{n}=0
\end{align*}\right.
$$

Theorem (Cauchy-Kovalevskaya Theorem, v. 1)

Let Γ, a_{α} and g_{k} be analytic near $x^{0} \in \Gamma$ and assume that Γ is noncharacteristic for (1). Then \exists unique analytic solution u to the Cauchy problem (1), (2) near x^{0}.

The theorem is proved by transforming (1), (2) to

$$
\left\{\begin{align*}
\mathbf{u}_{x_{n}} & =\sum_{j=1}^{n-1} \mathbf{B}_{j}\left(\mathbf{u}, x^{\prime}\right) \mathbf{u}_{x_{j}}+\mathbf{c}\left(\mathbf{u}, x^{\prime}\right), & & |x|<r \tag{3}\\
\mathbf{u} & =0, & & \left|x^{\prime}\right|<r, x_{n}=0
\end{align*}\right.
$$

and then using
Theorem (Cauchy-Kovalevskaya Theorem, v. 2)
Assume $\left\{\mathbf{B}_{j}\right\}$ and \mathbf{c} are real analytic. There exists $r>0$ and a unique real analytic function $\mathbf{u}=\sum_{\alpha} \mathbf{u}_{\alpha} x^{\alpha}$ solving (3).

Theorem (Cauchy-Kovalevskaya Theorem, v. 1)

Let Γ, a_{α} and g_{k} be analytic near $x^{0} \in \Gamma$ and assume that Γ is noncharacteristic for (1). Then \exists unique analytic solution u to the Cauchy problem (1), (2) near x^{0}.

The theorem is proved by transforming (1), (2) to

$$
\begin{cases}\mathbf{u}_{x_{n}}=\sum_{j=1}^{n-1} \mathbf{B}_{j}\left(\mathbf{u}, x^{\prime}\right) \mathbf{u}_{x_{j}}+\mathbf{c}\left(\mathbf{u}, x^{\prime}\right), & |x|<r \tag{3}\\ \mathbf{u}=0, & \left|x^{\prime}\right|<r, x_{n}=0\end{cases}
$$

and then using
Theorem (Cauchy-Kovalevskaya Theorem, v. 2)
Assume $\left\{\mathbf{B}_{j}\right\}$ and \mathbf{c} are real analytic. There exists $r>0$ and a unique real analytic function $\mathbf{u}=\sum_{\alpha} \mathbf{u}_{\alpha} x^{\alpha}$ solving (3).

Today: something about the proof.

Real analytic functions

Definition

$f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is (real) analytic near x_{0} if there exists $r>0$ and constants $\left\{f_{\alpha}\right\}$ such that

$$
f(x)=\sum_{\alpha} f_{\alpha}\left(x-x_{0}\right)^{\alpha}, \quad\left|x-x_{0}\right|<r .
$$

${ }^{1}$ I got this wrong in the lecture.

Real analytic functions

Definition

$f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is (real) analytic near x_{0} if there exists $r>0$ and constants $\left\{f_{\alpha}\right\}$ such that

$$
f(x)=\sum_{\alpha} f_{\alpha}\left(x-x_{0}\right)^{\alpha}, \quad\left|x-x_{0}\right|<r .
$$

Remarks:
${ }^{1}$ I got this wrong in the lecture.

Real analytic functions

Definition

$f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is (real) analytic near x_{0} if there exists $r>0$ and constants $\left\{f_{\alpha}\right\}$ such that

$$
f(x)=\sum_{\alpha} f_{\alpha}\left(x-x_{0}\right)^{\alpha}, \quad\left|x-x_{0}\right|<r .
$$

Remarks:

- By convergence we will mean absolute convergence, since one otherwise has to specify the order of summation.
${ }^{1}$ I got this wrong in the lecture.

Real analytic functions

Definition

$f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is (real) analytic near x_{0} if there exists $r>0$ and constants $\left\{f_{\alpha}\right\}$ such that

$$
f(x)=\sum_{\alpha} f_{\alpha}\left(x-x_{0}\right)^{\alpha}, \quad\left|x-x_{0}\right|<r .
$$

Remarks:

- By convergence we will mean absolute convergence, since one otherwise has to specify the order of summation.
- f analytic $\Rightarrow f \in C^{\infty}$ near x_{0} and $f_{\alpha}=\frac{D^{\alpha} f\left(x_{0}\right)}{\alpha!}$
${ }^{1}$ I got this wrong in the lecture.

Real analytic functions

Definition

$f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is (real) analytic near x_{0} if there exists $r>0$ and constants $\left\{f_{\alpha}\right\}$ such that

$$
f(x)=\sum_{\alpha} f_{\alpha}\left(x-x_{0}\right)^{\alpha}, \quad\left|x-x_{0}\right|<r .
$$

Remarks:

- By convergence we will mean absolute convergence, since one otherwise has to specify the order of summation.
- f analytic $\Rightarrow f \in C^{\infty}$ near x_{0} and $f_{\alpha}=\frac{D^{\alpha} f\left(x_{0}\right)}{\alpha!}$
- Maximal region of convergence is more complicated for $n>1$, e.g. $\sum_{k}\left(x_{1} x_{2}\right)^{k}$ converges abs. for $\left|x_{1} x_{2}\right|<1$.
${ }^{1}$ I got this wrong in the lecture.

Real analytic functions

Definition

$f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is (real) analytic near x_{0} if there exists $r>0$ and constants $\left\{f_{\alpha}\right\}$ such that

$$
f(x)=\sum_{\alpha} f_{\alpha}\left(x-x_{0}\right)^{\alpha}, \quad\left|x-x_{0}\right|<r .
$$

Remarks:

- By convergence we will mean absolute convergence, since one otherwise has to specify the order of summation.
- f analytic $\Rightarrow f \in C^{\infty}$ near x_{0} and $f_{\alpha}=\frac{D^{\alpha} f\left(x_{0}\right)}{\alpha!}$
- Maximal region of convergence is more complicated for $n>1$, e.g. $\sum_{k}\left(x_{1} x_{2}\right)^{k}$ converges abs. for $\left|x_{1} x_{2}\right|<1$.
- If the series converges absolutely for some x it will converge absolutely for y on the ray between x_{0} and x, but not necessarily for $\left|y-x_{0}\right|<\left|x-x_{0}\right|^{1}$
${ }^{1}$ I got this wrong in the lecture.

Example
If $r>0$,

$$
f(x):=\frac{r}{r-\left(x_{1}+\cdots+x_{n}\right)}
$$

Example
If $r>0$,

$$
\begin{aligned}
f(x) & :=\frac{r}{r-\left(x_{1}+\cdots+x_{n}\right)} \\
& =\frac{1}{1-\left(\frac{x_{1}+\cdots+x_{n}}{r}\right)}
\end{aligned}
$$

Example
If $r>0$,

$$
\begin{aligned}
f(x) & :=\frac{r}{r-\left(x_{1}+\cdots+x_{n}\right)} \\
& =\frac{1}{1-\left(\frac{x_{1}+\cdots+x_{n}}{r}\right)} \\
& =\sum_{k=0}^{\infty}\left(\frac{x_{1}+\cdots+x_{n}}{r}\right)^{k}
\end{aligned}
$$

Example
If $r>0$,

$$
\begin{aligned}
f(x) & :=\frac{r}{r-\left(x_{1}+\cdots+x_{n}\right)} \\
& =\frac{1}{1-\left(\frac{x_{1}+\cdots+x_{n}}{r}\right)} \\
& =\sum_{k=0}^{\infty}\left(\frac{x_{1}+\cdots+x_{n}}{r}\right)^{k} \\
& =\sum_{k=0}^{\infty} \frac{1}{r^{k}} \sum_{|\alpha|=k}\binom{|\alpha|}{\alpha} x^{\alpha}
\end{aligned}
$$

Example
If $r>0$,

$$
\begin{aligned}
f(x) & :=\frac{r}{r-\left(x_{1}+\cdots+x_{n}\right)} \\
& =\frac{1}{1-\left(\frac{x_{1}+\cdots+x_{n}}{r}\right)} \\
& =\sum_{k=0}^{\infty}\left(\frac{x_{1}+\cdots+x_{n}}{r}\right)^{k} \\
& =\sum_{k=0}^{\infty} \frac{1}{r^{k}} \sum_{|\alpha|=k}\binom{|\alpha|}{\alpha} x^{\alpha} \\
& =\sum_{\alpha} \frac{|\alpha|!}{r^{|\alpha|} \alpha!} x^{\alpha}
\end{aligned}
$$

Example
If $r>0$,

$$
\begin{aligned}
f(x) & :=\frac{r}{r-\left(x_{1}+\cdots+x_{n}\right)} \\
& =\frac{1}{1-\left(\frac{x_{1}+\cdots+x_{n}}{r}\right)} \\
& =\sum_{k=0}^{\infty}\left(\frac{x_{1}+\cdots+x_{n}}{r}\right)^{k} \\
& =\sum_{k=0}^{\infty} \frac{1}{r^{k}} \sum_{|\alpha|=k}\binom{|\alpha|}{\alpha} x^{\alpha} \\
& =\sum_{\alpha} \frac{|\alpha|!}{r^{|\alpha|} \alpha!} x^{\alpha}
\end{aligned}
$$

Abs. conv. for $|x|<r / \sqrt{n}$ (so that $\left|x_{1}+\cdots+x_{n}\right|<r$)

Majorants

Definition
If $f=\sum_{\alpha} f_{\alpha} x^{\alpha}, g=\sum_{\alpha} g_{\alpha} x^{\alpha}$ are power series, we say that g majorizes f, written $g \gg f$, if $g_{\alpha} \geq\left|f_{\alpha}\right| \forall \alpha$.

Majorants

Definition
If $f=\sum_{\alpha} f_{\alpha} x^{\alpha}, g=\sum_{\alpha} g_{\alpha} x^{\alpha}$ are power series, we say that g majorizes f, written $g \gg f$, if $g_{\alpha} \geq\left|f_{\alpha}\right| \forall \alpha$.

Remark: The majorant g has nonnegative coefficients!

Majorants

Definition
If $f=\sum_{\alpha} f_{\alpha} x^{\alpha}, g=\sum_{\alpha} g_{\alpha} x^{\alpha}$ are power series, we say that g majorizes f, written $g \gg f$, if $g_{\alpha} \geq\left|f_{\alpha}\right| \forall \alpha$.

Remark: The majorant g has nonnegative coefficients!
Lemma

1. If $g \gg f$ and g converges for $|x|<r$, then so does f.

Majorants

Definition
If $f=\sum_{\alpha} f_{\alpha} x^{\alpha}, g=\sum_{\alpha} g_{\alpha} x^{\alpha}$ are power series, we say that g majorizes f, written $g \gg f$, if $g_{\alpha} \geq\left|f_{\alpha}\right| \forall \alpha$.

Remark: The majorant g has nonnegative coefficients!
Lemma

1. If $g \gg f$ and g converges for $|x|<r$, then so does f.
2. If f converges for $|x|<r$ and $0<s \sqrt{n}<r$, then f has an 'explicit' majorant for $|x|<s / \sqrt{n}$.

Proof

1. $\sum_{\alpha}\left|f_{\alpha} x^{\alpha}\right| \leq \sum_{\alpha} g_{\alpha}\left|x_{1}\right|^{\alpha_{1}} \cdots\left|x_{n}\right|^{\alpha_{n}}<\infty$.
2. Let s be as in the statement of the lemma and set $y:=$ $s(1, \ldots, 1)$. Then $|y|=s \sqrt{n}<r$ and hence $\sum_{\alpha} f_{\alpha} y^{\alpha}$ converges. Therefore $\exists C$ s.t.

$$
\left|f_{\alpha} y^{\alpha}\right| \leq C \quad \forall \alpha
$$

2. Let s be as in the statement of the lemma and set $y:=$ $s(1, \ldots, 1)$. Then $|y|=s \sqrt{n}<r$ and hence $\sum_{\alpha} f_{\alpha} y^{\alpha}$ converges. Therefore $\exists C$ s.t.

$$
\left|f_{\alpha} y^{\alpha}\right| \leq C \quad \forall \alpha .
$$

Thus

$$
\left|f_{\alpha}\right| \leq \frac{C}{y_{1}^{\alpha_{1}} \cdots y_{n}^{\alpha_{n}}}=\frac{C}{s^{|\alpha|}} \leq C \frac{|\alpha|!}{s^{|\alpha|} \alpha!}
$$

2. Let s be as in the statement of the lemma and set $y:=$ $s(1, \ldots, 1)$. Then $|y|=s \sqrt{n}<r$ and hence $\sum_{\alpha} f_{\alpha} y^{\alpha}$ converges. Therefore $\exists C$ s.t.

$$
\left|f_{\alpha} y^{\alpha}\right| \leq C \quad \forall \alpha
$$

Thus

$$
\left|f_{\alpha}\right| \leq \frac{C}{y_{1}^{\alpha_{1}} \cdots y_{n}^{\alpha_{n}}}=\frac{C}{s^{|\alpha|}} \leq C \frac{|\alpha|!}{s^{|\alpha|} \alpha!}
$$

But then

$$
g(x):=\frac{C s}{s-\left(x_{1}+\cdots+x_{n}\right)}=C \sum_{\alpha} \frac{|\alpha|!}{s^{|\alpha|} \alpha!} x^{\alpha}
$$

majorizes f for $|x|<s / \sqrt{n}$.

Proof of Cauchy-Kovalevskaya, v. 2

For notational simplicity, consider the case $m=1$ ($u=u$ scalarvalued). Then

$$
\begin{cases}u_{x_{n}}=\sum_{j=1}^{n-1} b_{j}\left(u, x^{\prime}\right) u_{x_{j}}+c\left(u, x^{\prime}\right), & \tag{4}\\ |x|<r \\ u=0, & \\ \left|x^{\prime}\right|<r, x_{n}=0\end{cases}
$$

Proof of Cauchy-Kovalevskaya, v. 2

For notational simplicity, consider the case $m=1$ ($u=u$ scalarvalued). Then

$$
\begin{cases}u_{x_{n}}=\sum_{j=1}^{n-1} b_{j}\left(u, x^{\prime}\right) u_{x_{j}}+c\left(u, x^{\prime}\right), & \tag{4}\\ |x|<r \\ u=0, & \\ \left|x^{\prime}\right|<r, x_{n}=0\end{cases}
$$

Write $u=\sum_{\alpha} u_{\alpha} x^{\alpha},|x|<r$ for some r to be found,
$b_{j}\left(z, x^{\prime}\right)=\sum_{\gamma, \delta} b_{j, \gamma, \delta} z^{\gamma} x^{\delta} \quad$ and $\quad c\left(z, x^{\prime}\right)=\sum_{\gamma, \delta} c_{\gamma, \delta} z^{\gamma} x^{\delta}, \quad|z|+\left|x^{\prime}\right|<s$.

Proof of Cauchy-Kovalevskaya, v. 2

For notational simplicity, consider the case $m=1$ ($u=u$ scalarvalued). Then

$$
\begin{cases}u_{x_{n}}=\sum_{j=1}^{n-1} b_{j}\left(u, x^{\prime}\right) u_{x_{j}}+c\left(u, x^{\prime}\right), & \tag{4}\\ |x|<r \\ u=0, & \\ \left|x^{\prime}\right|<r, x_{n}=0\end{cases}
$$

Write $u=\sum_{\alpha} u_{\alpha} x^{\alpha},|x|<r$ for some r to be found,
$b_{j}\left(z, x^{\prime}\right)=\sum_{\gamma, \delta} b_{j, \gamma, \delta} z^{\gamma} x^{\delta} \quad$ and $\quad c\left(z, x^{\prime}\right)=\sum_{\gamma, \delta} c_{\gamma, \delta} z^{\gamma} x^{\delta}, \quad|z|+\left|x^{\prime}\right|<s$.
$u \equiv 0$ on $\left\{x_{n}=0\right\} \Rightarrow u_{\alpha}=\frac{D^{\alpha} u(0)}{\alpha!}$ if $\alpha_{n}=0 . u_{x_{n}}(0)=c(0,0)$.

Proof of Cauchy-Kovalevskaya, v. 2

For notational simplicity, consider the case $m=1$ ($u=u$ scalarvalued). Then

$$
\begin{cases}u_{x_{n}}=\sum_{j=1}^{n-1} b_{j}\left(u, x^{\prime}\right) u_{x_{j}}+c\left(u, x^{\prime}\right), & \tag{4}\\ |x|<r \\ u=0, & \\ \left|x^{\prime}\right|<r, x_{n}=0\end{cases}
$$

Write $u=\sum_{\alpha} u_{\alpha} x^{\alpha},|x|<r$ for some r to be found,
$b_{j}\left(z, x^{\prime}\right)=\sum_{\gamma, \delta} b_{j, \gamma, \delta} z^{\gamma} x^{\delta} \quad$ and $\quad c\left(z, x^{\prime}\right)=\sum_{\gamma, \delta} c_{\gamma, \delta} z^{\gamma} x^{\delta}, \quad|z|+\left|x^{\prime}\right|<s$.
$u \equiv 0$ on $\left\{x_{n}=0\right\} \Rightarrow u_{\alpha}=\frac{D^{\alpha} u(0)}{\alpha!}$ if $\alpha_{n}=0 . u_{x_{n}}(0)=c(0,0)$.
Differentiate PDE w.r.t. $x_{i}, 1 \leq i \leq n-1$:

$$
u_{x_{n} x_{i}}=\sum_{j=1}^{n-1}\left(b_{j} u_{x_{i} x_{j}}+b_{j, x_{i}} u_{x_{j}}+b_{j, z} u_{x_{i}} u_{x_{j}}\right)+c_{x_{i}}+c_{z} u_{x_{i}}
$$

Proof of Cauchy-Kovalevskaya, v. 2

For notational simplicity, consider the case $m=1$ ($u=u$ scalarvalued). Then

$$
\begin{cases}u_{x_{n}}=\sum_{j=1}^{n-1} b_{j}\left(u, x^{\prime}\right) u_{x_{j}}+c\left(u, x^{\prime}\right), & |x|<r \tag{4}\\ u=0, & \left|x^{\prime}\right|<r, x_{n}=0\end{cases}
$$

Write $u=\sum_{\alpha} u_{\alpha} x^{\alpha},|x|<r$ for some r to be found,
$b_{j}\left(z, x^{\prime}\right)=\sum_{\gamma, \delta} b_{j, \gamma, \delta} z^{\gamma} x^{\delta} \quad$ and $\quad c\left(z, x^{\prime}\right)=\sum_{\gamma, \delta} c_{\gamma, \delta} z^{\gamma} x^{\delta}, \quad|z|+\left|x^{\prime}\right|<s$.
$u \equiv 0$ on $\left\{x_{n}=0\right\} \Rightarrow u_{\alpha}=\frac{D^{\alpha} u(0)}{\alpha!}$ if $\alpha_{n}=0 . u_{x_{n}}(0)=c(0,0)$.
Differentiate PDE w.r.t. $x_{i}, 1 \leq i \leq n-1$:

$$
u_{x_{n} x_{i}}=\sum_{j=1}^{n-1}\left(b_{j} u_{x_{i} x_{j}}+b_{j, x_{i}} u_{x_{j}}+b_{j, z} u_{x_{i}} u_{x_{j}}\right)+c_{x_{i}}+c_{z} u_{x_{i}}
$$

Gives $u_{x_{n} x_{i}}(0)=c_{x_{i}}(0,0)$

Induction \Rightarrow

$$
D^{\alpha} u(0)=D^{\alpha^{\prime}} c(0,0)
$$

if $\alpha=\left(\alpha^{\prime}, 1\right)$.

Induction \Rightarrow

$$
D^{\alpha} u(0)=D^{\alpha^{\prime}} c(0,0)
$$

if $\alpha=\left(\alpha^{\prime}, 1\right)$.
In general, by differentiating the equation several times with respect to x_{n} :

$$
u_{\alpha}=\frac{D^{\alpha} u(0)}{\alpha!}=q_{\alpha}\left(\cdots, b_{j, \gamma, \delta}, \ldots, c_{\gamma, \delta}, \ldots, u_{\beta}, \ldots\right)
$$

q_{α} polynomial with nonnegative coefficients and $\beta_{n} \leq \alpha_{n}-1$.

Induction \Rightarrow

$$
D^{\alpha} u(0)=D^{\alpha^{\prime}} c(0,0)
$$

if $\alpha=\left(\alpha^{\prime}, 1\right)$.
In general, by differentiating the equation several times with respect to x_{n} :

$$
u_{\alpha}=\frac{D^{\alpha} u(0)}{\alpha!}=q_{\alpha}\left(\cdots, b_{j, \gamma, \delta}, \ldots, c_{\gamma, \delta}, \ldots, u_{\beta}, \ldots\right)
$$

q_{α} polynomial with nonnegative coefficients and $\beta_{n} \leq \alpha_{n}-1$.
Suppose $b_{j}^{*} \gg b_{j}, c^{*} \gg c$, with

$$
b_{j}^{*}:=\sum_{\gamma, \delta} b_{j, \gamma, \delta}^{*} z^{\gamma} x^{\delta} \quad \text { and } \quad c^{*}:=\sum_{\gamma, \delta} c_{\gamma, \delta}^{*} z^{\gamma} x^{\delta}, \quad|z|+\left|x^{\prime}\right|<s
$$

and consider the new BVP

$$
\begin{cases}u_{x_{n}}^{*}=\sum_{j=1}^{n-1} b_{j}^{*}\left(u^{*}, x^{\prime}\right) u_{x_{j}}^{*}+c^{*}\left(u^{*}, x^{\prime}\right), & |x|<r \tag{5}\\ u^{*}=0, & \left|x^{\prime}\right|<r, x_{n}=0\end{cases}
$$

Suppose $u^{*}=\sum_{\alpha} u_{\alpha}^{*} x^{\alpha}$ is a solution. Then

$$
\left|u_{\alpha}\right| \leq u_{\alpha}^{*}
$$

by induction over α_{n}.

Suppose $u^{*}=\sum_{\alpha} u_{\alpha}^{*} x^{\alpha}$ is a solution. Then

$$
\left|u_{\alpha}\right| \leq u_{\alpha}^{*}
$$

by induction over α_{n}.
Clear for $\alpha_{n}=0$ (both 0).

Suppose $u^{*}=\sum_{\alpha} u_{\alpha}^{*} x^{\alpha}$ is a solution. Then

$$
\left|u_{\alpha}\right| \leq u_{\alpha}^{*}
$$

by induction over α_{n}.
Clear for $\alpha_{n}=0$ (both 0). Induction step:

$$
\begin{array}{rlr}
\left|u_{\alpha}\right| & =\left|q_{\alpha}\left(\ldots, b_{j, \gamma, \delta}, \ldots, c_{\gamma, \delta}, \ldots, u_{\beta}, \ldots\right)\right| & \\
& \leq q_{\alpha}\left(\ldots,\left|b_{j, \gamma, \delta}\right|, \ldots,\left|c_{\gamma, \delta}\right|, \ldots,\left|u_{\beta}\right|, \ldots\right) \quad \text { nonneg. coeff. } \\
& \leq q_{\alpha}\left(\ldots, b_{j, \gamma, \delta}^{*}, \ldots, c_{\gamma, \delta}^{*}, \ldots, u_{\beta}^{*}, \ldots\right) \quad \beta_{n} \leq \alpha_{n}-1 \\
& =u_{\alpha}^{*} &
\end{array}
$$

Suppose $u^{*}=\sum_{\alpha} u_{\alpha}^{*} x^{\alpha}$ is a solution. Then

$$
\left|u_{\alpha}\right| \leq u_{\alpha}^{*}
$$

by induction over α_{n}.
Clear for $\alpha_{n}=0$ (both 0). Induction step:

$$
\begin{array}{rlrl}
\left|u_{\alpha}\right| & =\left|q_{\alpha}\left(\ldots, b_{j, \gamma, \delta}, \ldots, c_{\gamma, \delta}, \ldots, u_{\beta}, \ldots\right)\right| & \\
& \leq q_{\alpha}\left(\ldots,\left|b_{j, \gamma, \delta}\right|, \ldots,\left|c_{\gamma, \delta}\right|, \ldots,\left|u_{\beta}\right|, \ldots\right) & & \\
& \leq \text { nonneg. coeff. }\left(\ldots, b_{j, \gamma, \delta}^{*}, \ldots, c_{\gamma, \delta}^{*}, \ldots, u_{\beta}^{*}, \ldots\right) & & \beta_{n} \leq \alpha_{n}-1 \\
& =u_{\alpha}^{*} & &
\end{array}
$$

Thus $u^{*} \gg u$ and it remains to prove existence of u^{*}.

Suppose $u^{*}=\sum_{\alpha} u_{\alpha}^{*} x^{\alpha}$ is a solution. Then

$$
\left|u_{\alpha}\right| \leq u_{\alpha}^{*}
$$

by induction over α_{n}.
Clear for $\alpha_{n}=0$ (both 0). Induction step:

$$
\begin{array}{rlr}
\left|u_{\alpha}\right| & =\left|q_{\alpha}\left(\ldots, b_{j, \gamma, \delta}, \ldots, c_{\gamma, \delta}, \ldots, u_{\beta}, \ldots\right)\right| \\
& \leq q_{\alpha}\left(\ldots,\left|b_{j, \gamma, \delta}\right|, \ldots,\left|c_{\gamma, \delta}\right|, \ldots,\left|u_{\beta}\right|, \ldots\right) \quad \text { nonneg. coeff. } \\
& \leq q_{\alpha}\left(\ldots, b_{j, \gamma, \delta}^{*}, \ldots, c_{\gamma, \delta}^{*}, \ldots, u_{\beta}^{*}, \ldots\right) \quad \beta_{n} \leq \alpha_{n}-1 \\
& =u_{\alpha}^{*} &
\end{array}
$$

Thus $u^{*} \gg u$ and it remains to prove existence of u^{*}.
Choose

$$
b_{j}^{*}=c^{*}:=\frac{C r}{r-\left(x_{1}+\ldots+x_{n-1}\right)-z}
$$

with C suff. large, $r>0$ suff. small and $\left|x^{\prime}\right|+|z|<r$.

We then get

$$
\begin{cases}u_{x_{n}}^{*}=\frac{C r}{r-\left(x_{1}+\ldots+x_{n-1}\right)-u^{*}}\left(\sum_{j=1}^{n-1} u_{x_{j}}^{*}+1\right), & |x|<r \tag{6}\\ u^{*}=0, & \left|x^{\prime}\right|<r, x_{n}=0\end{cases}
$$

We then get

$$
\begin{cases}u_{x_{n}}^{*}=\frac{C r}{r-\left(x_{1}+\ldots+x_{n-1}\right)-u^{*}}\left(\sum_{j=1}^{n-1} u_{x_{j}}^{*}+1\right), & |x|<r \tag{6}\\ u^{*}=0, & \left|x^{\prime}\right|<r, x_{n}=0\end{cases}
$$

Look for solution $u^{*}=v^{*}\left(x_{1}+\cdots+x_{n}, x_{n}\right)$. Gives

$$
\left\{\begin{array}{l}
v_{t}^{*}=\frac{C r}{r-s-v^{*}}\left(1+(n-1) v_{s}^{*}\right), \\
v^{*}=0,
\end{array} \quad t=0\right.
$$

We then get

$$
\begin{cases}u_{x_{n}}^{*}=\frac{C r}{r-\left(x_{1}+\ldots+x_{n-1}\right)-u^{*}}\left(\sum_{j=1}^{n-1} u_{x_{j}}^{*}+1\right), & |x|<r \tag{6}\\ u^{*}=0, & \left|x^{\prime}\right|<r, x_{n}=0\end{cases}
$$

Look for solution $u^{*}=v^{*}\left(x_{1}+\cdots+x_{n}, x_{n}\right)$. Gives

$$
\begin{cases}v_{t}^{*}=\frac{C r}{r-s-v^{*}}\left(1+(n-1) v_{s}^{*}\right), \\ v^{*}=0, & t=0\end{cases}
$$

Can be solved using method of characteristics:

$$
v^{*}(s, t)=\frac{1}{n}\left(r-s-\left[(r-s)^{2}-2 n C r t\right]^{1 / 2}\right)
$$

We then get

$$
\begin{cases}u_{x_{n}}^{*}=\frac{C r}{r-\left(x_{1}+\ldots+x_{n-1}\right)-u^{*}}\left(\sum_{j=1}^{n-1} u_{x_{j}}^{*}+1\right), & |x|<r \tag{6}\\ u^{*}=0, & \left|x^{\prime}\right|<r, x_{n}=0\end{cases}
$$

Look for solution $u^{*}=v^{*}\left(x_{1}+\cdots+x_{n}, x_{n}\right)$. Gives

$$
\begin{cases}v_{t}^{*}=\frac{C r}{r-s-v^{*}}\left(1+(n-1) v_{s}^{*}\right), \\ v^{*}=0, & t=0\end{cases}
$$

Can be solved using method of characteristics:

$$
v^{*}(s, t)=\frac{1}{n}\left(r-s-\left[(r-s)^{2}-2 n C r t\right]^{1 / 2}\right)
$$

Hence
$u^{*}=\frac{1}{n}\left(r-\left(x_{1}+\cdots+x_{n-1}\right)-\left[\left(r-\left(x_{1}+\cdots+x_{n-1}\right)\right)^{2}-2 n C r x_{n}\right]^{1 / 2}\right)$.

Analytic for $|x|<r$ if $r>0$ is suff. small.

Analytic for $|x|<r$ if $r>0$ is suff. small.
$u^{*} \gg u \Rightarrow$ power series for u converges for $|x|<r$.

Analytic for $|x|<r$ if $r>0$ is suff. small. $u^{*} \gg u \Rightarrow$ power series for u converges for $|x|<r$.

Power series of $u_{x_{n}}$ and $\sum_{j=1}^{n-1} b_{j}(u, x) u_{x_{j}}+c(u, x)$ agree at $x=0 \Rightarrow$ they agree for $|x|<r$.

