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Power series solutions
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Power series solutions, Evans 4.6
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From last week
Γ smooth (n−1) dim. hypersurface in U. Unit normal ν .

Cauchy problem for kth order quasilinear equation:

∑
|α|=k

aα(Dk−1u, . . . ,u,x)Dαu+a0(Dk−1u, . . . ,u,x) = 0 in U (1)

u = g0,
∂u
∂ν

= g1, . . . ,
∂ k−1u
∂νk−1 = gk−1 on Γ, (2)

aα ∈ C∞(U).
g0, . . . ,gk−1 : Γ→ R Cauchy data.

Definition
The surface Γ is noncharacteristic for the PDE (1) provided

∑
|α|=k

aαν
α 6= 0 on Γ.
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Theorem (Cauchy-Kovalevskaya Theorem, v. 1)
Let Γ, aα and gk be analytic near x0 ∈ Γ and assume that Γ is
noncharacteristic for (1). Then ∃ unique analytic solution u to
the Cauchy problem (1), (2) near x0.

The theorem is proved by transforming (1), (2) touxn =
n−1

∑
j=1

Bj(u,x′)uxj + c(u,x′), |x|< r

u = 0, |x′|< r,xn = 0

(3)

and then using

Theorem (Cauchy-Kovalevskaya Theorem, v. 2)
Assume {Bj} and c are real analytic. There exists r > 0 and a
unique real analytic function u = ∑α uαxα solving (3).

Today: something about the proof.
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Real analytic functions

Definition
f : Rn→ R is (real) analytic near x0 if there exists r > 0 and
constants {fα} such that

f (x) = ∑
α

fα(x− x0)
α , |x− x0|< r.

Remarks:
I By convergence we will mean absolute convergence, since

one otherwise has to specify the order of summation.
I f analytic⇒ f ∈ C∞ near x0 and fα = Dα f (x0)

α!
I Maximal region of convergence is more complicated for

n > 1, e.g. ∑k(x1x2)
k converges abs. for |x1x2|< 1.

I If the series converges absolutely for some x it will
converge absolutely for y on the ray between x0 and x, but
not necessarily for |y− x0|< |x− x0|1

1I got this wrong in the lecture.
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Example
If r > 0,

f (x) :=
r

r− (x1 + · · ·+ xn)

Abs. conv. for |x|< r/
√

n (so that |x1 + · · ·+ xn|< r)
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Majorants

Definition
If f = ∑α fαxα , g = ∑α gαxα are power series, we say that g
majorizes f , written g� f , if gα ≥ |fα | ∀α.

Remark: The majorant g has nonnegative coefficients!

Lemma

1. If g� f and g converges for |x|< r, then so does f .

2. If f converges for |x|< r and 0 < s
√

n < r, then f has an
‘explicit’ majorant for |x|< s/

√
n.

Proof
1. ∑α |fαxα | ≤ ∑α gα |x1|α1 · · · |xn|αn < ∞.
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2. Let s be as in the statement of the lemma and set y :=
s(1, . . . ,1). Then |y| = s

√
n < r and hence ∑α fαyα converges.

Therefore ∃C s.t.
|fαyα | ≤ C ∀α.

Thus
|fα | ≤

C
yα1

1 · · ·y
αn
n

=
C

s|α|
≤ C

|α|!
s|α|α!

But then

g(x) :=
Cs

s− (x1 + · · ·+ xn)
= C∑

α

|α|!
s|α|α!

xα

majorizes f for |x|< s/
√

n.
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Proof of Cauchy-Kovalevskaya, v. 2
For notational simplicity, consider the case m = 1 (u = u scalar-
valued). Thenuxn =

n−1

∑
j=1

bj(u,x′)uxj + c(u,x′), |x|< r

u = 0, |x′|< r,xn = 0

(4)

Write u = ∑α uαxα , |x|< r for some r to be found,

bj(z,x′) = ∑
γ,δ

bj,γ,δ zγxδ and c(z,x′) = ∑
γ,δ

cγ,δ zγxδ , |z|+ |x′|< s.

u≡ 0 on {xn = 0} ⇒ uα = Dα u(0)
α! if αn = 0. uxn(0) = c(0,0).

Differentiate PDE w.r.t. xi, 1≤ i≤ n−1:

uxnxi =
n−1

∑
j=1

(
bjuxixj +bj,xiuxj +bj,zuxiuxj

)
+ cxi + czuxi .

Gives uxnxi(0) = cxi(0,0)
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Induction⇒
Dαu(0) = Dα ′c(0,0)

if α = (α ′,1).

In general, by differentiating the equation several times with re-
spect to xn:

uα =
Dαu(0)

α!
= qα(· · · ,bj,γ,δ , . . . ,cγ,δ , . . . ,uβ , . . .),

qα polynomial with nonnegative coefficients and βn ≤ αn−1.

Suppose b∗j � bj, c∗� c, with

b∗j := ∑
γ,δ

b∗j,γ,δ zγxδ and c∗ := ∑
γ,δ

c∗
γ,δ zγxδ , |z|+ |x′|< s

and consider the new BVPu∗xn
=

n−1

∑
j=1

b∗j (u
∗,x′)u∗xj

+ c∗(u∗,x′), |x|< r

u∗ = 0, |x′|< r,xn = 0.

(5)
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Suppose u∗ = ∑α u∗αxα is a solution. Then

|uα | ≤ u∗α

by induction over αn.

Clear for αn = 0 (both 0).
Induction step:

|uα |= |qα(. . . ,bj,γ,δ , . . . ,cγ,δ , . . . ,uβ , . . .)|
≤ qα(. . . , |bj,γ,δ |, . . . , |cγ,δ |, . . . , |uβ |, . . .) nonneg. coeff.
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We then getu∗xn
=

Cr
r− (x1 + . . .+ xn−1)−u∗

(
n−1

∑
j=1

u∗xj
+1

)
, |x|< r

u∗ = 0, |x′|< r,xn = 0.
(6)

Look for solution u∗ = v∗(x1 + · · ·+ xn,xn). Givesv∗t =
Cr

r− s− v∗
(1+(n−1)v∗s ),

v∗ = 0, t = 0.

Can be solved using method of characteristics:

v∗(s, t) =
1
n
(r− s− [(r− s)2−2nCrt]1/2)

Hence

u∗ =
1
n
(r− (x1 + · · ·+ xn−1)− [(r− (x1 + · · ·+ xn−1))

2−2nCrxn]
1/2).
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Analytic for |x|< r if r > 0 is suff. small.

u∗� u⇒ power series for u converges for |x|< r.

Power series of uxn and ∑
n−1
j=1 bj(u,x)uxj + c(u,x) agree at x = 0⇒

they agree for |x|< r.
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