PDE Lecture

Conservation laws, Power series solutions

May 12
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Conservation laws, Evans 3.4
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Scalar conservation law

One-dimensional case, F € C*(R)

u+ (Fu)y =0, xeR,t>0
u=g, xeRr=0.
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Scalar conservation law

One-dimensional case, F € C*(R)

u+ (Fu)y =0, xeR,t>0
u=g, xeRr=0.

Characteristic equations:

t(s)=1 & t=s(+0)
z(s) =0 s) =20 =g(x")
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Scalar conservation law

One-dimensional case, F € C*(R)

u+ (Fu)y =0, xeR,t>0
u=g, xeRr=0.

Characteristic equations:

x(s) = F'(z(s)) x(s) = x4+ sF'(g(x°))
t(s)=1 & t=s(+0)
2(s)=0 2(s) =20 = g(x")

(Proj.) char. from x° and y° > x? intersect for t > 0 if F'(g(x°)) >

F'(g(y")).
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Scalar conservation law
One-dimensional case, F € C*(R)
u+ (Fu)y =0, xeR,t>0
u=g, xeRr=0.
Characteristic equations:

(s) = F'(z(s)) x(s) =x"+sF' (g(x"))
t(s)=1 & t=s(40)
z(s) =0 s) =20 =g(x")

(Proj.) char. from x° and y° > x? intersect for t > 0 if F'(g(x°)) >
F'(g(3)).
Implicit formula

u(x,1) = g(x°(x,1)) = g(x —1F'(g(x))) = g (x — tF' (u(x,1)))
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Assume F strictly convex (e.g. F(u) = u?/2), so that F' is strictly
increasing.

Then no intersection if and only if g is increasing.
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Assume F strictly convex (e.g. F(u) = u?/2), so that F' is strictly
increasing.

Then no intersection if and only if g is increasing.

After intersection, the solution can’t remain smooth.
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Assume F strictly convex (e.g. F(u) = u?/2), so that F' is strictly
increasing.

Then no intersection if and only if g is increasing.

After intersection, the solution can’t remain smooth.
Definition

u e L”(R x (0,)) is an integral (or weak) solution of (1) if

=0

=0

// (uwt+F(u)wx)dxdt+/ gwdx
0 — oo —o0

forall we C(R x [0,0)).
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Rankin-Hugoniot condition

Assume u is smooth on either side of a smooth curve C = {(s(¢),1)}.



Rankin-Hugoniot condition

Assume u is smooth on either side of a smooth curve C = {(s(¢),1)}.

1 x=3¢)

[ X
Then u is an integral solution iff it satisfies the problem classically
on either side and

where

o] =we—ur,  [[F@)]) = Flue)— F(u,), o =5



Example

For Burgers’ equation u, + uu, = 0 with

) 1, x<0
_x =
8 0, x>0
we found the weak solution
1, x<it
u(x,t) = * T
O, X > zt
(F(u) =u?)2). ==
t 1 W
—_s




Example
Consider the same equation with

x<0

x>0



Example

Consider the same equation with

g(x)

i1

~]0, x<0
B 1, x>0

e

What should the solution look like in the empty wedge?
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One possibility:
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One possibility:

u(x,t) = {(1)’

Another is a rarefaction wave:

0,
u(x,1) =< x/t,
1,

1
X<§t

1.
X>§t

x<0
O<x<t.
x>t



1
One possibility:
)0, x<%t *{/‘
u(x,t){17 x>%t' ////)(

Another is a rarefaction wave:

17
0, x<0
u(x,t) = x/t, 0<x<t. *{J[%///
1, x>t X
Both are integral solutions! Which one is ‘physical’?
W W
A
—_— 2
X + X

t



Entropy conditions

Idea: no discontinuities if we go backwards in time along a char-
acteristic.
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Entropy conditions

Idea: no discontinuities if we go backwards in time along a char-
acteristic.

Requires entropy condition

F'(u) >0 > F(u,)

at a discontinuity (characteristics going into C).
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Entropy conditions

Idea: no discontinuities if we go backwards in time along a char-
acteristic.

Requires entropy condition

F'(u) >0 > F(u,)

at a discontinuity (characteristics going into C).

If F is uniformly convex (F” > 6 > 0), equivalent to
Uy > Uy

along any shock curve (exercise!).
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Example
Burgers’ equation

x<0

O<x<1.

x> 1
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Example
Burgers’ equation

0, x<0
gx)=<1, 0<x<1.
0, x>1 v

2

x<0
0<x<t
r<x<l+%
x>1+§

<
—~
=
~
~—
|
S = o~ix O

10/22



Example
Burgers’ equation

0, x<0
gx)=<1, 0<x<1.
A
0, x>1
For0<r<2: **l%# ¥

0, x<0
I 0<x<t

u(x,t)=< "1 ! .
1, t<x<1+43%
0 x>1+§

What happens when the rarefaction wave meets the shock
wave at r =27
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\4556“'}

i,

Expect shock to continue along curve x = s(t), with u = x/r to the
left, u = 0 to the right.
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545.56")

0

Expect shock to continue along curve x = s(t), with u = x/r to the
left, u = 0 to the right.

Rankine-Hugoniot:
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t yfl‘\—%,osﬁfL
**J[ ¥
0, x<0
ulx,t) =4% 0<x<V2r, t>2.
0 x>\/Z
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More flexible entropy condition (F convex):
u(x+z,1) —u(x,r) < C(1+ 1)z,

for some C > 0and a.e. x,z € R, t > 0 with z > 0.
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More flexible entropy condition (F convex):
u(x+z,1) —u(x,r) < C(1+ 1)z,
for some C > 0and a.e. x,z € R, t > 0 with z > 0.

Can’t have an increasing jump discontinuity for z > 0.
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More flexible entropy condition (F convex):
u(x+z,1) —u(x,r) < C(1+ 1)z,
for some C > 0and a.e. x,z € R, t > 0 with z > 0.

Can’t have an increasing jump discontinuity for z > 0.

Under this condition, one can prove the uniqueness (and exis-
tence) of solutions.

Evans, 3.4.2-3.4.3
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Power series solutions, Evans 4.6
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Noncharacteristic surfaces
kth order quasilinear equation

Z ag(D"u,. . u,x)D%u+ag(Du,. .. u,x) =0 (2)
|ot|=k

in U C R"*, open. aq € C*(U).
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Noncharacteristic surfaces
kth order quasilinear equation

Z ag(D"u,. . u,x)D%u+ag(Du,. .. u,x) =0 (2)

|ot|=k
in U C R"*, open. aq € C*(U).
" smooth (n—1) dim. hypersurface in U. Unit normal v.

//»'T
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Noncharacteristic surfaces
kth order quasilinear equation

Z ag(D"u,. . u,x)D%u+ag(Du,. .. u,x) =0 (2)

|ot|=k
in U C R"*, open. aq € C*(U).

I" smooth (n— 1) dim. hypersurface in U. Unit normal v.
)

jth normal derivative of u at x° € T T
aju . J (04 o

|al=j

(Taylor’s formula)
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Noncharacteristic surfaces
kth order quasilinear equation

Z ag(D"u,. . u,x)D%u+ag(Du,. .. u,x) =0 (2)
|ot|=k
in U C R"*, open. aq € C*(U).

I" smooth (n— 1) dim. hypersurface in U. Unit normal v.
v

jth normal derivative of u at x° € T T
aju . J (04 o
5= L (5 )orv
|ot|=j
(Taylor’s formula)
Cauchy problem: Solve (2) subject to
u %1y
u=go, ﬁzgl? ceey W:gk_] Onr, (3)

£0,---,8k1: I’ = R Cauchy data.
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Assume u is a smooth solution of (2). Can we find all partial
derivatives of u along I" from the Cauchy data?

16/22



Assume u is a smooth solution of (2). Can we find all partial
derivatives of u along I" from the Cauchy data?

Definition

The surface I' is noncharacteristic for the PDE (2) provided

Y agv*#0 onT.
|a|=k
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Assume u is a smooth solution of (2). Can we find all partial
derivatives of u along I" from the Cauchy data?

Definition

The surface I' is noncharacteristic for the PDE (2) provided

Y agv*#0 onT.
|a|=k

Theorem

Assume I is noncharacteristic for (2) andu € C*(U) is a
solution to the Cauchy problem (2), (3). Then all partial
derivatives of u along I are uniquely determined by the Cauchy
data {g;} and the coefficients {aq}.
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Assume u is a smooth solution of (2). Can we find all partial
derivatives of u along I" from the Cauchy data?

Definition
The surface I' is noncharacteristic for the PDE (2) provided

Y auv®#0 onT. mg

;@:-ag

|a|=k
——
D"- o
=36)
Theorem p=9
Assume I is noncharacteristic for (2) andu € C*(U) is a
solution to the Cauchy problem (2), (3). Then all partial

derivatives of u along I are uniquely determined by the Cauchy
data {g;} and the coefficients {aq}.

Idea: Change of variables used to reduce to the case when I' =

{x, =0}.
We discuss the proof in this case.
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Proof in the flat case
Cauchy conditions:

Ju o1y

U= go, Ezgla ey Tﬁ,l:gk—l onI':= {x, =0}
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Proof in the flat case
Cauchy conditions:

Ju o1y
u=go, gzgl, ceey ax
n

) L. . p) . .
Differentiation gives g—;; =52, 1<j<n-—1, while S—g.
Hence Du is determined along I'.

~5 7 =8&-1 onT:={x=0}.
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Proof in the flat case
Cauchy conditions:

du %y
u=4go, T)Cn:gl’ [EEE) Bxkfl
n

=gr1 onl:= {xn = 0}

Differentiation gives 2% = %% 1 <j<n—1, while 2% = g,.
9 dx; Jx; dxp 8

Hence Du is determined along I'.

_ 9% agl
Similarly, axaxk Joox 1 Shk=n—1, while axax = and

Zu — g,. Hence Du is determined along T
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Proof in the flat case
Cauchy conditions:

du %y
u=4go, Txnzgla [EEE) Bxkfl
n

=gr1 onl:= {xn = 0}

Differentiation gives g—;; = ‘3—*;’6;’, 1<j<n—1,while g—;; =g.

Hence Du is determined along I'.

_ 9% agl
Similarly, 8x8xk Joox 1 Shk=n—1, while axax = and

Zu — g,. Hence Du is determined along T

Works up until D*~'u. For Du, we can't determine 2. & this way.
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We use the equation instead:

o*u 1
W = — Z ClaDau+aO
Xn a(0,...,0,k) | =k
o#(0,...,0,k)

ao,...0x 7 0 is the noncharacteristic condition.
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We use the equation instead:

ok 1
&—Z =— Z aogD%u+ ag
Xn a(0,...,0,k) | =k
o#(0,...,0,k)

ao,...0x 7 0 is the noncharacteristic condition.

Append new Cauchy condition

o*u
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We use the equation instead:

ok 1
&—Z =— Z aogD%u+ ag
Xn a(0,...,0,k) | =k
o#(0,...,0,k)

ao,...0x 7 0 is the noncharacteristic condition.

Append new Cauchy condition

o*u

We can now compute all of D¥"1y along I, except
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We use the equation instead:

o u 1
i Z aogD%u+ ag
Xn a(0,...,0,k) | =k
o#(0,...,0,k)

ao,...0x 7 0 is the noncharacteristic condition.

Append new Cauchy condition

*u

We can now compute all of D¥"1y along I, except

akHu

axﬁﬂ'

Can be computed by differentiating the PDE (2) w.r.t. x,.

Induction gives all derivatives. O]
18/22



Real analytic functions
Definition

f: R" — R is (real) analytic near x if there exists r > 0 and
constants {f,} such that

fx) = Zfa(x—xo)“, |x —xo| < r.
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Real analytic functions

Definition
f: R" — R is (real) analytic near x if there exists r > 0 and
constants {f,} such that

fx) = Zfa(x—xo)“, |x —xo| < r.

f analytic = f € C* near xy, and

DO (xo)
fa: al 0 .
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Theorem (Cauchy-Kovalevskaya Theorem, v. 1)

LetT, ay and g; be analytic near x° € " and assume thatT is
noncharacteristic for (2). Then 3 unique analytic solution u to
the Cauchy problem (2), (3) near x°.
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Theorem (Cauchy-Kovalevskaya Theorem, v. 1)

LetT, ay and g; be analytic near x° € " and assume thatT is
noncharacteristic for (2). Then 3 unique analytic solution u to

the Cauchy problem (2), (3) near x°.

Step 1: Using an analytic change of variables, we can reduce to

the following problem

) ag(Du,. .. u,x)D%

|o|=k
+ao(Dk_1u,...,u,x =0,
u 1y
u = 87 T e e e ﬁ = ()7
Xn oxy

for some r > 0 to be found.

e < r (4)

IX'| < r,x, =0,
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Step 2: Reduce to a first-order system by introducing

u:z( du du d*u 8"114)

ui..- —_— —— e e R
7ax1’ ?ax”7 ax%7 ’axﬁil

Thenu: R* = R™, u=(u',....u").
Boundary conditionu =0, [x'| < r, x, =0.
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Step 2: Reduce to a first-order system by introducing

(2 2 P O
u=\u, axla aaxn7ax%7 aax5,1

Thenu: R* = R™, u=(u',....u").
Boundary conditionu =0, [x'| < r, x, =0.

For k <m—1, can compute uX from {u, 1= ! and u.

Noncharacteristic condition = can compute uy! interms of {ux n 1

and u.
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Step 2: Reduce to a first-order system by introducing

(2 2 P O
u=\u, axla aaxn7ax%7 aax5,1

Thenu: R* = R™, u=(u',....u").
Boundary conditionu =0, [x'| < r, x, =0.

For k <m—1, can compute uX from {u, 1= ! and u.
Noncharacteristic condition = can compute uy! interms of {ux n ‘
and u.

The new system is of the form

n—1
Uy, = Z Bj(uvx)uxj +c(u,x), ‘X| <r
j=1

u=0, |X'| < r,x, =0.

21/22



Introducing the new unknown u”*! = x, if necessary, we can
reduce to the case

n—1
u, =) Bj(ux)u, +c(ux), |x<r
= ®)

u=0, |X'| < r,x, =0.
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Introducing the new unknown u”*! = x, if necessary, we can
reduce to the case

n—1
u, = ) Bj(u,x)u, +c(ux), [xf<r
L (5)

u=0, |X'| < r,x, =0.
Cauchy-Kovalevskaya v. 1 is then a consequence of the follow-
ing:
Theorem (Cauchy-Kovalevskaya Theorem, v. 2)

Assume {B;} and c are real analytic. There exists r >0 and a
i P P —mean O
unique real analytic function

u= Zuaxo‘
o

solving (5).
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Introducing the new unknown u”*! = x, if necessary, we can
reduce to the case

n—1
u, = ) Bj(u,x)u, +c(ux), [xf<r
= (5)

u=0, |X'| < r,x, =0.

Cauchy-Kovalevskaya v. 1 is then a consequence of the follow-
ing:
Theorem (Cauchy-Kovalevskaya Theorem, v. 2)

Assume {B;} and c are real analytic. There exists r >0 and a
unique real analytic function

u= Zuaxo‘
o

solving (5).

Something about the proof next time.
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