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4. a) Characteristic equations 
ẋ = b

ṫ = 1

ż = f (x, t).

b) We get 
x(s) = x0 + sb

t(s) = s (+0)

z(s) = z0 +
∫ s

0
f (x(r), t(r))dr = z(0)+

∫ s

0
f (x0 + rb,r)dr

where the parametrisation has been chosen so that the projected characteristic passes
through (x0,0) when s = 0. Evaluating at s = 0 and using the initial condition, we get
z0 = u(x0,0) = g(x0). Thus

u(x, t) = z(t) = g(x0)+
∫ t

0
f (x0 + rb,r)dr.

Finally, x0 = x−bt givs

u(x, t) = g(x−bt)+
∫ t

0
f (x+b(r− t),r)dr.

5. Solve using characteristics.

a) x1ux1 + x2ux2 = 2u, u(x1,1) = g(x1).

Solution: Characteristic equations
ẋ1 = x1

ẋ2 = x2

ż = 2z

⇔


x1(s) = x0

1es

x2(s) = x0
2es

z(s) = z0e2s

Choose parametrisation s.t. x2(0) = 1. Then x0
2 = 1 and x0

1 is the x1 coordinate at ‘initial
time’ (when x2 = 1). Moreover, z(0) = z0 = g(x0

1). We thus have
x1(s) = x0

1es

x2(s) = es

z(s) = g(x0
1)e

2s

Please, turn over!



Want to express u = z in terms of (x1,x2). We have

es = x2 ⇔ s = logx2.

Then
x0

1es = x1 ⇔ x0
1x2 = x1 x0

1 =
x1

x2
.

Moreover,
u(x1,x2) = z(s) = g(x0

1)e
2s = g( x1

x2
)x2

2, x2 6= 0

Test:
x1ux1 + x2ux2 = x1

(
1
x2

)
g′( x1

x2
)x2

2 + x2

(
− x1

x2
2

)
g′( x1

x2
)+2g( x1

x2
)x2

2 = 2u.

Note that the (projected) characteristics are straight rays from the origin. Thus the solution
is uniquely determined by the ‘initial condition’ in the upper half-plane. The solution
formula makes sense also in the lower half-plane, but since the domain {(x1,x2) : x2 6= 0}
is not connected we could equally well set u = 0 in the lower half-plane. Therefore, the
upper half-plane is the natural maximal domain of the solution.



b) x1ux1 +2x2ux2 +ux3 = 3u, u(x1,x2,0) = g(x1,x2).

Solution: Characteristic equations
ẋ1 = x1

ẋ2 = 2x2

ẋ3 = 1

ż = 3z

⇔


x1(s) = x0

1es

x2(s) = x0
2e2s

x3(s) = s (+0)

z(s) = z0e3s

where again the parametrisation is chosen such that x3 = 0 when s = 0. Then z(0) = z0 =
g(x0

1,x
0
2) and we have 

x1(s) = x0
1es

x2(s) = x0
2e2s

x3(s) = s

z(s) = g(x0
1,x

0
2)e

3s

Again, we want to write z in terms of x and thus solve (x1,x2,x3) = (x1,x2,x3) for s, x0
1

and x0
2: 

x0
1 = x1e−x3

x0
2 = x2e−2x3

s = x3

Hence
u(x1,x2,x3) = z(s) = g(x0

1,x
0
2)e

3s = g(x1e−x3 ,x2e−2x3)e3x3 .

Again, one can directly verify that this is a solution (assuming that g ∈C1) and the natural
domain is R3.

c) uux1 +ux2 = 1, u(x1,x1) =
1
2 x1.

Solution: Characteristic equations


ẋ1 = z

ẋ2 = 1

ż = 1

⇔


ẋ1(s) = s+ z0

x2(s) = s+ x0
2

z(s) = s+ z0

⇔


x1(s) =

s2

2
+ z0s+ x0

1

x2(s) = s+ x0
2

z(s) = s+ x0
3

Choose parametrisation such that x1(0) = x2(0). This means that x0
1 = x0

2. Then

z0 = z(0) = u(x0
1,x

0
1) =

1
2 x0

1

We get 
x1(s) =

s2

2
+ 1

2 x0
1s+ x0

1

x2(s) = s+ x0
1

z(s) = s+ 1
2 x0

1

(x1(s),x2(s)) parametrises a parabola passing through the point (2,2) (see figure below).

Please, turn over!



Solving (x1,x2) = (x1,x2) for s and x0
1 we get

s2

2
+ 1

2 x0
1s+ x0

1 = x1

s+ x0
1 = x2

⇔


s2

2
+ 1

2(x2− s)s+ x2− s = x1

x0
1 = x2− s

⇔

{
(1

2 x2−1)s+ x2 = x1

x0
1 = x2− s

⇔

 s = 2
x1− x2

x2−2
x0

1 = x2− s

Hence

u(x1,x2) = z(s) = s+
1
2

x0
1 = s+

1
2
(x2− s) =

1
2

s+
1
2

x2 =
x1− x2

x2−2
+

1
2

x2, x2 6= 2.

The point (2,2) is singular and the natural domain is either {(x1,x2) : x2 > 2} or {(x1,x2) : x2 <
2}. Note that the projected characteristics only cross from one half-plane to the other
through the singular point.



8. Show that u = g(x− tF ′(u)) = g(x− t f (u)) provides an implicit solution for ut +(F(u))x = 0
( f (u) = F ′(u)).

Solution: Assume that 1 + tg′(x− t f (u)) f ′(u) 6= 0, so that the implicit function theorem
applies near (x, t,u). Implicit differentiation of the relation

u = g(x− t f (u))

gives
ut =−g′(x− t f (u)) f (u)− tg′(x− t f (u)) f ′(u)ut ,

so that

ut =−
g′(x− t f (u)) f (u)

1+ tg′(x− t f (u)) f ′(u)
.

Similarly,
ux = g′(x− t f (u))− tg′(x− t f (u)) f ′(u)ux

and hence

ux =
g′(x− t f (u))

1+ tg′(x− t f (u)) f ′(u)
.

It follows that

ut +(F(u))x = ut + f (u)ux =−
g′(x− t f (u)) f (u)

1+ tg′(x− t f (u)) f ′(u)
+

g′(x− t f (u)) f (u)
1+ tg′(x− t f (u)) f ′(u)

= 0.

Note that the condition 1+ tg′(x− t f (u)) f ′(u) 6= 0 is automatically satisfied at initial time
t = 0. In the Burgers’ case, f (u) = u, the condition simplifies to 1+ tg′(x− t f (u)) 6= 0 and
this will be satisfied for 0≤ t < T , where

T =− 1
infg′

,

assuming g′ < 0 somewhere. If g′ ≥ 0 the condition is satisfied everywhere. One can check
that T is also the first time the characteristics intersect (do this!). Thus until this time, we can
use implicit differentiation to verify that u is indeed a solution.

19. First assume that the solution is C1. Then

d
dt

∫
∞

−∞

u(x, t)dx =
∫

∞

−∞

ut(x, t)dx =−
∫

∞

−∞

(F(u(x, t))x dx =−[F(u(x, t))]∞x=−∞ = 0,

where the steps are permissible since u has compact support in x. This. proves the claim in
that case, since ∫

∞

−∞

u(x,0)dx =
∫

∞

−∞

g(x)dx.

In the case of a continuous integral solution, we use the definition∫
∞

−∞

∫
∞

−∞

(uvt +F(u)vx)dxdt +
∫

∞

−∞

gvdx|t=0 = 0,

for each v ∈ C∞(R× [0,∞)). Since u is supposed to have compact support in R× [0,T ] for
each T > 0, we can take v of the form ϕ(x)ψ(t), where ϕ = 1 on the support of u(·, t) for each
t ∈ [0,T ] and ψ(0) = 1. This gives∫

∞

−∞

∫
∞

−∞

uψt dxdt +
∫

∞

−∞

gdx = 0.

Please, turn over!



Next, we choose ψ = ψε(t) such that ψε
t → −δT (the Dirac delta distribution at t = T ) as

ε → 0, in the sense of distributions. More specifically, we can pick a smooth function η(t)
with compact support and integral 1 and set ψε(t) =

∫
∞

t ε−1η(ε−1(s− T ))ds. Then ψε is
constant when t is outside the support of η(ε−1(·−T )). In particular, it is constant on (−∞,0]
if ε > 0 is sufficiently small and the value is

∫
∞

−∞
ε−1η(ε−1(s−T ))ds =

∫
∞

−∞
η(s)ds = 1. On

the other hand, (ψε)′(t) = −ε−1η(ε−1(s−T ))→−δT in the sense of distributions. In fact,
the convergence holds even if the test function is only assumed continuous. Using this ψ

above and letting ε → 0 gives

−
∫

∞

−∞

u(x,T )dx+
∫

∞

−∞

gdx = 0

or, equivalently, ∫
∞

−∞

u(x,T )dx =
∫

∞

−∞

gdx.

20. Using the Rankine-Hugoniot and entropy conditions, we find that the solution is given by

u(x, t) =



1, x <−1+ 1
2 t,

0, −1+ 1
2 t < x < 0

x
t , 0 < x < 2t,
2, 2t < x < 1+ t,
0, 1+ t < x

0 < t < 1

u(x, t) =


1, x <−1+ 1

2 t,
0, −1+ 1

2 t < x < 0
x
t , 0 < x < 2

√
t,

0, 2
√

t < x

1 < t < 2

u(x, t) =


1, x < t−

√
2t,

x
t , t−

√
2t < x < 2

√
t,

0, 2
√

t < x

2 < t < 6+4
√

2

u(x, t) =

{
1, x < 1+ 1

2 t,
0, 1+ 1

2 t < x
6+4

√
2 < t.

See the characteristics in the figure below.



Evans 4.8

19. We did the first part in the lecture.
To prove the second part, assume that such a solution exists and let

u(x, t) = ∑
m,n

am,nxmtn

be the power series expansion near the origin. Plugging this in the equation, and equating
coefficients, we get

(n+1)am,n+1 = (m+2)(m+1)am+2,n. (1)

Moreover,

∑
m

am,0xm =
1

1+ x2 = ∑
k
(−1)kx2k.

Thus, am,0 = 0 for odd m. Using (1), we obtain, that am,1 also vanishes for odd m (take n = 0)
and then by induction that the same is true for am,n for any n≥ 0. On the other hand,

a2k,0 = (−1)k

a2k,1 = (2k+2)(2k+1)a2k+2,0 = (−1)k(2k+2)(2k+1)

a2k,2 = (−1)k (2k+4)(2k+3)(2k+2)(2k+1)
2

...

a2k, j = (−1)k (2k+2 j)(2k+2 j−1) · · ·(2k+2)(2k+1)
j!

.

Thus u is given by
u(x, t) = ∑

k, j
a2k, jx2kt j.

In particular, taking x = 0, t > 0, we get

u(0, t) = ∑
j

a0, jt j = ∑
j

(2 j)!
j!

t j,

which diverges by the ratio test.


