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4. a) Characteristic equations

x=b
f=
z=f(x,1).
b) We get
x(s): 0+sb
t(s) =
s—z—i—/f ))dr=z(0 +/fx+rbr)d

where the parametrisation has been chosen so that the projected characteristic passes
through (x°,0) when s = 0. Evaluating at s = 0 and using the initial condition, we get
2 =u(x°,0) = g(x°). Thus

u(x,r) =z(t) = g(x) —|—/Otf(x0 +rb,r)dr.
Finally, x = x — bt givs
u(x,t) = g(x—br) —l—/otf(x—i-b(r—t),r)dr.

5. Solve using characteristics.
a) Xjuy, +x2uy, = 2u, u(xy,1) = g(xy).

Solution: Characteristic equations

i =x! x(s) =x%%°
P=x & x2(s) = x0e’
=2z z2(s) = 0¥

Choose parametrisation s.t. x*(0) = 1. Then xJ = 1 and x{ is the x| coordinate at “initial
time’ (when x> = 1). Moreover, z(0) = z° = g(x?). We thus have

Please, turn over!



Want to express u = z in terms of (xj,x2). We have

e=x < s=logx;.

Then
Hef=x1 & don=x A= ey
X2
Moreover,
u(xi,x) = z2(s) = g(x))e® = g(31)x3, x#0
Test:

Xty +xaity, =1 () &/ ()G 400 (—3) /() +28(2)d = 2u.

Note that the (projected) characteristics are straight rays from the origin. Thus the solution
is uniquely determined by the ‘initial condition’ in the upper half-plane. The solution
formula makes sense also in the lower half-plane, but since the domain {(xj,x2): x, # 0}
is not connected we could equally well set # = O in the lower half-plane. Therefore, the

upper half-plane is the natural maximal domain of the solution.
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b) xiuy, + 2x0uy, + Uy, = 3u, u(x1,x2,0) = g(x1,x2).

Solution: Characteristic equations

i =x! x'(s) = 1%
X =27 X2 (s) = x9e*
P=1 x(s) = s (+0)
z=3z z2(s) = 0¥
where again the parametrisation is chosen such that x> = 0 when s = 0. Then z(0) =z =
g(x0,x9) and we have
x'(s) =xV%°
X% (s) = 19
xX(s)=s
0 0,35
z(s) = g(x1,xz)e
Again, we want to write z in terms of x and thus solve (x!,x?,x*) = (x1,x2,x3) for s, x{
0.
and x5:
x(l) =x1e ™
X3 = xpe 2%
S =X3
Hence

0 .0

M(X] ,XQ,X:,‘) = Z(S) = g(x17x2)e3s = g(xleixaax2€72ﬂ)e3@‘

Again, one can directly verify that this is a solution (assuming that g € C') and the natural
domain is R3.

1
©) ity + iy, = 1, u(xy,x1) = 5x1.

Solution: Characteristic equations

2
=z il(s) =s+2° xl(s):%—kzos—kx(f
2 2040
=1 = x(s)—s+x2 <~ XZ(S):S—i-Xg

. .0

=1 Z(S)—S+Z z(s):s+x(3)

Choose parametrisation such that x!' (0) = x?(0). This means that x{ = x. Then

" =2(0) =u(x,a) = 3

We get
1 s? 0 0
x(s)= 5—{—%x1s+x1
(s) =s+20

(x'(s),x%(s)) parametrises a parabola passing through the point (2,2) (see figure below).

Please, turn over!



Solving (x!,x?) = (x1,x2) for s and x{ we get

2
%+%x?s+x?:x1 R %+%(x2fs)s+xzfs:x1
s+x(1):xz x(l):xz—s

X]—X

(332 — 1)s+x2 = xy s=2-1 2

& o & x—2

X] =X2—S x(l):xz_s

Hence
1 1 1 1 — 1
u(xl,xz):z(s):s—i-ix?:s—i—i(xz—s):§s+§xz:);12_xzz+§x2, X # 2.

The point (2,2) is singular and the natural domain is either {(x1,x2): xp >2} or {(x1,x2): x2 <
2}. Note that the projected characteristics only cross from one half-plane to the other
through the singular point.
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19.

Show that u = g(x —tF’(u)) = g(x —1f(u)) provides an implicit solution for u; + (F (u)), =0
(f (u) = F'(u)).

Solution: Assume that 1 +¢g'(x —zf(u))f'(u) # 0, so that the implicit function theorem
applies near (x,#,u). Implicit differentiation of the relation

u=glx—1f(u))

gives
up = —g'(x—tf () f(u) —tg' (x—1f(u)) f'(u)uy,
so that
I (e ) O
L+1g'(x—tf(u))f (u)
Similarly,
e =g (x—tf(u)) —1g'(x—tf(u)) f'(u)u

and hence

i)
g = 1))

It follows that

g (x—1f(u))f(u) n g x—1f(u))f(u

gt @) ) gt ) f )

w4 (F(u))x = u + f(u)uy =

Note that the condition 1 +17g'(x —¢f(u))f"(u) # 0 is automatically satisfied at initial time
t = 0. In the Burgers’ case, f(u) = u, the condition simplifies to 1+¢g'(x —7f(u)) # 0 and
this will be satisfied for 0 <t < T, where

1

T=——
infg’’

assuming g’ < 0 somewhere. If ¢’ > 0 the condition is satisfied everywhere. One can check
that T is also the first time the characteristics intersect (do this!). Thus until this time, we can
use implicit differentiation to verify that u is indeed a solution.

First assume that the solution is C!. Then

ccllz‘/_zu<x’t)dx - /Zu,(x,t)dx = —/_Z(F(u(x,t))xdx: —[F (u(x,1))]5 0 =0,

where the steps are permissible since u has compact support in x. This. proves the claim in
that case, since

/jo u(x,0)dx = /jo g(x)dx.
In the case of a continuous integral solution, we use the definition
/m /w (uv; + F (u)vy) dxdt + /w gvdx|i— =0,
for each v € C*(R x [0,00)). Since u is supposed to have compact support in R x [0, 7] for

each T > 0, we can take v of the form ¢ (x)y/(z), where ¢ = 1 on the support of u(-,) for each
t €10,7] and y(0) = 1. This gives

//ul/ftdxdt—f—/ gdx=0.

Please, turn over!



Next, we choose W = y¥(t) such that yf — —9r (the Dirac delta distribution at 7 = T') as
€ — 0, in the sense of distributions. More specifically, we can pick a smooth function 7 ()
with compact support and integral 1 and set y&(t) = [“e~!n(e~!(s—T))ds. Then y¢ is
constant when ¢ is outside the support of (&~ (- —T)). In particular, it is constant on (—oo, 0]
if € > 0 is sufficiently small and the value is [~ e 'n(e"'(s—T))ds= [~ n(s)ds=1. On
the other hand, (y¢)'(t) = —e~'n(e¢~!(s—T)) — —&7 in the sense of distributions. In fact,
the convergence holds even if the test function is only assumed continuous. Using this y
above and letting € — 0 gives

—/ u(x,T)dx—i—/ gdx=0

/u(x,T)dx:/ gdx.

20. Using the Rankine-Hugoniot and entropy conditions, we find that the solution is given by

or, equivalently,

1, x<—1—|—%t,
0, —1+31<x<0
ux,t) =495, 0<x<2, 0<r<1
2, 2t<x<1+t,
0, 1+r<x
(1, x<—1+1,
0, —1+lr<x<o0
u(x,t) = Taf<x 1<t<2
¥, 0<x<2v,
0, 2vi<x
1, x<t—V2t,
u(x,r) =9 %, t—2t <x <24, 2<1<64+4V2
0, 2vt<x

1, x<I1+1s,
u(x,f) = e 6+4vV2<t.
07 1+§t<x

See the characteristics in the figure below.

15

10




Evans 4.8

19.  We did the first part in the lecture.

To prove the second part, assume that such a solution exists and let
u(x,t) = Zammxmt"
m,n

be the power series expansion near the origin. Plugging this in the equation, and equating
coefficients, we get

(n+ l)am,n+1 = (m“‘ 2) (m+ 1)am+2,n- (1)
Moreover,
1 k. 2k
;am@xm B Xk:(_l) X

Thus, a,, 0 = 0 for odd m. Using (1), we obtain, that a,, ; also vanishes for odd m (take n = 0)
and then by induction that the same is true for a,, , for any n > 0. On the other hand,

ano = (—1)F
a1 = (2k+2)(2k+ 1)azi20 = (—1)(2k+2)(2k+ 1)

e R A) 2k 3) (k4 2) (k4 1)
axy = (—1) >

L2k +27)(2k+2j— 1)+ (2k+2)(2k+1)
J! '

ax.;j = (—1)

Thus u is given by

u(x,t) = Zaszkatj.
k7./

In particular, taking x =0, t > 0, we get
w2
u(0,1) = ZGO,ij = Z i 1,
J J

which diverges by the ratio test.



