LUND

UNIVERSITY

Centre for Mathematical Sciences

Mathematics, Faculty of Science

Solutions, May 15

Evans 3.5

4. a) Characteristic equations

$$
\left\{\begin{array}{l}
\dot{x}=b \\
\dot{t}=1 \\
\dot{z}=f(x, t)
\end{array}\right.
$$

b) We get

$$
\left\{\begin{array}{l}
x(s)=x^{0}+s b \\
t(s)=s(+0) \\
z(s)=z^{0}+\int_{0}^{s} f(x(r), t(r)) d r=z(0)+\int_{0}^{s} f\left(x^{0}+r b, r\right) d r
\end{array}\right.
$$

where the parametrisation has been chosen so that the projected characteristic passes through $\left(x^{0}, 0\right)$ when $s=0$. Evaluating at $s=0$ and using the initial condition, we get $z^{0}=u\left(x^{0}, 0\right)=g\left(x^{0}\right)$. Thus

$$
u(x, t)=z(t)=g\left(x^{0}\right)+\int_{0}^{t} f\left(x^{0}+r b, r\right) d r
$$

Finally, $x^{0}=x-b t$ givs

$$
u(x, t)=g(x-b t)+\int_{0}^{t} f(x+b(r-t), r) d r
$$

5. Solve using characteristics.
a) $x_{1} u_{x_{1}}+x_{2} u_{x_{2}}=2 u, u\left(x_{1}, 1\right)=g\left(x_{1}\right)$.

Solution: Characteristic equations

Choose parametrisation s.t. $x^{2}(0)=1$. Then $x_{2}^{0}=1$ and x_{1}^{0} is the x_{1} coordinate at 'initial time' (when $x^{2}=1$). Moreover, $z(0)=z^{0}=g\left(x_{1}^{0}\right)$. We thus have

$$
\left\{\begin{aligned}
x^{1}(s) & =x_{1}^{0} e^{s} \\
x^{2}(s) & =e^{s} \\
z(s) & =g\left(x_{1}^{0}\right) e^{2 s}
\end{aligned}\right.
$$

Want to express $u=z$ in terms of $\left(x_{1}, x_{2}\right)$. We have

$$
e^{s}=x_{2} \quad \Leftrightarrow \quad s=\log x_{2}
$$

Then

$$
x_{1}^{0} e^{s}=x_{1} \quad \Leftrightarrow \quad x_{1}^{0} x_{2}=x_{1} \quad x_{1}^{0}=\frac{x_{1}}{x_{2}}
$$

Moreover,

$$
u\left(x_{1}, x_{2}\right)=z(s)=g\left(x_{1}^{0}\right) e^{2 s}=g\left(\frac{x_{1}}{x_{2}}\right) x_{2}^{2}, \quad x_{2} \neq 0
$$

Test:

$$
x_{1} u_{x_{1}}+x_{2} u_{x_{2}}=x_{1}\left(\frac{1}{x_{2}}\right) g^{\prime}\left(\frac{x_{1}}{x_{2}}\right) x_{2}^{2}+x_{2}\left(-\frac{x_{1}}{x_{2}^{2}}\right) g^{\prime}\left(\frac{x_{1}}{x_{2}}\right)+2 g\left(\frac{x_{1}}{x_{2}}\right) x_{2}^{2}=2 u
$$

Note that the (projected) characteristics are straight rays from the origin. Thus the solution is uniquely determined by the 'initial condition' in the upper half-plane. The solution formula makes sense also in the lower half-plane, but since the domain $\left\{\left(x_{1}, x_{2}\right): x_{2} \neq 0\right\}$ is not connected we could equally well set $u=0$ in the lower half-plane. Therefore, the upper half-plane is the natural maximal domain of the solution.

b) $x_{1} u_{x_{1}}+2 x_{2} u_{x_{2}}+u_{x_{3}}=3 u, u\left(x_{1}, x_{2}, 0\right)=g\left(x_{1}, x_{2}\right)$.

Solution: Characteristic equations

$$
\left\{\begin{array} { l }
{ \dot { x } ^ { 1 } = x ^ { 1 } } \\
{ \dot { x } ^ { 2 } = 2 x ^ { 2 } } \\
{ \dot { x } ^ { 3 } = 1 } \\
{ \dot { z } = 3 z }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
x^{1}(s)=x_{1}^{0} e^{s} \\
x^{2}(s)=x_{2}^{0} e^{2 s} \\
x^{3}(s)=s(+0) \\
z(s)=z^{0} e^{3 s}
\end{array}\right.\right.
$$

where again the parametrisation is chosen such that $x^{3}=0$ when $s=0$. Then $z(0)=z^{0}=$ $g\left(x_{1}^{0}, x_{2}^{0}\right)$ and we have

$$
\left\{\begin{aligned}
x^{1}(s) & =x_{1}^{0} e^{s} \\
x^{2}(s) & =x_{2}^{0} e^{2 s} \\
x^{3}(s) & =s \\
z(s) & =g\left(x_{1}^{0}, x_{2}^{0}\right) e^{3 s}
\end{aligned}\right.
$$

Again, we want to write z in terms of x and thus solve $\left(x^{1}, x^{2}, x^{3}\right)=\left(x_{1}, x_{2}, x_{3}\right)$ for s, x_{1}^{0} and x_{2}^{0} :

$$
\left\{\begin{aligned}
x_{1}^{0} & =x_{1} e^{-x_{3}} \\
x_{2}^{0} & =x_{2} e^{-2 x_{3}} \\
s & =x_{3}
\end{aligned}\right.
$$

Hence

$$
u\left(x_{1}, x_{2}, x_{3}\right)=z(s)=g\left(x_{1}^{0}, x_{2}^{0}\right) e^{3 s}=g\left(x_{1} e^{-x_{3}}, x_{2} e^{-2 x_{3}}\right) e^{3 x_{3}}
$$

Again, one can directly verify that this is a solution (assuming that $g \in C^{1}$) and the natural domain is \mathbb{R}^{3}.
c) $u u_{x_{1}}+u_{x_{2}}=1, u\left(x_{1}, x_{1}\right)=\frac{1}{2} x_{1}$.

Solution: Characteristic equations

$$
\left\{\begin{array} { r }
{ \dot { x } ^ { 1 } = z } \\
{ \dot { x } ^ { 2 } = 1 } \\
{ \dot { z } = 1 }
\end{array} \Leftrightarrow \left\{\begin{array} { c }
{ \dot { x } ^ { 1 } (s) = s + z ^ { 0 } } \\
{ x ^ { 2 } (s) = s + x _ { 2 } ^ { 0 } } \\
{ z (s) = s + z ^ { 0 } }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
x^{1}(s)=\frac{s^{2}}{2}+z^{0} s+x_{1}^{0} \\
x^{2}(s)=s+x_{2}^{0} \\
z(s)=s+x_{3}^{0}
\end{array}\right.\right.\right.
$$

Choose parametrisation such that $x^{1}(0)=x^{2}(0)$. This means that $x_{1}^{0}=x_{2}^{0}$. Then

$$
z^{0}=z(0)=u\left(x_{1}^{0}, x_{1}^{0}\right)=\frac{1}{2} x_{1}^{0}
$$

We get

$$
\left\{\begin{aligned}
x^{1}(s) & =\frac{s^{2}}{2}+\frac{1}{2} x_{1}^{0} s+x_{1}^{0} \\
x^{2}(s) & =s+x_{1}^{0} \\
z(s) & =s+\frac{1}{2} x_{1}^{0}
\end{aligned}\right.
$$

$\left(x^{1}(s), x^{2}(s)\right)$ parametrises a parabola passing through the point $(2,2)$ (see figure below).

Solving $\left(x^{1}, x^{2}\right)=\left(x_{1}, x_{2}\right)$ for s and x_{1}^{0} we get

$$
\begin{aligned}
&\left\{\begin{array} { r l }
{ \frac { s ^ { 2 } } { 2 } + \frac { 1 } { 2 } x _ { 1 } ^ { 0 } s + x _ { 1 } ^ { 0 } } & { = x _ { 1 } } \\
{ s + x _ { 1 } ^ { 0 } } & { = x _ { 2 } }
\end{array} \Leftrightarrow \left\{\begin{array}{r}
\frac{s^{2}}{2}+\frac{1}{2}\left(x_{2}-s\right) s+x_{2}-s=x_{1} \\
x_{1}^{0}=x_{2}-s
\end{array}\right.\right. \\
& \Leftrightarrow\left\{\begin{array} { r l }
{ (\frac { 1 } { 2 } x _ { 2 } - 1) s + x _ { 2 } } & { = x _ { 1 } } \\
{ x _ { 1 } ^ { 0 } } & { = x _ { 2 } - s }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
s=2 \frac{x_{1}-x_{2}}{x_{2}-2} \\
x_{1}^{0}=x_{2}-s
\end{array}\right.\right.
\end{aligned}
$$

Hence

$$
u\left(x_{1}, x_{2}\right)=z(s)=s+\frac{1}{2} x_{1}^{0}=s+\frac{1}{2}\left(x_{2}-s\right)=\frac{1}{2} s+\frac{1}{2} x_{2}=\frac{x_{1}-x_{2}}{x_{2}-2}+\frac{1}{2} x_{2}, \quad x_{2} \neq 2 .
$$

The point $(2,2)$ is singular and the natural domain is either $\left\{\left(x_{1}, x_{2}\right): x_{2}>2\right\}$ or $\left\{\left(x_{1}, x_{2}\right): x_{2}<\right.$ $2\}$. Note that the projected characteristics only cross from one half-plane to the other through the singular point.

8. Show that $u=g\left(x-t F^{\prime}(u)\right)=g(x-t f(u))$ provides an implicit solution for $u_{t}+(F(u))_{x}=0$ $\left(f(u)=F^{\prime}(u)\right.$).

Solution: Assume that $1+\operatorname{tg}^{\prime}(x-t f(u)) f^{\prime}(u) \neq 0$, so that the implicit function theorem applies near (x, t, u). Implicit differentiation of the relation

$$
u=g(x-t f(u))
$$

gives

$$
u_{t}=-g^{\prime}(x-t f(u)) f(u)-t g^{\prime}(x-t f(u)) f^{\prime}(u) u_{t}
$$

so that

$$
u_{t}=-\frac{g^{\prime}(x-t f(u)) f(u)}{1+\operatorname{tg}^{\prime}(x-t f(u)) f^{\prime}(u)}
$$

Similarly,

$$
u_{x}=g^{\prime}(x-t f(u))-t g^{\prime}(x-t f(u)) f^{\prime}(u) u_{x}
$$

and hence

$$
u_{x}=\frac{g^{\prime}(x-t f(u))}{1+\operatorname{tg}^{\prime}(x-t f(u)) f^{\prime}(u)}
$$

It follows that

$$
u_{t}+(F(u))_{x}=u_{t}+f(u) u_{x}=-\frac{g^{\prime}(x-t f(u)) f(u)}{1+\operatorname{tg}^{\prime}(x-t f(u)) f^{\prime}(u)}+\frac{g^{\prime}(x-t f(u)) f(u)}{1+\operatorname{tg}^{\prime}(x-t f(u)) f^{\prime}(u)}=0
$$

Note that the condition $1+\operatorname{tg}^{\prime}(x-t f(u)) f^{\prime}(u) \neq 0$ is automatically satisfied at initial time $t=0$. In the Burgers' case, $f(u)=u$, the condition simplifies to $1+\operatorname{tg}^{\prime}(x-t f(u)) \neq 0$ and this will be satisfied for $0 \leq t<T$, where

$$
T=-\frac{1}{\inf g^{\prime}}
$$

assuming $g^{\prime}<0$ somewhere. If $g^{\prime} \geq 0$ the condition is satisfied everywhere. One can check that T is also the first time the characteristics intersect (do this!). Thus until this time, we can use implicit differentiation to verify that u is indeed a solution.
19. First assume that the solution is C^{1}. Then

$$
\frac{d}{d t} \int_{-\infty}^{\infty} u(x, t) d x=\int_{-\infty}^{\infty} u_{t}(x, t) d x=-\int_{-\infty}^{\infty}\left(F(u(x, t))_{x} d x=-[F(u(x, t))]_{x=-\infty}^{\infty}=0\right.
$$

where the steps are permissible since u has compact support in x. This. proves the claim in that case, since

$$
\int_{-\infty}^{\infty} u(x, 0) d x=\int_{-\infty}^{\infty} g(x) d x
$$

In the case of a continuous integral solution, we use the definition

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left(u v_{t}+F(u) v_{x}\right) d x d t+\left.\int_{-\infty}^{\infty} g v d x\right|_{t=0}=0
$$

for each $v \in C^{\infty}(\mathbb{R} \times[0, \infty))$. Since u is supposed to have compact support in $\mathbb{R} \times[0, T]$ for each $T>0$, we can take v of the form $\varphi(x) \psi(t)$, where $\varphi=1$ on the support of $u(\cdot, t)$ for each $t \in[0, T]$ and $\psi(0)=1$. This gives

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} u \psi_{t} d x d t+\int_{-\infty}^{\infty} g d x=0
$$

Next, we choose $\psi=\psi^{\varepsilon}(t)$ such that $\psi_{t}^{\varepsilon} \rightarrow-\delta_{T}$ (the Dirac delta distribution at $t=T$) as $\varepsilon \rightarrow 0$, in the sense of distributions. More specifically, we can pick a smooth function $\eta(t)$ with compact support and integral 1 and set $\psi^{\varepsilon}(t)=\int_{t}^{\infty} \varepsilon^{-1} \eta\left(\varepsilon^{-1}(s-T)\right) d s$. Then ψ^{ε} is constant when t is outside the support of $\eta\left(\varepsilon^{-1}(\cdot-T)\right)$. In particular, it is constant on $(-\infty, 0]$ if $\varepsilon>0$ is sufficiently small and the value is $\int_{-\infty}^{\infty} \varepsilon^{-1} \eta\left(\varepsilon^{-1}(s-T)\right) d s=\int_{-\infty}^{\infty} \eta(s) d s=1$. On the other hand, $\left(\psi^{\varepsilon}\right)^{\prime}(t)=-\varepsilon^{-1} \eta\left(\varepsilon^{-1}(s-T)\right) \rightarrow-\delta_{T}$ in the sense of distributions. In fact, the convergence holds even if the test function is only assumed continuous. Using this ψ above and letting $\varepsilon \rightarrow 0$ gives

$$
-\int_{-\infty}^{\infty} u(x, T) d x+\int_{-\infty}^{\infty} g d x=0
$$

or, equivalently,

$$
\int_{-\infty}^{\infty} u(x, T) d x=\int_{-\infty}^{\infty} g d x
$$

20. Using the Rankine-Hugoniot and entropy conditions, we find that the solution is given by

$$
\begin{gathered}
u(x, t)= \begin{cases}1, & x<-1+\frac{1}{2} t, \\
0, & -1+\frac{1}{2} t<x<0 \\
\frac{x}{t}, & 0<x<2 t, \\
2, & 2 t<x<1+t, \\
0, & 1+t<x\end{cases} \\
u(x, t)= \begin{cases}1, & x<-1+\frac{1}{2} t, \\
0, & -1+\frac{1}{2} t<x<0 \\
\frac{x}{t}, & 0<x<2 \sqrt{t}, \\
0, & 2 \sqrt{t}<x\end{cases} \\
u(x, t)= \begin{cases}1, & x<t-\sqrt{2 t}, \\
\frac{x}{t}, & t-\sqrt{2 t}<x<2 \sqrt{t}, \\
0, & 2 \sqrt{t}<x\end{cases} \\
u(x, t)= \begin{cases}1, & x<1+\frac{1}{2} t, \\
0, & 1+\frac{1}{2} t<x\end{cases} \\
u+4 \sqrt{2}<t .
\end{gathered}
$$

See the characteristics in the figure below.

Evans 4.8

19. We did the first part in the lecture.

To prove the second part, assume that such a solution exists and let

$$
u(x, t)=\sum_{m, n} a_{m, n} x^{m} t^{n}
$$

be the power series expansion near the origin. Plugging this in the equation, and equating coefficients, we get

$$
\begin{equation*}
(n+1) a_{m, n+1}=(m+2)(m+1) a_{m+2, n} . \tag{1}
\end{equation*}
$$

Moreover,

$$
\sum_{m} a_{m, 0} x^{m}=\frac{1}{1+x^{2}}=\sum_{k}(-1)^{k} x^{2 k}
$$

Thus, $a_{m, 0}=0$ for odd m. Using (1), we obtain, that $a_{m, 1}$ also vanishes for odd m (take $n=0$) and then by induction that the same is true for $a_{m, n}$ for any $n \geq 0$. On the other hand,

$$
\begin{aligned}
& a_{2 k, 0}=(-1)^{k} \\
& a_{2 k, 1}=(2 k+2)(2 k+1) a_{2 k+2,0}=(-1)^{k}(2 k+2)(2 k+1) \\
& a_{2 k, 2}=(-1)^{k} \frac{(2 k+4)(2 k+3)(2 k+2)(2 k+1)}{2} \\
& \vdots \\
& a_{2 k, j}=(-1)^{k} \frac{(2 k+2 j)(2 k+2 j-1) \cdots(2 k+2)(2 k+1)}{j!} .
\end{aligned}
$$

Thus u is given by

$$
u(x, t)=\sum_{k, j} a_{2 k, j} x^{2 k} t^{j} .
$$

In particular, taking $x=0, t>0$, we get

$$
u(0, t)=\sum_{j} a_{0, j} t^{j}=\sum_{j} \frac{(2 j)!}{j!} t^{j},
$$

which diverges by the ratio test.

