
PDE Lecture

Nonlinear 1st order PDE and the method of characteristics

May 5
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General form
F(Du,u,x) = 0

F : Rn ⇥R⇥U ! R given, U ⇢ Rn open, u : U ! R.

Examples

I Transport eq:

ut +b(x) ·Dxu = 0, u = u(x, t), x 2 Rn.

Linear.
I Burgers’ eq:

ut +uux = 0, u = u(x, t), x 2 R.

Quasilinear.
I Conservation law:

ut +divF(u) = 0, u = u(x, t), x 2 R, F : R! Rn.

Quasilinear.
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I Eikonal eq:

|Du|= 1 ,
n

Â
i=1

u
2
xi
= 1, u = u(x), x 2 Rn.

Fully nonlinear.

I Hamilton-Jacobi eq:

ut +H(Du) = 0, u = u(x, t), x 2 Rn, H : Rn ! R.

Fully nonlinear.
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Method of characteristics
Idea: Convert to ODE along characteristics

4 / 22
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Linear case

b(x) ·Du(x)+ c(x)u(x) = 0 (1)
b 2 C

1(U,Rn), c 2 C(U,R).

(Projected) characteristics: x(s) s.t.

ẋ(s) = b(x(s)) (2)

Different trajectories can’t intersect by Picard-Lindelöf.
If u is a solution, then
d

ds
u(x(s)) = Du(x(s)) · ẋ(s) = b(x(s)) ·Du(x(s)) =�c(x(s))u(x(s)).

ODE
ż(s) =�c(x(s))z(s), z(s) := u(x(s)).

Solution
z(s) = z(0)e�

R
s

0 c(x(r))dr.
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ż(s) =�c(x(s))z(s), z(s) := u(x(s)).

Solution
z(s) = z(0)e�

R
s

0 c(x(r))dr.
5 / 22



Definition
x

0 2 ∂U is a noncharacteristic boundary point for (1) if
b(x0) ·n(x0) 6= 0.

Given a noncharacteristic x
0 2 ∂U and a function g def. in a

nbh. G of x
0, we can locally solve (2) near x

0, with x(0) = x(0;y)
parametrizing G, y 2 Rn�1.

Then u(x(s;y)) = z(s;y) = g(x(0;y))e�
R

s

0 c(x(r))dr.

x(s;y) covers a nbh. of x
0 since b(x0) ·n(x0) 6= 0 (inverse function

thm.)
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Example
(

x1ux2 � x2ux1 = u in x1 > 0, x2 > 0,
u = g in x1 > 0, x2 = 0.

b(x) = (�x2,x1), c(x)⌘�1

Characteristic equations:
8
><

>:

ẋ
1 =�x

2

ẋ
2 = x

1

ż = z

,

8
><

>:

x
1(s) = acoss+bsins

x
2(s) = asins�bcoss

z(s) = z
0
e

s

ICs 8
><

>:

x
1(0) = a > 0

x
2(0) =�b = 0

z(0) = z
0 = g(a)

)

8
><

>:

x
1(s) = acoss

x
2(s) = asins

z(s) = g(a)es
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Want to express u (=z) in terms of (x1,x2).

Solve
(

acoss = x1

asins = x2
,

0s p
2

8
><

>:

a =
q

x
2
1 + x

2
2

s = arctan
⇣

x2
x1

⌘

So
u(x) = g(

q
x

2
1 + x

2
2)e

arctan
⇣

x2
x1

⌘

, x1 > 0,x2 � 0.

Can check directly that this is a solution if g 2 C
1((0,•)).
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Quasilinear case

b(x,u(x)) ·Du(x)+ c(x,u(x)) = 0

Now x(s) and z(s) are defined by
(

ẋ(s) = b(x(s),z(s))
ż(s) =�c(x(s),z(s))

(3)

Coupled system of (n+1) ODEs!

Noncharacteristic condition: b(x0,g(x0)) ·n(x0) 6= 0.

Depends on the boundary data!

Remark:
Picard-Lindelöf ) different trajectories s 7! (x(s),z(s)) can’t in-
tersect.
The projected characteristics s 7! x(s) may now intersect, how-
ever. (Compare autonomous/nonautonomous system of ODE)
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ż(s) =�c(x(s),z(s))

(3)

Coupled system of (n+1) ODEs!

Noncharacteristic condition: b(x0,g(x0)) ·n(x0) 6= 0.

Depends on the boundary data!

Remark:
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ẋ(s) = b(x(s),z(s))
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Picard-Lindelöf ) different trajectories s 7! (x(s),z(s)) can’t in-
tersect.
The projected characteristics s 7! x(s) may now intersect, how-
ever. (Compare autonomous/nonautonomous system of ODE)

9 / 22



Example
Burgers’ equation

(
ut +uux = 0, t > 0, x 2 R

u = g, t = 0, x 2 R.

F(D(x,t)u,u,x, t) = (u,1) ·D(x,t)u

8
><

>:

ẋ(s) = z(s)

ṫ(s) = 1
ż(s) = 0

,

8
><

>:

x(s) = x
0 + sz

0 = x
0 + sg(x0)

t(s) = s+ t0 = s (t0 = 0)

z(s) = z
0 = g(x0)
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The (projected) characteristics are straight lines. Slope depends
on g!

Solution: u = z = g(x0).

Expressed in terms of (x, t):
8
><

>:

x
0 + sz

0 = x

s = t

z
0 = u(x, t)

) x
0 = x� tu(x, t)

Implicit solution formula:

u(x, t) = g(x� tu(x, t))

Crossing (projected) characteristics ) solution breaks down!
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Fully nonlinear case

F(Du,u,x) = 0, F = F(p,z,x)

Reduce to quasilinear PDE by differentiation:
n

Â
j=1

Fpj
(Du,u,x)uxixj

+Fz(Du,u,x)uxi
+Fxi

(Du,u,x) = 0, i= 1, . . . ,n.

Quasilinear system of 1st order PDEs for u, p = Du:
8
>>>><

>>>>:

n

Â
j=1

Fpj
(p,u,x)∂xj

pi =�Fz(p,u,x)pi �Fxi
(p,u,x), i = 1, . . . ,n

n

Â
j=1

Fpj
(p,u,x)∂xj

u =
n

Â
j=1

Fpj
(p,u,x)pj,

Characteristic equations:
8
><

>:

ṗ =�DzF(p,z,x)p�DxF(p,z,x)
ż = DpF(p,z,x) ·p
ẋ = DpF(p,z,x)

12 / 22
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Solutions (p(s),z(s),x(s)) are called characteristics and x(s) is
the corresponding projected characteristic.

Start with (p0,z0,x0) satisfying compatibility condition
8
><

>:

z
0 = g(x0)

p
0 = Dg(x0)

F(p0,z0,x0) = 0

Also need noncharacteristic condition

DpF(p0,z0,x0) ·n(x0) 6= 0.

Under these conditions and assuming F, g, and ∂U are smooth,
the method of characteristics provides a local solution to the
PDE.
See Theorem 2, p. 106.
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Conservation laws
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Recall from first lecture:
u = u(x, t) density of some quantity in Rn (e.g. chemical concen-
tration)
f : Rn ! Rn flux

d

dt

Z

V

udx =�
Z

∂V

f ·n dS =�
Z

V

div fdx

Continuity equation:
ut +div f = 0

f = ? Constitutive relation.

Examples: f = ub (transport eq.), f =�aDu heat/diffusion eq.

15 / 22



Recall from first lecture:
u = u(x, t) density of some quantity in Rn (e.g. chemical concen-
tration)
f : Rn ! Rn flux

d

dt

Z

V

udx =�
Z

∂V

f ·n dS =�
Z

V

div fdx

Continuity equation:
ut +div f = 0

f = ? Constitutive relation.

Examples: f = ub (transport eq.), f =�aDu heat/diffusion eq.

15 / 22



Recall from first lecture:
u = u(x, t) density of some quantity in Rn (e.g. chemical concen-
tration)
f : Rn ! Rn flux

d

dt

Z

V

udx =�
Z

∂V

f ·n dS =�
Z

V

div fdx

Continuity equation:
ut +div f = 0

f = ? Constitutive relation.

Examples: f = ub (transport eq.), f =�aDu heat/diffusion eq.

15 / 22



Recall from first lecture:
u = u(x, t) density of some quantity in Rn (e.g. chemical concen-
tration)
f : Rn ! Rn flux

d

dt

Z

V

udx =�
Z

∂V

f ·n dS =�
Z

V

div fdx

Continuity equation:
ut +div f = 0

f = ? Constitutive relation.

Examples: f = ub (transport eq.), f =�aDu heat/diffusion eq.

15 / 22



Scalar conservation law
f(x) = F(u(x)), F : R! Rn

(
ut +F0(u) ·Du = 0, x 2 R, t > 0

u = g, x 2 R, t = 0.
(4)

Quasilinear.
Characteristic equations:

8
><

>:

ẋ(s) = F0(z(s))

ṫ(s) = 1
ż(s) = 0

,

8
><

>:

x(s) = x
0 + sF0(g(x0))

t = s (+0)

z(s) = z
0 = g(x0)

Projected characteristics are straight lines, u is constant along
projected characteristics.

Implicit formula

u(x, t) = g(x0(x, t)) = g(x� tF0(g(x0))) = g(x� tF0(u(x, t)))
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ẋ(s) = F0(z(s))
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Example
n = 1, F(u) = u

2

2 gives Burgers’ equation ut +uux = 0

Implicit formula
u�g(x� tu) = 0

Implicit function theorem applies if

1+ tg
0(x� tu) 6= 0

OK for t > 0 if g
0(x)> 0, 8x. Not OK if g

0 < 0 somewhere.
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Interpretation:
b > 0, ut +bux = 0 ) u = g(x�bt).
Wave travelling to the right with speed b.

ut +uux = 0 ) u = g(x�ut).
Speed depends on u.
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What happens after a shock develops? From now on n = 1!

Ideas

I Use integrated form d

dt

R
b

a
udx =�[F(u)]b

x=a
, 8a < b.

I Weak solutions

Definition
u 2 L

•(R⇥ (0,•)) is an integral (or weak) solution of (4) if
Z •

0

Z •

�•
(uwt +F(u)wx)dxdt+

Z •

�•
gwdx

���
t=0

= 0

for all w 2 C
•
c
(R⇥ [0,•)).
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Example (Shock wave for Burgers’ eq.)
ut +uux = 0

g(x) =

(
1, x < 0
0, x > 0

Clear for x < 0 (u = 1) and x > t (u = 0). What happens in
between?

Ansatz:

u(x, t) =

(
1, x < s(t)

0, x > s(t)

s 2 C
1.
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Let V ⇢ R⇥ (0,•)
V` = {(x, t) 2 V : x < s(t)}, Vr = {(x, t) 2 V : x > s(t)}
C = {(s(t), t)}

Take w 2 C
• with compact support in V:

0 =
ZZ

V

⇣
uwt +

u
2

2 wx

⌘
dxdt

w arbitrary )

n2 +
1
2

n1 = 0 ,�s
0(t)+

1
2
= 0 , s

0(t) =
1
2
.
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Solution:

u(x, t) =

(
1, x < 1

2 t

0, x > 1
2 t

For a general F and a general u which is C
1 on either side of C,

we get that u is a classical solution on either side and

F(u`)�F(ur) = ṡ(u`�ur)

This is called the Rankine-Hugoniot condition.

See Evans pp. 137–139.
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