PDE Lecture

Nonlinear 1st order PDE and the method of characteristics

May 5
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General form
F(Du,u,x) =0
F:R"xRxU— R given, U C R" open, u: U — R.
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General form
F(Du,u,x) =0

F:R"xRxU— R given, U C R" open, u: U — R.
Examples

» Transport eq:
u+b(x)-Dyu=0, wu=u(x1),xeR".

Linear.
» Burgers’ eq:

utuuy, =0, u=u(xt),xeR.

Quasilinear.
» Conservation law:

u+divF(u) =0, u=u(x,1),xeR, F:R—-R"

Quasilinear.
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» Eikonal eq:
n
|Du| :1<:>Zu)2ci =1, u=ux),xeR"
i=1

Fully nonlinear.
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» Eikonal eq:
n
|Du| :1<:>Zu)2ci =1, u=ux),xeR"
i=1

Fully nonlinear.
» Hamilton-Jacobi eq:

u+HDu)=0, u=u(x1),xeR", H:R'"—=R

Fully nonlinear.
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Method of characteristics

Idea: Convert to ODE along characteristics
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Linear case

b(x) -

u(x) +c(x)u(x) =0 (1)
b e C!(U,R"), c € C(U,R).
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Linear case

b(x) - Du(x) + c(x)u(x) =0 (1)
b e C!(U,R"), c € C(U,R).
(Projected) characteristics: x(s) s.t.
X(s) = b(x(s)) @)
Different trajectories can’t intersect by Picard-Lindel6f.

If u is a solution, then

%M(X(S)) = Du(x(s)) -X(s) = b(x(s)) - Du(x(s)) = —c(x(s))u(x(s)).

ODE

Solution
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Definition
1% € AU is a noncharacteristic boundary point for (1) if
b(x%) - v(x%) #0.
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Given a noncharacteristic x° € dU and a function g def. in a
nbh. T of x°, we can locally solve (2) near x°, with x(0) = x(0;y)
parametrizing I', y € R"~ 1.
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Definition
1% € AU is a noncharacteristic boundary point for (1) if
b(x%) - v(x°) #£0.
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Given a noncharacteristic x° € dU and a function g def. in a
nbh. T of x°, we can locally solve (2) near x°, with x(0) = x(0;y)
parametrizing I', y € R"~ 1.

Then u(x(s:y)) = 2(s:y) = g(x(01y))e )

x(s;y) covers a nbh. of x° since b(x°) - v(x°) # 0 (inverse function
thm.)
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Example

XUy, —Xoly, =u INx; >0,x >0,
u=g inx;>0,x=0.
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Example
XUy, —Xoly, =u INx; >0,x >0,
u=g inx;>0,x=0.
b(x) = (—x2,x1), c(x) = —1
Characteristic equations:

il =—x? x'(s) = acoss+bsins
i =x! & x*(s) = asins — bcoss
=z 2(s) = 2"°
ICs
x'(0)=a>0 x'(s) = acoss

F0)=-b=0 = < x*(s)=asins

2(0) =% = g(a) z(s) = g(a)e’
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Want to express u (=z) in terms of (x1,x;).
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Want to express u (=z) in terms of (x1,x;).
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asins =x,  0<s<3 s = arctan (%)
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Solve

8/22



Want to express u (=z) in terms of (x1,x;).

Solve
{acoss:xl a=\/x}+x3
5
ins = < T
asins =x;  0<s<% § — arctan (2>
So

X2
u(x) = g( x%+x%)ea“‘a“(ﬂ>, x> 0,x, > 0.
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Want to express u (=z) in terms of (x1,x;).

Solve
_ /2,2
acoss = xj a=\/xy+x;
=4
1 — < T
asins =x,  0<s<?% ¢ — arctan (%)
So

u(x) = g(1/23 +x%)eaman(xl>, x1 > 0,02 2 0.

Can check directly that this is a solution if g € C'((0,0)).
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Quasilinear case

b(x,u(x)) - Du(x) +c(x,u(x)) =0
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Quasilinear case

b(x,u(x)) - Du(x) +c(x,u(x)) =0

Now x(s) and z(s) are defined by

X(s) = b(x(s),z(s))
2(s) = —c(x(s),2(s))

Coupled system of (n+1) ODEs!
Noncharacteristic condition: b(x%, g(x%)) - v(x%) # 0.
Depends on the boundary data!

Remark:

Picard-Lindel6f = different trajectories s — (x(s),z(s)) can't in-
tersect.

The projected characteristics s — x(s) may now intersect, how-

ever. (Compare autonomous/nonautonomous system of ODE)
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Example
Burgers’ equation

u+uu, =0, t>0,xeR
u=g, t=0,xeR.
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Example
Burgers’ equation

w4uu, =0, t>0,xeR
u=g, t=0,xeR.

F(D(x’,)u,u,x, l) = (u, 1) -D(XJ)M

(
t(s)=s+1to=s (to=10)
(
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The (projected) characteristics are straight lines. Slope depends
on g!
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The (projected) characteristics are straight lines. Slope depends
on g!

Solution: u =z = g(x).

Expressed in terms of (x,1):

x0+sz0 =X

s=t = O =x—rtu(x)

Implicit solution formula:

u(x,1) = g(x—tu(x,t))

Crossing (projected) characteristics = solution breaks down!
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Fully nonlinear case

F(Du,u,x) =0, F=F(p,z,x)
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Fully nonlinear case
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Fully nonlinear case

F(Du,u,x) =0, F=F(p,z,x)
Reduce to quasilinear PDE by differentiation:
Zij(Du,u,x)uxixj +F,(Du,u,x)uy, + Fx,(Du,u,x) =0, i=1,...,n.
j=1
Quasilinear system of 1st order PDEs for u, p = Du:

Z (Pux xpl:—Fz(p,u,X)pi—in(p,u,X), i=1,...,n

Z{ (puxau—z p; (D> 1, X)pj,
-

Characteristic equatlons.
p = _DZF(pazaX)p_DxF(p7Z7X)
t=DyF(p,z,X) p
X =D,F(p,z,X)
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Solutions (p(s),z(s),x(s)) are called characteristics and x(s) is
the corresponding projected characteristic.
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Solutions (p(s),z(s),x(s)) are called characteristics and x(s) is
the corresponding projected characteristic.

Start with (p°,z°,x%) satisfying compatibility condition

2 =g(x")
p’ =Dg(x")
F(pO,ZO,xO) -0

Also need noncharacteristic condition

DF(p°,2°,1%) - v(x%) £ 0.

Under these conditions and assuming F, g, and dU are smooth,
the method of characteristics provides a local solution to the
PDE.

See Theorem 2, p. 106.
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Conservation laws
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Recall from first lecture:

u = u(x,t) density of some quantity in R” (e.g. chemical concen-
tration)

f: R" — R" flux
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Recall from first lecture:

u = u(x,t) density of some quantity in R” (e.g. chemical concen-
tration)

f: R" — R" flux

d/udx— / f-vdS=— /dlvfdx
dt

Continuity equation:
u; +divf=0

f = ? Constitutive relation.

Examples: f = ub (transport eq.), f = —aDu heat/diffusion eq.
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Scalar conservation law
f(x) =F(u(x)), F: R > R"

u+F (u)-Du=0, xcR,t>0
u=g, xeRt=0.
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f(x) =F(u(x)), F: R > R"

Scalar conservation law f[ el AFGZD
|

{u,+F’(u)-Du=0, xER,t>0 / (4; |
u=g, xeRr=0.
Quasilinear.
Characteristic equations:
x(s) =F'(z(s)) x(s) = x* +sF'(g(x"))
i(s)=1 & t=1s(40)
(s)=0 2(s) =2° = g(x")

Projected characteristics are straight lines, u is constant along
projected characteristics.

Implicit formula

u(x,1) = g(x’(x,1) = g(x — F'(g(x"))) = g(x — F'(u(x,1)))
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Example
n=1,F(u)= % gives Burgers’ equation u; +uu, =0
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Example
n=1,F(u)= % gives Burgers’ equation u; +uu, =0

Implicit formula
u—gx—m)=0

Implicit function theorem applies if

1+1g' (x—1m) #0

OK for r > 0 if g’(x) > 0, Vx. Not OK if g’ < 0 somewhere.

[
|
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Interpretation:
b>0,u~+bu,=0= u=g(x—bt).
Wave travelling to the right with speed b.

S
/\T/\ N\

18/22



Interpretation:
b>0,u~+bu,=0= u=g(x—bt).
Wave travelling to the right with speed b.

et TfC e
| .

u+uuy =0 = u=g(x—ut).
Speed depends on u.

A A

I I

v
A 4
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What happens after a shock develops? From now on n = 1!
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What happens after a shock develops? From now on n = 1!
Ideas

> Use integrated form < [P udx = —[F(u)]’_,, Ya < b.

> Weak solutions

Definition
ue L”(R x (0,00)) is an integral (or weak) solution of (4) if

=0
=0

//(uwt+F(u)wx)dxdt—|—/ gwdx
0 — oo —o0

forallwe C(R x [0,0)).
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Example (Shock wave for Burgers’ eq.)

Uy +uu, =0
I, x<0
X)) =
s) {0, x>0
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Example (Shock wave for Burgers’ eq.)
Uy +uu, =0
I, x<0

8 = {0, x>0

| pilll

A 4
v

Clear for x <0 (u=1) and x > ¢ (u = 0). What happens in
between?
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Example (Shock wave for Burgers’ eq.)
Uy +uu, =0
I, x<0

8 = {0, x>0

v

Clear for x <0 (u=1) and x > ¢ (u = 0). What happens in
between?

Ansatz:

u(x.t) = {1, x <s(t)

0, x>s(r)

seCl.

| N

20/22



Let V C R x (0,)
Vi={(x,t)eV:ix<s(t)}, V,={(x,1) e V:x>s(1)}

C={(s(n),0)} C

G/
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Let V C R x (0,)
Vi={(x,t)eV:ix<s(t)}, V,={(x,1) e V:x>s(1)}
€= {(s(0).0} C

Take w € C* with compact support in V:

o:/ﬂ@m+§m)wm
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Let V C R x (0,)
Vi={(x,t)eV:ix<s(t)}, V,={(x,1) e V:x>s(1)}
C={(s(n),0)}

Take w € C* with compact support in V:

u2
0= //v <uw,+ ij) dxdt
= // (w,+%wx) dxdt
/ wdﬁ

w arbitrary =
1

1
v2+7v1:O(:)—s’(t)JrE:O(:)s’(t):

2
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Solution:
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Solution:

For a general F and a general u which is C' on either side of C,
we get that u is a classical solution on either side and

Fug) = F(uy) = $(ue — uy)

This is called the Rankine-Hugoniot condition.

See Evans pp. 137-139.
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