PDE Lecture

Nonlinear 1st order PDE and the method of characteristics

May 5

General form

$$
F(D u, u, x)=0
$$

$F: \mathbb{R}^{n} \times \mathbb{R} \times \bar{U} \rightarrow \mathbb{R}$ given, $U \subset \mathbb{R}^{n}$ open, $u: \bar{U} \rightarrow \mathbb{R}$.

General form

$$
F(D u, u, x)=0
$$

$F: \mathbb{R}^{n} \times \mathbb{R} \times \bar{U} \rightarrow \mathbb{R}$ given, $U \subset \mathbb{R}^{n}$ open, $u: \bar{U} \rightarrow \mathbb{R}$.

Examples

- Transport eq:

$$
u_{t}+b(x) \cdot D_{x} u=0, \quad u=u(x, t), x \in \mathbb{R}^{n}
$$

Linear.

General form

$$
F(D u, u, x)=0
$$

$F: \mathbb{R}^{n} \times \mathbb{R} \times \bar{U} \rightarrow \mathbb{R}$ given, $U \subset \mathbb{R}^{n}$ open, $u: \bar{U} \rightarrow \mathbb{R}$.

Examples

- Transport eq:

$$
u_{t}+b(x) \cdot D_{x} u=0, \quad u=u(x, t), x \in \mathbb{R}^{n}
$$

Linear.

- Burgers' eq:

$$
u_{t}+u u_{x}=0, \quad u=u(x, t), x \in \mathbb{R}
$$

Quasilinear.

General form

$$
F(D u, u, x)=0
$$

$F: \mathbb{R}^{n} \times \mathbb{R} \times \bar{U} \rightarrow \mathbb{R}$ given, $U \subset \mathbb{R}^{n}$ open, $u: \bar{U} \rightarrow \mathbb{R}$.

Examples

- Transport eq:

$$
u_{t}+b(x) \cdot D_{x} u=0, \quad u=u(x, t), x \in \mathbb{R}^{n}
$$

Linear.

- Burgers' eq:

$$
u_{t}+u u_{x}=0, \quad u=u(x, t), x \in \mathbb{R}
$$

Quasilinear.

- Conservation law:

$$
u_{t}+\operatorname{div} \mathbf{F}(u)=0, \quad u=u(x, t), x \in \mathbb{R}^{n}, \quad \mathbf{F}: \mathbb{R} \rightarrow \mathbb{R}^{n}
$$

Quasilinear.

- Eikonal eq:

$$
|D u|=1 \Leftrightarrow \sum_{i=1}^{n} u_{x_{i}}^{2}=1, \quad u=u(x), x \in \mathbb{R}^{n}
$$

Fully nonlinear.

- Eikonal eq:

$$
|D u|=1 \Leftrightarrow \sum_{i=1}^{n} u_{x_{i}}^{2}=1, \quad u=u(x), x \in \mathbb{R}^{n}
$$

Fully nonlinear.

- Hamilton-Jacobi eq:

$$
u_{t}+H(D u)=0, \quad u=u(x, t), x \in \mathbb{R}^{n}, \quad H: \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

Fully nonlinear.

Method of characteristics
Idea: Convert to ODE along characteristics

Linear case

$$
\begin{equation*}
\mathbf{b}(x) \cdot D u(x)+c(x) u(x)=0 \tag{1}
\end{equation*}
$$ $\mathbf{b} \in C^{1}\left(\bar{U}, \mathbb{R}^{n}\right), c \in C(\bar{U}, \mathbb{R})$.

Linear case

$$
\begin{equation*}
\mathbf{b}(x) \cdot D u(x)+c(x) u(x)=0 \tag{1}
\end{equation*}
$$

$\mathbf{b} \in C^{1}\left(\bar{U}, \mathbb{R}^{n}\right), c \in C(\bar{U}, \mathbb{R})$.
(Projected) characteristics: $\mathbf{x}(s)$ s.t.

$$
\begin{equation*}
\dot{\mathbf{x}}(s)=\mathbf{b}(\mathbf{x}(s)) \tag{2}
\end{equation*}
$$

Linear case

$$
\begin{equation*}
\mathbf{b}(x) \cdot D u(x)+c(x) u(x)=0 \tag{1}
\end{equation*}
$$

$\mathbf{b} \in C^{1}\left(\bar{U}, \mathbb{R}^{n}\right), c \in C(\bar{U}, \mathbb{R})$.
(Projected) characteristics: $\mathbf{x}(s)$ s.t.

$$
\begin{equation*}
\dot{\mathbf{x}}(s)=\mathbf{b}(\mathbf{x}(s)) \tag{2}
\end{equation*}
$$

Different trajectories can't intersect by Picard-Lindelöf.

Linear case

$$
\begin{equation*}
\mathbf{b}(x) \cdot D u(x)+c(x) u(x)=0 \tag{1}
\end{equation*}
$$

$\mathbf{b} \in C^{1}\left(\bar{U}, \mathbb{R}^{n}\right), c \in C(\bar{U}, \mathbb{R})$.
(Projected) characteristics: $\mathbf{x}(s)$ s.t.

$$
\begin{equation*}
\dot{\mathbf{x}}(s)=\mathbf{b}(\mathbf{x}(s)) \tag{2}
\end{equation*}
$$

Different trajectories can't intersect by Picard-Lindelöf.
If u is a solution, then

$$
\frac{d}{d s} u(\mathbf{x}(s))=D u(\mathbf{x}(s)) \cdot \dot{\mathbf{x}}(s)=\mathbf{b}(\mathbf{x}(s)) \cdot D u(\mathbf{x}(s))=-c(\mathbf{x}(s)) u(\mathbf{x}(s))
$$

Linear case

$$
\begin{equation*}
\mathbf{b}(x) \cdot D u(x)+c(x) u(x)=0 \tag{1}
\end{equation*}
$$

$\mathbf{b} \in C^{1}\left(\bar{U}, \mathbb{R}^{n}\right), c \in C(\bar{U}, \mathbb{R})$.
(Projected) characteristics: $\mathbf{x}(s)$ s.t.

$$
\begin{equation*}
\dot{\mathbf{x}}(s)=\mathbf{b}(\mathbf{x}(s)) \tag{2}
\end{equation*}
$$

Different trajectories can't intersect by Picard-Lindelöf.
If u is a solution, then

$$
\frac{d}{d s} u(\mathbf{x}(s))=D u(\mathbf{x}(s)) \cdot \dot{\mathbf{x}}(s)=\mathbf{b}(\mathbf{x}(s)) \cdot D u(\mathbf{x}(s))=-c(\mathbf{x}(s)) u(\mathbf{x}(s))
$$

ODE

$$
\dot{z}(s)=-c(\mathbf{x}(s)) z(s), \quad z(s):=u(\mathbf{x}(s)) .
$$

Linear case

$$
\begin{equation*}
\mathbf{b}(x) \cdot D u(x)+c(x) u(x)=0 \tag{1}
\end{equation*}
$$

$\mathbf{b} \in C^{1}\left(\bar{U}, \mathbb{R}^{n}\right), c \in C(\bar{U}, \mathbb{R})$.
(Projected) characteristics: $\mathbf{x}(s)$ s.t.

$$
\begin{equation*}
\dot{\mathbf{x}}(s)=\mathbf{b}(\mathbf{x}(s)) \tag{2}
\end{equation*}
$$

Different trajectories can't intersect by Picard-Lindelöf.
If u is a solution, then

$$
\frac{d}{d s} u(\mathbf{x}(s))=D u(\mathbf{x}(s)) \cdot \dot{\mathbf{x}}(s)=\mathbf{b}(\mathbf{x}(s)) \cdot D u(\mathbf{x}(s))=-c(\mathbf{x}(s)) u(\mathbf{x}(s)) .
$$

ODE

$$
\dot{z}(s)=-c(\mathbf{x}(s)) z(s), \quad z(s):=u(\mathbf{x}(s)) .
$$

Solution

$$
z(s)=z(0) e^{-\int_{0}^{s} c(\mathbf{x}(r)) d r}
$$

Definition

$x^{0} \in \partial U$ is a noncharacteristic boundary point for (1) if $\mathbf{b}\left(x^{0}\right) \cdot v\left(x^{0}\right) \neq 0$.

Definition

$x^{0} \in \partial U$ is a noncharacteristic boundary point for (1) if $\mathbf{b}\left(x^{0}\right) \cdot v\left(x^{0}\right) \neq 0$.

Cher.
Given a noncharacteristic $x^{0} \in \partial U$ and a function g def. in a nbh. Γ of x^{0}, we can locally solve (2) near x^{0}, with $\mathbf{x}(0)=\mathbf{x}(0 ; y)$ parametrizing $\Gamma, y \in \mathbb{R}^{n-1}$.

Definition

$x^{0} \in \partial U$ is a noncharacteristic boundary point for (1) if $\mathbf{b}\left(x^{0}\right) \cdot v\left(x^{0}\right) \neq 0$.

Cher.
Given a noncharacteristic $x^{0} \in \partial U$ and a function g def. in a nbh. Γ of x^{0}, we can locally solve (2) near x^{0}, with $\mathbf{x}(0)=\mathbf{x}(0 ; y)$ parametrizing $\Gamma, y \in \mathbb{R}^{n-1}$.

Then $u(\mathbf{x}(s ; y))=z(s ; y)=g(\mathbf{x}(0 ; y)) e^{-\int_{0}^{s} c(\mathbf{x}(r)) d r}$.

Definition

$x^{0} \in \partial U$ is a noncharacteristic boundary point for (1) if $\mathbf{b}\left(x^{0}\right) \cdot v\left(x^{0}\right) \neq 0$.

Given a noncharacteristic $x^{0} \in \partial U$ and a function g def. in a nbh. Γ of x^{0}, we can locally solve (2) near x^{0}, with $\mathbf{x}(0)=\mathbf{x}(0 ; y)$ parametrizing $\Gamma, y \in \mathbb{R}^{n-1}$.

Then $u(\mathbf{x}(s ; y))=z(s ; y)=g(\mathbf{x}(0 ; y)) e^{-\int_{0}^{s} c(\mathbf{x}(r)) d r}$.
$\mathbf{x}(s ; y)$ covers a nbh. of x^{0} since $\mathbf{b}\left(x^{0}\right) \cdot v\left(x^{0}\right) \neq 0$ (inverse function thm.)

Example

$$
\left\{\begin{aligned}
x_{1} u_{x_{2}}-x_{2} u_{x_{1}}=u & \text { in } x_{1}>0, x_{2}>0 \\
u=g & \text { in } x_{1}>0, x_{2}=0
\end{aligned}\right.
$$

Example

$$
\left\{\begin{aligned}
x_{1} u_{x_{2}}-x_{2} u_{x_{1}}=u & \text { in } x_{1}>0, x_{2}>0, \\
u=g & \text { in } x_{1}>0, x_{2}=0 .
\end{aligned}\right.
$$

$$
\mathbf{b}(x)=\left(-x_{2}, x_{1}\right), c(x) \equiv-1
$$

Example

$$
\left\{\begin{aligned}
x_{1} u_{x_{2}}-x_{2} u_{x_{1}}=u & \text { in } x_{1}>0, x_{2}>0 \\
u=g & \text { in } x_{1}>0, x_{2}=0
\end{aligned}\right.
$$

$\mathbf{b}(x)=\left(-x_{2}, x_{1}\right), c(x) \equiv-1$

Characteristic equations:

$$
\left\{\begin{array} { r l }
{ \dot { x } ^ { 1 } } & { = - x ^ { 2 } } \\
{ \dot { x } ^ { 2 } } & { = x ^ { 1 } } \\
{ \dot { z } } & { = z }
\end{array} \Leftrightarrow \left\{\begin{array}{rl}
x^{1}(s) & =a \cos s+b \sin s \\
x^{2}(s) & =a \sin s-b \cos s \\
z(s) & =z^{0} e^{s}
\end{array}\right.\right.
$$

Example

$$
\left\{\begin{aligned}
x_{1} u_{x_{2}}-x_{2} u_{x_{1}}=u & \text { in } x_{1}>0, x_{2}>0 \\
u=g & \text { in } x_{1}>0, x_{2}=0
\end{aligned}\right.
$$

$\mathbf{b}(x)=\left(-x_{2}, x_{1}\right), c(x) \equiv-1$

Characteristic equations:

$$
\left\{\begin{array} { r l }
{ \dot { x } ^ { 1 } } & { = - x ^ { 2 } } \\
{ \dot { x } ^ { 2 } } & { = x ^ { 1 } } \\
{ \dot { z } } & { = z }
\end{array} \Leftrightarrow \left\{\begin{array}{r}
x^{1}(s)=a \cos s+b \sin s \\
x^{2}(s)=a \sin s-b \cos s \\
z(s)=z^{0} e^{s}
\end{array}\right.\right.
$$

ICs

$$
\left\{\begin{array} { r l }
{ x ^ { 1 } (0) } & { = a > 0 } \\
{ x ^ { 2 } (0) } & { = - b = 0 } \\
{ z (0) } & { = z ^ { 0 } = g (a) }
\end{array} \Rightarrow \left\{\begin{array}{r}
x^{1}(s)=a \cos s \\
x^{2}(s)=a \sin s \\
z(s)=g(a) e^{s}
\end{array}\right.\right.
$$

Want to express $u(=z)$ in terms of $\left(x_{1}, x_{2}\right)$.

Want to express $u(=z)$ in terms of $\left(x_{1}, x_{2}\right)$. Solve

$$
\left\{\begin{array}{l}
a \cos s=x_{1} \\
a \sin s=x_{2}
\end{array} \quad \Leftrightarrow \quad 0 \leq s \leq \frac{\pi}{2} \quad \Leftrightarrow \quad\left\{\begin{array}{l}
a=\sqrt{x_{1}^{2}+x_{2}^{2}} \\
s=\arctan \left(\frac{x_{2}}{x_{1}}\right)
\end{array}\right.\right.
$$

Want to express $u(=z)$ in terms of $\left(x_{1}, x_{2}\right)$. Solve

$$
\left\{\begin{array} { l }
{ a \operatorname { c o s } s = x _ { 1 } } \\
{ a \operatorname { s i n } s = x _ { 2 } }
\end{array} \quad \Leftrightarrow \quad \begin{array} { l }
{ 0 \leq s \leq \frac { \pi } { 2 } }
\end{array} \quad \left\{\begin{array}{l}
a=\sqrt{x_{1}^{2}+x_{2}^{2}} \\
s=\arctan \left(\frac{x_{2}}{x_{1}}\right)
\end{array}\right.\right.
$$

So

$$
u(x)=g\left(\sqrt{x_{1}^{2}+x_{2}^{2}}\right) e^{\arctan \left(\frac{x_{2}}{x_{1}}\right)}, \quad x_{1}>0, x_{2} \geq 0
$$

Want to express $u(=z)$ in terms of $\left(x_{1}, x_{2}\right)$.
Solve

$$
\left\{\begin{array}{l}
a \cos s=x_{1} \\
a \sin s=x_{2}
\end{array} \quad \Leftrightarrow \quad 0 \leq s \leq \frac{\pi}{2} \quad \Leftrightarrow \quad\left\{\begin{array}{l}
a=\sqrt{x_{1}^{2}+x_{2}^{2}} \\
s=\arctan \left(\frac{x_{2}}{x_{1}}\right)
\end{array}\right.\right.
$$

So

$$
u(x)=g\left(\sqrt{x_{1}^{2}+x_{2}^{2}}\right) e^{\arctan \left(\frac{x_{2}}{x_{1}}\right)}, \quad x_{1}>0, x_{2} \geq 0
$$

Can check directly that this is a solution if $g \in C^{1}((0, \infty))$.

Quasilinear case

$$
\mathbf{b}(x, u(x)) \cdot D u(x)+c(x, u(x))=0
$$

Quasilinear case

$$
\mathbf{b}(x, u(x)) \cdot D u(x)+c(x, u(x))=0
$$

Now $\mathbf{x}(s)$ and $z(s)$ are defined by

$$
\left\{\begin{array}{r}
\dot{\mathbf{x}}(s)=\mathbf{b}(\mathbf{x}(s), z(s)) \tag{3}\\
\dot{z}(s)=-c(\mathbf{x}(s), z(s))
\end{array}\right.
$$

Quasilinear case

$$
\mathbf{b}(x, u(x)) \cdot D u(x)+c(x, u(x))=0
$$

Now $\mathbf{x}(s)$ and $z(s)$ are defined by

$$
\left\{\begin{array}{r}
\dot{\mathbf{x}}(s)=\mathbf{b}(\mathbf{x}(s), z(s)) \tag{3}\\
\dot{z}(s)=-c(\mathbf{x}(s), z(s))
\end{array}\right.
$$

Coupled system of $(n+1)$ ODEs!

Quasilinear case

$$
\mathbf{b}(x, u(x)) \cdot D u(x)+c(x, u(x))=0
$$

Now $\mathbf{x}(s)$ and $z(s)$ are defined by

$$
\left\{\begin{array}{r}
\dot{\mathbf{x}}(s)=\mathbf{b}(\mathbf{x}(s), z(s)) \tag{3}\\
\dot{z}(s)=-c(\mathbf{x}(s), z(s))
\end{array}\right.
$$

Coupled system of $(n+1)$ ODEs!
Noncharacteristic condition: $\mathbf{b}\left(x^{0}, g\left(x^{0}\right)\right) \cdot v\left(x^{0}\right) \neq 0$.

Quasilinear case

$$
\mathbf{b}(x, u(x)) \cdot D u(x)+c(x, u(x))=0
$$

Now $\mathbf{x}(s)$ and $z(s)$ are defined by

$$
\left\{\begin{array}{r}
\dot{\mathbf{x}}(s)=\mathbf{b}(\mathbf{x}(s), z(s)) \tag{3}\\
\dot{z}(s)=-c(\mathbf{x}(s), z(s))
\end{array}\right.
$$

Coupled system of $(n+1)$ ODEs!
Noncharacteristic condition: $\mathbf{b}\left(x^{0}, g\left(x^{0}\right)\right) \cdot v\left(x^{0}\right) \neq 0$.
Depends on the boundary data!

Quasilinear case

$$
\mathbf{b}(x, u(x)) \cdot D u(x)+c(x, u(x))=0
$$

Now $\mathbf{x}(s)$ and $z(s)$ are defined by

$$
\left\{\begin{array}{r}
\dot{\mathbf{x}}(s)=\mathbf{b}(\mathbf{x}(s), z(s)) \tag{3}\\
\dot{z}(s)=-c(\mathbf{x}(s), z(s))
\end{array}\right.
$$

Coupled system of $(n+1)$ ODEs!
Noncharacteristic condition: $\mathbf{b}\left(x^{0}, g\left(x^{0}\right)\right) \cdot v\left(x^{0}\right) \neq 0$.
Depends on the boundary data!
Remark:
Picard-Lindelöf \Rightarrow different trajectories $s \mapsto(\mathbf{x}(s), z(s))$ can't intersect.
The projected characteristics $s \mapsto \mathbf{x}(s)$ may now intersect, however. (Compare autonomous/nonautonomous system of ODE)

Example

Burgers' equation

$$
\left\{\begin{aligned}
u_{t}+u u_{x}=0, & t>0, x \in \mathbb{R} \\
u=g, & t=0, x \in \mathbb{R}
\end{aligned}\right.
$$

Example

Burgers' equation

$$
\begin{gathered}
\left\{\begin{array}{r}
u_{t}+u u_{x}=0, \\
u=g, \\
u=0, x \in \mathbb{R}
\end{array}\right. \\
F\left(D_{(x, t)} u, u, x, t\right)=(u, 1) \cdot D_{(x, t)} u
\end{gathered}
$$

Example

Burgers' equation

$$
\left.\begin{array}{c}
\left\{\begin{aligned}
u_{t}+u u_{x}=0, & t>0, x \in \mathbb{R} \\
u=g, & t=0, x \in \mathbb{R} .
\end{aligned}\right. \\
F\left(D_{(x, t)} u, u, x, t\right)=(u, 1) \cdot D_{(x, t)} u
\end{array}\right] \begin{aligned}
& x(s)=x^{0}+s z^{0}=x^{0}+\operatorname{sg}\left(x^{0}\right) \\
& \left\{\begin{array} { l }
{ \dot { x } (s) = z (s) } \\
{ \dot { t } (s) = 1 } \\
{ \dot { z } (s) = 0 }
\end{array} \quad \Leftrightarrow \left\{\begin{array}{l}
\left(t_{0}=0\right) \\
t(s)=s+t_{0}=s \\
z(s)=z^{0}=g\left(x^{0}\right)
\end{array}\right.\right.
\end{aligned}
$$

The (projected) characteristics are straight lines. Slope depends on g !

The (projected) characteristics are straight lines. Slope depends on g !
Solution: $u=z=g\left(x^{0}\right)$.

The (projected) characteristics are straight lines. Slope depends on g !
Solution: $u=z=g\left(x^{0}\right)$.
Expressed in terms of (x, t) :

$$
\left\{\begin{array}{c}
x^{0}+s z^{0}=x \\
s=t \\
z^{0}=u(x, t)
\end{array} \Rightarrow x^{0}=x-t u(x, t)\right.
$$

The (projected) characteristics are straight lines. Slope depends on g !
Solution: $u=z=g\left(x^{0}\right)$.
Expressed in terms of (x, t) :

$$
\left\{\begin{array}{c}
x^{0}+s z^{0}=x \\
s=t \\
z^{0}=u(x, t)
\end{array} \Rightarrow x^{0}=x-t u(x, t)\right.
$$

Implicit solution formula:

$$
u(x, t)=g(x-t u(x, t))
$$

The (projected) characteristics are straight lines. Slope depends on g !
Solution: $u=z=g\left(x^{0}\right)$.
Expressed in terms of (x, t) :

$$
\left\{\begin{array}{c}
x^{0}+s z^{0}=x \\
s=t \\
z^{0}=u(x, t)
\end{array} \Rightarrow x^{0}=x-t u(x, t)\right.
$$

Implicit solution formula:

$$
u(x, t)=g(x-t u(x, t))
$$

Crossing (projected) characteristics \Rightarrow solution breaks down!

Fully nonlinear case

$$
F(D u, u, x)=0, \quad F=F(p, z, x)
$$

Fully nonlinear case

$$
F(D u, u, x)=0, \quad F=F(p, z, x)
$$

Reduce to quasilinear PDE by differentiation:
$\sum_{j=1}^{n} F_{p_{j}}(D u, u, x) u_{x_{i} x_{j}}+F_{z}(D u, u, x) u_{x_{i}}+F_{x_{i}}(D u, u, x)=0, \quad i=1, \ldots, n$.

Fully nonlinear case

$$
F(D u, u, x)=0, \quad F=F(p, z, x)
$$

Reduce to quasilinear PDE by differentiation:
$\sum_{j=1}^{n} F_{p_{j}}(D u, u, x) u_{x_{i} x_{j}}+F_{z}(D u, u, x) u_{x_{i}}+F_{x_{i}}(D u, u, x)=0, \quad i=1, \ldots, n$.
Quasilinear system of 1 st order PDEs for $u, p=D u$:

$$
\left\{\begin{array}{l}
\sum_{j=1}^{n} F_{p_{j}}(p, u, x) \partial_{x_{j}} p_{i}=-F_{z}(p, u, x) p_{i}-F_{x_{i}}(p, u, x), \quad i=1, \ldots, n \\
\sum_{j=1}^{n} F_{p_{j}}(p, u, x) \partial_{x_{j}} u=\sum_{j=1}^{n} F_{p_{j}}(p, u, x) p_{j}
\end{array}\right.
$$

Fully nonlinear case

$$
F(D u, u, x)=0, \quad F=F(p, z, x)
$$

Reduce to quasilinear PDE by differentiation:
$\sum_{j=1}^{n} F_{p_{j}}(D u, u, x) u_{x_{i} x_{j}}+F_{z}(D u, u, x) u_{x_{i}}+F_{x_{i}}(D u, u, x)=0, \quad i=1, \ldots, n$.
Quasilinear system of 1 st order PDEs for $u, p=D u$:

$$
\left\{\begin{aligned}
\sum_{j=1}^{n} F_{p_{j}}(p, u, x) \partial_{x_{j}} p_{i} & =-F_{z}(p, u, x) p_{i}-F_{x_{i}}(p, u, x), \quad i=1, \ldots, n \\
\sum_{j=1}^{n} F_{p_{j}}(p, u, x) \partial_{x_{j}} u & =\sum_{j=1}^{n} F_{p_{j}}(p, u, x) p_{j}
\end{aligned}\right.
$$

Characteristic equations:

$$
\left\{\begin{array}{l}
\dot{\mathbf{p}}=-D_{z} F(\mathbf{p}, z, \mathbf{x}) \mathbf{p}-D_{x} F(\mathbf{p}, z, \mathbf{x}) \\
\dot{z}=D_{p} F(\mathbf{p}, z, \mathbf{x}) \cdot \mathbf{p} \\
\dot{\mathbf{x}}=D_{p} F(\mathbf{p}, z, \mathbf{x})
\end{array}\right.
$$

Solutions $(\mathbf{p}(s), z(s), \mathbf{x}(s))$ are called characteristics and $\mathbf{x}(s)$ is the corresponding projected characteristic.

Solutions $(\mathbf{p}(s), z(s), \mathbf{x}(s))$ are called characteristics and $\mathbf{x}(s)$ is the corresponding projected characteristic.

Start with (p^{0}, z^{0}, x^{0}) satisfying compatibility condition

$$
\left\{\begin{array}{l}
z^{0}=g\left(x^{0}\right) \\
p^{0}=D g\left(x^{0}\right) \\
F\left(p^{0}, z^{0}, x^{0}\right)=0
\end{array}\right.
$$

Solutions $(\mathbf{p}(s), z(s), \mathbf{x}(s))$ are called characteristics and $\mathbf{x}(s)$ is the corresponding projected characteristic.

Start with $\left(p^{0}, z^{0}, x^{0}\right)$ satisfying compatibility condition

$$
\left\{\begin{array}{l}
z^{0}=g\left(x^{0}\right) \\
p^{0}=D g\left(x^{0}\right) \\
F\left(p^{0}, z^{0}, x^{0}\right)=0
\end{array}\right.
$$

Also need noncharacteristic condition

$$
D_{p} F\left(p^{0}, z^{0}, x^{0}\right) \cdot v\left(x^{0}\right) \neq 0
$$

Solutions $(\mathbf{p}(s), z(s), \mathbf{x}(s))$ are called characteristics and $\mathbf{x}(s)$ is the corresponding projected characteristic.

Start with (p^{0}, z^{0}, x^{0}) satisfying compatibility condition

$$
\left\{\begin{array}{l}
z^{0}=g\left(x^{0}\right) \\
p^{0}=D g\left(x^{0}\right) \\
F\left(p^{0}, z^{0}, x^{0}\right)=0
\end{array}\right.
$$

Also need noncharacteristic condition

$$
D_{p} F\left(p^{0}, z^{0}, x^{0}\right) \cdot v\left(x^{0}\right) \neq 0 .
$$

Under these conditions and assuming F, g, and ∂U are smooth, the method of characteristics provides a local solution to the PDE.
See Theorem 2, p. 106.

Conservation laws

Recall from first lecture:
$u=u(x, t)$ density of some quantity in \mathbb{R}^{n} (e.g. chemical concentration)
$\mathbf{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ flux

Recall from first lecture:
$u=u(x, t)$ density of some quantity in \mathbb{R}^{n} (e.g. chemical concentration)
$\mathbf{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ flux

$$
\frac{d}{d t} \int_{V} u d x=-\int_{\partial V} \mathbf{f} \cdot v d S=-\int_{V} \operatorname{div} \mathbf{f} d x
$$

Recall from first lecture:
$u=u(x, t)$ density of some quantity in \mathbb{R}^{n} (e.g. chemical concentration)
$\mathbf{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ flux

$$
\frac{d}{d t} \int_{V} u d x=-\int_{\partial V} \mathbf{f} \cdot v d S=-\int_{V} \operatorname{div} \mathbf{f} d x
$$

Continuity equation:

$$
u_{t}+\operatorname{div} \mathbf{f}=0
$$

Recall from first lecture:
$u=u(x, t)$ density of some quantity in \mathbb{R}^{n} (e.g. chemical concentration)
$\mathbf{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ flux

$$
\frac{d}{d t} \int_{V} u d x=-\int_{\partial V} \mathbf{f} \cdot v d S=-\int_{V} \operatorname{div} \mathbf{f} d x
$$

Continuity equation:

$$
u_{t}+\operatorname{div} \mathbf{f}=0
$$

$\mathbf{f}=$? Constitutive relation.
Examples: $\mathbf{f}=u \mathbf{b}$ (transport eq.), $\mathbf{f}=-a D u$ heat/diffusion eq.

Scalar conservation law

$$
\mathbf{f}(x)=\mathbf{F}(u(x)), \mathbf{F}: \mathbb{R} \rightarrow \mathbb{R}^{n}
$$

$$
\left\{\begin{align*}
u_{t}+\mathbf{F}^{\prime}(u) \cdot D u & =0, & & x \in \mathbb{R}, t>0 \tag{4}\\
u & =g, & & x \in \mathbb{R}, t=0 .
\end{align*}\right.
$$

Scalar conservation law

$$
\mathbf{f}(x)=\mathbf{F}(u(x)), \mathbf{F}: \mathbb{R} \rightarrow \mathbb{R}^{n}
$$

$$
\left\{\begin{align*}
u_{t}+\mathbf{F}^{\prime}(u) \cdot D u & =0, & & x \in \mathbb{R}, t>0 \tag{4}\\
u & =g, & & x \in \mathbb{R}, t=0 .
\end{align*}\right.
$$

Quasilinear.
Characteristic equations:

$$
\left\{\begin{array} { r l }
{ \dot { \mathbf { x } } (s) } & { = \mathbf { F } ^ { \prime } (z (s)) } \\
{ \dot { t } (s) } & { = 1 } \\
{ \dot { z } (s) } & { = 0 }
\end{array} \Leftrightarrow \left\{\begin{array}{rl}
\mathbf{x}(s) & =x^{0}+s \mathbf{F}^{\prime}\left(g\left(x^{0}\right)\right) \\
t & =s(+0) \\
z(s) & =z^{0}=g\left(x^{0}\right)
\end{array}\right.\right.
$$

Scalar conservation law

$$
\mathbf{f}(x)=\mathbf{F}(u(x)), \mathbf{F}: \mathbb{R} \rightarrow \mathbb{R}^{n}
$$

$$
\left\{\begin{align*}
u_{t}+\mathbf{F}^{\prime}(u) \cdot D u & =0, & & x \in \mathbb{R}, t>0 \tag{4}\\
u & =g, & & x \in \mathbb{R}, t=0 .
\end{align*}\right.
$$

Quasilinear.
Characteristic equations:

$$
\left\{\begin{array} { r l }
{ \dot { \mathbf { x } } (s) } & { = \mathbf { F } ^ { \prime } (z (s)) } \\
{ \dot { t } (s) } & { = 1 } \\
{ \dot { z } (s) } & { = 0 }
\end{array} \Leftrightarrow \left\{\begin{array}{rl}
\mathbf{x}(s) & =x^{0}+s \mathbf{F}^{\prime}\left(g\left(x^{0}\right)\right) \\
t & =s(+0) \\
z(s) & =z^{0}=g\left(x^{0}\right)
\end{array}\right.\right.
$$

Projected characteristics are straight lines, u is constant along projected characteristics.

Scalar conservation law

$$
\begin{aligned}
& \mathbf{f}(x)=\mathbf{F}(u(x)), \mathbf{F}: \mathbb{R} \rightarrow \mathbb{R}^{n} \\
& \qquad\left\{\begin{aligned}
u_{t}+\mathbf{F}^{\prime}(u) \cdot D u=0, & x \in \mathbb{R}, t>0 \\
u=g, & x \in \mathbb{R}, t=0
\end{aligned}\right.
\end{aligned}
$$

Quasilinear.
Characteristic equations:

$$
\left\{\begin{array} { r l }
{ \dot { \mathbf { x } } (s) } & { = \mathbf { F } ^ { \prime } (z (s)) } \\
{ \dot { t } (s) } & { = 1 } \\
{ \dot { z } (s) } & { = 0 }
\end{array} \Leftrightarrow \left\{\begin{array}{rl}
\mathbf{x}(s) & =x^{0}+s \mathbf{F}^{\prime}\left(g\left(x^{0}\right)\right) \\
t & =s(+0) \\
z(s) & =z^{0}=g\left(x^{0}\right)
\end{array}\right.\right.
$$

Projected characteristics are straight lines, u is constant along projected characteristics.
Implicit formula

$$
u(x, t)=g\left(x^{0}(x, t)\right)=g\left(x-t \mathbf{F}^{\prime}\left(g\left(x^{0}\right)\right)\right)=g\left(x-t \mathbf{F}^{\prime}(u(x, t))\right)
$$

Example

$n=1, F(u)=\frac{u^{2}}{2}$ gives Burgers' equation $u_{t}+u u_{x}=0$

Example

$n=1, F(u)=\frac{u^{2}}{2}$ gives Burgers' equation $u_{t}+u u_{x}=0$
Implicit formula

$$
u-g(x-t u)=0
$$

Example

$n=1, F(u)=\frac{u^{2}}{2}$ gives Burgers' equation $u_{t}+u u_{x}=0$
Implicit formula

$$
u-g(x-t u)=0
$$

Implicit function theorem applies if

$$
1+\operatorname{tg}^{\prime}(x-t u) \neq 0
$$

Example

$n=1, F(u)=\frac{u^{2}}{2}$ gives Burgers' equation $u_{t}+u u_{x}=0$
Implicit formula

$$
u-g(x-t u)=0
$$

Implicit function theorem applies if

$$
1+\operatorname{tg}^{\prime}(x-t u) \neq 0
$$

OK for $t>0$ if $g^{\prime}(x)>0, \forall x$. Not OK if $g^{\prime}<0$ somewhere.

Interpretation:
$b>0, u_{t}+b u_{x}=0 \Rightarrow u=g(x-b t)$.
Wave travelling to the right with speed b.

Interpretation:
$b>0, u_{t}+b u_{x}=0 \Rightarrow u=g(x-b t)$.
Wave travelling to the right with speed b.

$u_{t}+u u_{x}=0 \Rightarrow u=g(x-u t)$.
Speed depends on u.

What happens after a shock develops? From now on $n=1$!

What happens after a shock develops? From now on $n=1$! Ideas

What happens after a shock develops? From now on $n=1$! Ideas

- Use integrated form $\frac{d}{d t} \int_{a}^{b} u d x=-[F(u)]_{x=a}^{b}, \forall a<b$.

What happens after a shock develops? From now on $n=1$!

Ideas

- Use integrated form $\frac{d}{d t} \int_{a}^{b} u d x=-[F(u)]_{x=a}^{b}, \forall a<b$.
- Weak solutions

What happens after a shock develops? From now on $n=1$!

Ideas

- Use integrated form $\frac{d}{d t} \int_{a}^{b} u d x=-[F(u)]_{x=a}^{b}, \forall a<b$.
- Weak solutions

Definition
$u \in L^{\infty}(\mathbb{R} \times(0, \infty))$ is an integral (or weak) solution of (4) if

$$
\int_{0}^{\infty} \int_{-\infty}^{\infty}\left(u w_{t}+F(u) w_{x}\right) d x d t+\left.\int_{-\infty}^{\infty} g w d x\right|_{t=0}=0
$$

for all $w \in C_{c}^{\infty}(\mathbb{R} \times[0, \infty))$.

Example (Shock wave for Burgers' eq.)
$u_{t}+u u_{x}=0$

$$
g(x)= \begin{cases}1, & x<0 \\ 0, & x>0\end{cases}
$$

Example (Shock wave for Burgers' eq.)
$u_{t}+u u_{x}=0$

$$
g(x)= \begin{cases}1, & x<0 \\ 0, & x>0\end{cases}
$$

Clear for $x<0(u=1)$ and $x>t(u=0)$. What happens in between?

Example (Shock wave for Burgers' eq.)
$u_{t}+u u_{x}=0$

$$
g(x)= \begin{cases}1, & x<0 \\ 0, & x>0\end{cases}
$$

Clear for $x<0(u=1)$ and $x>t(u=0)$. What happens in between?

Ansatz:

$$
u(x, t)= \begin{cases}1, & x<s(t) \\ 0, & x>s(t)\end{cases}
$$

$s \in C^{1}$.

Let $V \subset \mathbb{R} \times(0, \infty)$
$V_{\ell}=\{(x, t) \in V: x<s(t)\}, V_{r}=\{(x, t) \in V: x>s(t)\}$
$C=\{(s(t), t)\}$

Let $V \subset \mathbb{R} \times(0, \infty)$
$V_{\ell}=\{(x, t) \in V: x<s(t)\}, V_{r}=\{(x, t) \in V: x>s(t)\}$
$C=\{(s(t), t)\}$

Take $w \in C^{\infty}$ with compact support in V :

$$
0=\iint_{V}\left(u w_{t}+\frac{u^{2}}{2} w_{x}\right) d x d t
$$

Let $V \subset \mathbb{R} \times(0, \infty)$
$V_{\ell}=\{(x, t) \in V: x<s(t)\}, V_{r}=\{(x, t) \in V: x>s(t)\}$
$C=\{(s(t), t)\}$

Take $w \in C^{\infty}$ with compact support in V :

$$
\begin{aligned}
0 & =\iint_{V}\left(u w_{t}+\frac{u^{2}}{2} w_{x}\right) d x d t \\
& =\iint_{V_{\ell}}\left(w_{t}+\frac{1}{2} w_{x}\right) d x d t
\end{aligned}
$$

Let $V \subset \mathbb{R} \times(0, \infty)$
$V_{\ell}=\{(x, t) \in V: x<s(t)\}, V_{r}=\{(x, t) \in V: x>s(t)\}$
$C=\{(s(t), t)\}$

Take $w \in C^{\infty}$ with compact support in V :

$$
\begin{aligned}
0 & =\iint_{V}\left(u w_{t}+\frac{u^{2}}{2} w_{x}\right) d x d t \\
& =\iint_{V_{\ell}}\left(w_{t}+\frac{1}{2} w_{x}\right) d x d t \\
& =\int_{C}\left(v^{2}+\frac{1}{2} v^{1}\right) w d \ell
\end{aligned}
$$

Let $V \subset \mathbb{R} \times(0, \infty)$
$V_{\ell}=\{(x, t) \in V: x<s(t)\}, V_{r}=\{(x, t) \in V: x>s(t)\}$
$C=\{(s(t), t)\}$

Take $w \in C^{\infty}$ with compact support in V :

$$
\begin{aligned}
0 & =\iint_{V}\left(u w_{t}+\frac{u^{2}}{2} w_{x}\right) d x d t \\
& =\iint_{V_{\ell}}\left(w_{t}+\frac{1}{2} w_{x}\right) d x d t \\
& =\int_{C}\left(v^{2}+\frac{1}{2} v^{1}\right) w d \ell
\end{aligned}
$$

w arbitrary \Rightarrow

$$
v^{2}+\frac{1}{2} v^{1}=0 \Leftrightarrow-s^{\prime}(t)+\frac{1}{2}=0 \Leftrightarrow s^{\prime}(t)=\frac{1}{2} .
$$

Solution:

$$
u(x, t)= \begin{cases}1, & x<\frac{1}{2} t \\ 0, & x>\frac{1}{2} t\end{cases}
$$

Solution:

$$
u(x, t)= \begin{cases}1, & x<\frac{1}{2} t \\ 0, & x>\frac{1}{2} t\end{cases}
$$

For a general F and a general u which is C^{1} on either side of C, we get that u is a classical solution on either side and

$$
F\left(u_{\ell}\right)-F\left(u_{r}\right)=\dot{s}\left(u_{\ell}-u_{r}\right)
$$

This is called the Rankine-Hugoniot condition.
See Evans pp. 137-139.

