

Written Examination Partial Differential Equations Monday, August 22, 2016 08.00-13.00

Centre for Mathematical Sciences

Mathematics, Faculty of Science

All functions are assumed to be real-valued throughout the exam.

Note: Only students who are registered or re-registered on the course are allowed to take the exam.

Test results: Posted Tuesday, August 23, before 17.00. Official viewing of the marked scripts: Wednesday, August 24, 11.30-12.00, in room 508.

Oral exams: Thursday, August 25 – Tuesday, August 30. State your preference (day and AM/PM) on the cover sheet of your test – at least two options.

1. Find a C^2 solution of the wave equation

$$u_{tt} = u_{xx}, \quad x \in (0, \pi), t > 0,$$

with boundary conditions

$$u(0,t) = 0, \quad u(\pi,t) = 0$$

and initial conditions

$$u(x,0) = \sin(2x), \quad u_t(x,0) = \sin^3 x.$$

2. Assume that $U \subset \mathbb{R}^n$ is open and bounded and that ∂U is C^1 . Let $u \in C^2(\overline{U} \times [0,T])$, T > 0, be a solution of the equation

$$u_t - \Delta u + \sum_{i=1}^n b_i u_{x_i} + c(x,t)u = 0, \quad x \in U, t \in (0,T),$$

with

$$u(x,t) = 0, \quad x \in \partial U, t \in [0,T],$$

where b_i , i = 1, ..., n, are real numbers and $c \in C(\overline{U} \times [0, T])$ with $c(x, t) \ge 0$ for all $(x, t) \in \overline{U} \times [0, T]$. Show that

$$\int_{U} u^{2}(x,t) \, dx$$

is a decreasing function of t.

Hint: The divergence theorem might be useful.

3. a) Solve the problem

$$xu_x - yu_y = -u, \quad y > 0,$$

with $u(x, 1) = \sin x$.

b) Can the solution be extended to \mathbb{R}^2 and, if so, is the extension unique (in the class of $C^1(\mathbb{R}^2)$ solutions)?

- **4.** Let *U* be a bounded, open subset of \mathbb{R}^2 and let *L* be the second-order linear partial differential operator defined by $Lu = -u_{x_1x_1} + 2u_{x_1x_2} 2u_{x_2x_2} + x_1u_{x_1}$.
 - a) Show that L is uniformly elliptic.
 - **b)** Let $u \in C^2(U) \cap C(\overline{U})$ be a solution of the boundary-value problem

$$Lu = u - u^3$$
 in U ,
 $u = 0$ on ∂U .

Show that $|u| \leq 1$.

5. Let $H^1_{\text{per}}(\mathbb{R}) = \{u \in H^1_{\text{loc}}(\mathbb{R}) : u(x+2\pi) = u(x)\}$ be the Hilbert space of real-valued 2π periodic functions which are locally in the Sobolev space H^1 , equipped with the inner product

$$(u,v)_{H^1_{per}(\mathbb{R})} = \int_{-\pi}^{\pi} (u(x)v(x) + u'(x)v'(x)) dx.$$

Define $C^k_{\mathrm{per}}(\mathbb{R})$ and $L^2_{\mathrm{per}}(\mathbb{R})$ similarly.

a) Show that

$$\int_{-\pi}^{\pi} (u(x))^2 dx \le \int_{-\pi}^{\pi} (u'(x))^2 dx$$

for all $u \in H^1_{per}(\mathbb{R})$ with $\int_{-\pi}^{\pi} u(x) dx = 0$.

b) Let $a \in C^1_{per}(\mathbb{R})$ and $f \in C_{per}(\mathbb{R})$ and assume that $u \in C^2_{per}(\mathbb{R})$ is a solution of the equation

$$-(a(x)u')' = f. (1)$$

Show that

$$\int_{-\pi}^{\pi} a(x)u'(x)v'(x) dx = \int_{-\pi}^{\pi} f(x)v(x) dx$$
 (2)

for all $v \in C^1_{per}(\mathbb{R})$.

c) Assume now that $a \in C_{per}(\mathbb{R})$, $f \in L^2_{per}(\mathbb{R})$. We say that $u \in H^1_{per}(\mathbb{R})$ is a weak solution of (1) if (2) holds for all $v \in H^1_{per}(\mathbb{R})$. Assume that $\min_{x \in \mathbb{R}} a(x) > 0$. Show that the equation

$$-(a(x)u')' = f$$

has a unique weak solution $u \in H^1_{per}(\mathbb{R})$ with $\int_{-\pi}^{\pi} u(x) \, dx = 0$ for each $f \in L^2_{per}(\mathbb{R})$ with $\int_{-\pi}^{\pi} f(x) \, dx = 0$. Show also that the condition $\int_{-\pi}^{\pi} f(x) \, dx = 0$ is necessary for the equation to have a weak solution.