Written Examination Partial Differential Equations
 Monday, August 22, 2016
 08.00-13.00

Centre for Mathematical Sciences
Mathematics, Faculty of Science

All functions are assumed to be real-valued throughout the exam.
Note: Only students who are registered or re-registered on the course are allowed to take the exam.

Test results: Posted Tuesday, August 23, before 17.00. Official viewing of the marked scripts: Wednesday, August 24, 11.30-12.00, in room 508.

Oral exams: Thursday, August 25 - Tuesday, August 30. State your preference (day and AM/PM) on the cover sheet of your test - at least two options.

1. Find a C^{2} solution of the wave equation

$$
u_{t t}=u_{x x}, \quad x \in(0, \pi), t>0,
$$

with boundary conditions

$$
u(0, t)=0, \quad u(\pi, t)=0
$$

and initial conditions

$$
u(x, 0)=\sin (2 x), \quad u_{t}(x, 0)=\sin ^{3} x .
$$

2. Assume that $U \subset \mathbb{R}^{n}$ is open and bounded and that ∂U is C^{1}. Let $u \in C^{2}(\bar{U} \times[0, T]), T>0$, be a solution of the equation

$$
u_{t}-\Delta u+\sum_{i=1}^{n} b_{i} u_{x_{i}}+c(x, t) u=0, \quad x \in U, t \in(0, T),
$$

with

$$
u(x, t)=0, \quad x \in \partial U, t \in[0, T],
$$

where $b_{i}, i=1, \ldots, n$, are real numbers and $c \in C(\bar{U} \times[0, T])$ with $c(x, t) \geq 0$ for all $(x, t) \in$ $\bar{U} \times[0, T]$. Show that

$$
\int_{U} u^{2}(x, t) d x
$$

is a decreasing function of t.
Hint: The divergence theorem might be useful.
3. a) Solve the problem

$$
x u_{x}-y u_{y}=-u, \quad y>0,
$$

with $u(x, 1)=\sin x$.
b) Can the solution be extended to \mathbb{R}^{2} and, if so, is the extension unique (in the class of $C^{1}\left(\mathbb{R}^{2}\right)$ solutions)?
4. Let U be a bounded, open subset of \mathbb{R}^{2} and let L be the second-order linear partial differential operator defined by $L u=-u_{x_{1} x_{1}}+2 u_{x_{1} x_{2}}-2 u_{x_{2} x_{2}}+x_{1} u_{x_{1}}$.
a) Show that L is uniformly elliptic.
b) Let $u \in C^{2}(U) \cap C(\bar{U})$ be a solution of the boundary-value problem

$$
\begin{aligned}
L u & =u-u^{3} & & \text { in } U, \\
u & =0 & & \text { on } \partial U .
\end{aligned}
$$

Show that $|u| \leq 1$.
5. Let $H_{\mathrm{per}}^{1}(\mathbb{R})=\left\{u \in H_{\text {loc }}^{1}(\mathbb{R}): u(x+2 \pi)=u(x)\right\}$ be the Hilbert space of real-valued 2π periodic functions which are locally in the Sobolev space H^{1}, equipped with the inner product

$$
(u, v)_{H_{\mathrm{per}}^{1}(\mathbb{R})}=\int_{-\pi}^{\pi}\left(u(x) v(x)+u^{\prime}(x) v^{\prime}(x)\right) d x .
$$

Define $C_{\text {per }}^{k}(\mathbb{R})$ and $L_{\text {per }}^{2}(\mathbb{R})$ similarly.
a) Show that

$$
\int_{-\pi}^{\pi}(u(x))^{2} d x \leq \int_{-\pi}^{\pi}\left(u^{\prime}(x)\right)^{2} d x
$$

for all $u \in H_{\text {per }}^{1}(\mathbb{R})$ with $\int_{-\pi}^{\pi} u(x) d x=0$.
b) Let $a \in C_{\text {per }}^{1}(\mathbb{R})$ and $f \in C_{\text {per }}(\mathbb{R})$ and assume that $u \in C_{\text {per }}^{2}(\mathbb{R})$ is a solution of the equation

$$
\begin{equation*}
-\left(a(x) u^{\prime}\right)^{\prime}=f . \tag{1}
\end{equation*}
$$

Show that

$$
\begin{equation*}
\int_{-\pi}^{\pi} a(x) u^{\prime}(x) v^{\prime}(x) d x=\int_{-\pi}^{\pi} f(x) v(x) d x \tag{2}
\end{equation*}
$$

for all $v \in C_{\text {per }}^{1}(\mathbb{R})$.
c) Assume now that $a \in C_{\text {per }}(\mathbb{R}), f \in L_{\text {per }}^{2}(\mathbb{R})$. We say that $u \in H_{\text {per }}^{1}(\mathbb{R})$ is a weak solution of (1) if (2) holds for all $v \in H_{\text {per }}^{1}(\mathbb{R})$. Assume that $\min _{x \in \mathbb{R}} a(x)>0$. Show that the equation

$$
-\left(a(x) u^{\prime}\right)^{\prime}=f
$$

has a unique weak solution $u \in H_{\text {per }}^{1}(\mathbb{R})$ with $\int_{-\pi}^{\pi} u(x) d x=0$ for each $f \in L_{\text {per }}^{2}(\mathbb{R})$ with $\int_{-\pi}^{\pi} f(x) d x=0$. Show also that the condition $\int_{-\pi}^{\pi} f(x) d x=0$ is necessary for the equation to have a weak solution.

