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8. (Solution by Marko Sobak)
Let

L =−∑
i j
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∂
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i j

be uniformly elliptic. Suppose that u is smooth and such that Lu = 0. We aim to show that

‖Du‖L∞(U) ≤C(‖Du‖L∞(∂U)+‖u‖L∞(∂U)).

Following the hint, put
vλ = |Du|2 +λu2.

We aim to show that Lvλ ≤ 0 in U for large enough λ . We calculate
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Hence

Lvλ =−2

(
∑
i jk

ai j
∂

2
jku ∂

2
iku+∑

i jk
ai j

∂ku ∂
3
i jku+λ ∑

i j
ai j

∂ ju ∂iu

)
,

where the last term is not present since Lu = 0. Note that if we define the vectors wk = ∂kDu,
then we see by uniform ellipticity that the first term satisfies

∑
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i wk

j ≥C∑
k
|wk|2 =C|D2u|2.

For the second term, we observe that
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Please, turn over!



Since the derivatives ∂kai j are bounded by assumption, we get

∑
i jk

∂kai j
∂ku ∂

2
i ju≤ A∑

k
|∂ku|∑

i j
|∂ 2

i ju| ≤ A′|Du||D2u|.

For the final term we note that uniform ellipticity again gives

∑
i j

ai j
∂ ju ∂iu≥C|Du|2

for non-constant u. Combining these findings we see that

−Lvλ ≥C(|D2u|2 +λ |Du|2)−A′|Du||D2u|

=C(|D2u|2−2A′′|Du||D2u|+λ |Du|2)

=C(|D2u|−A′′|Du|)2 +(Cλ −A′′2)|Du|2,

which is clearly non-negative if λ ≥ A′′2/C. Hence Lvλ ≤ 0, so that Theorem 1 in 6.4.1 in
Evans implies that

‖vλ‖L∞(U) = ‖vλ‖L∞(∂U).

Hence

‖Du‖L∞(U) ≤ ‖
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√
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≤
√
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≤ λ
′(‖Du‖L∞(∂U)+‖u‖L∞(∂U)).

10. (Solution by Alex Bergman)
Let U ⊂ Rn be open, bounded with smooth boundary ∂U . Suppose also U is connected.
Suppose u is a smooth solution of {

−∆u = 0, in U
∂u
∂ν

= 0, in ∂U
.

Show u≡C for some constant C.

1. Using an energy method.

Proof. By Green’s formula∫
U
|Du|2dx =−

∫
U

u∆udx+
∫

∂U

∂u
∂ν

udS = 0.

So Du≡ 0. Since U is connected we have u≡C for some constant C.

2. Using a maximum principle argument.

Proof. Suppose the maximum is not achieved in the interior, i.e. there exists some
x0 ∈ ∂U , such that u(x0) > u(x) for all x ∈U . Then the Hopf lemma (∂U is smooth so
in particular C2 and thus has the interior ball condition) implies ∂u

∂ν
(x0) > 0 which is a

contradiction. Thus the maximum is achieved in U , since U is connected we have u≡C
by the strong maximum principle.



12. (Solution by Filip Jonsson Kling)
Problem:
We say that the uniformly elliptic operator

Lu =−
n

∑
i, j=1

ai juxix j +
n
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i=1

biuxi + cu

satisfies the weak maximum principle if for all u ∈C2(U)∩C(Ū){
Lu≤ 0 inU

u≤ 0 in ∂U

implies that u≤ 0 in U .
Suppose that there exists a function v ∈C2(U)∩C(Ū) such that Lv≥ 0 in U and v > 0 on Ū .
Show that L satisfies the weak maximum principle.
Solution:
Pick u as above and define w = u/v. This is well defined on U since v > 0 on Ū . Then

(v2wxi)x j = (uxiv− vxiu)x j = uxix j v+uxivx j − vxix j u− vxiux j .

We want to find an elliptic operator M such that Mw≤ 0 in {u > 0} and M has no zeroth-order
term. In the light of the above calculation we try
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∑
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∑
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where we used that ai j = a ji. Now adding that last term as a first order term to our definition
of M, we get that

Mw = vLu−uLv≤ 0

on the set {u > 0} since there uLv ≥ 0 and vLu ≤ 0. Since M is uniformly elliptic (note that
v2 is bounded in Ū strictly above zero), we may use the weak maximum principle for c = 0 to
say that

max
{u≥0}

w = max
∂{u≥0}

w = 0

since u≤ 0 on ∂U and v > 0 in Ū . Hence {u > 0}= /0 so u≤ 0 in U and thus L satisfies the
weak maximum principle.

Please, turn over!



Evans 7.5

7. (Solution by Simon Halvdansson)
Problem:
Suppose u is a smooth solution of

ut −∆u+ cu = 0 in U× (0,∞)

u = 0 on ∂U× [0,∞)

u = g on U×{t = 0}

and c≥ γ > 0. Prove the pointwise exponential decay estimate

|u(x, t)| ≤Ce−γt

Solution:
Consider the auxiliary function v(x, t) = eγtu(x, t). A simple calculation shows that

ut = e−γt(−γv+ vt)

∆u = e−γt∆v
cu = e−γtcv

=⇒ 0 = ut −∆u+ cu = vt −∆v+(c− γ)︸ ︷︷ ︸
≥0

v = 0

and so the weak maximum principle yields (see the remark on p. 391)

max
ŪT

|v|= max
ΓT
|v|

but since u = v = 0 on ∂U× [0,∞), the above maximum is bounded by maxU |g|=: C. Now

|u(x, t)|= e−γt |v(x, t)| ≤ e−γt max
ŪT

|v| ≤Ce−γt

as desired.

8. (Solution by Simon Halvdansson)
Problem:
Suppose u is a smooth solution of the PDE from Problem 7, that g≥ 0, and that c is bounded.
Show u≥ 0.

Solution:
Using the same auxiliary function v(x, t) = eλ tu(x, t) we again have

vt −∆v+(c−λ )︸ ︷︷ ︸
≥0

v = 0.

Since c(x, t) is bounded we can choose λ so that the last term is positive by growing or
shrinking λ . The maximum principle with vt +Lv≥ 0,c≥ 0 then yields that

min
ŪT

v≥−max
ΓT

v− =−max
U

g− = 0

since v = 0 on ∂U for all t so v≥ 0 which yields u≥ 0 since u,v have the same sign.


