LUND

UNIVERSITY

Centre for Mathematical Sciences

Mathematics, Faculty of Science

Solutions, April 30

Evans 6.6

8. (Solution by Marko Sobak)

Let

$$
L=-\sum_{i j} a^{i j} \partial_{i j}^{2}
$$

be uniformly elliptic. Suppose that u is smooth and such that $L u=0$. We aim to show that

$$
\|D u\|_{L^{\infty}(U)} \leq C\left(\|D u\|_{L^{\infty}(\partial U)}+\|u\|_{L^{\infty}(\partial U)}\right)
$$

Following the hint, put

$$
v_{\lambda}=|D u|^{2}+\lambda u^{2}
$$

We aim to show that $L v_{\lambda} \leq 0$ in U for large enough λ. We calculate

$$
\begin{aligned}
\partial_{i} v_{\lambda} & =2\left(\sum_{k} \partial_{k} u \partial_{i k}^{2} u+\lambda u \partial_{i} u\right) \\
\partial_{i j}^{2} v_{\lambda} & =2\left(\sum_{k} \partial_{j k}^{2} u \partial_{i k}^{2} u+\sum_{k} \partial_{k} u \partial_{i j k}^{3} u+\lambda \partial_{j} u \partial_{i} u+\lambda u \partial_{i j}^{2} u\right)
\end{aligned}
$$

Hence

$$
L v_{\lambda}=-2\left(\sum_{i j k} a^{i j} \partial_{j k}^{2} u \partial_{i k}^{2} u+\sum_{i j k} a^{i j} \partial_{k} u \partial_{i j k}^{3} u+\lambda \sum_{i j} a^{i j} \partial_{j} u \partial_{i} u\right)
$$

where the last term is not present since $L u=0$. Note that if we define the vectors $w^{k}=\partial_{k} D u$, then we see by uniform ellipticity that the first term satisfies

$$
\sum_{i j k} a^{i j} w_{i}^{k} w_{j}^{k} \geq C \sum_{k}\left|w^{k}\right|^{2}=C\left|D^{2} u\right|^{2}
$$

For the second term, we observe that

$$
0=\partial_{k} L u=-\sum_{i j} \partial_{k} a^{i j} \partial_{i j}^{2} u-\sum_{i j} a^{i j} \partial_{i j k}^{3} u
$$

Thus

$$
\sum_{i j k} a^{i j} \partial_{k} u \partial_{i j k}^{3} u=-\sum_{i j k} \partial_{k} a^{i j} \partial_{k} u \partial_{i j}^{2} u
$$

Since the derivatives $\partial_{k} a^{i j}$ are bounded by assumption, we get

$$
\sum_{i j k} \partial_{k} a^{i j} \partial_{k} u \partial_{i j}^{2} u \leq A \sum_{k}\left|\partial_{k} u\right| \sum_{i j}\left|\partial_{i j}^{2} u\right| \leq A^{\prime}\left|D u \| D^{2} u\right| .
$$

For the final term we note that uniform ellipticity again gives

$$
\sum_{i j} a^{i j} \partial_{j} u \partial_{i} u \geq C|D u|^{2}
$$

for non-constant u. Combining these findings we see that

$$
\begin{aligned}
-L v_{\lambda} & \geq C\left(\left|D^{2} u\right|^{2}+\lambda|D u|^{2}\right)-A^{\prime}|D u|\left|D^{2} u\right| \\
& =C\left(\left|D^{2} u\right|^{2}-2 A^{\prime \prime}|D u|\left|D^{2} u\right|+\lambda|D u|^{2}\right) \\
& =C\left(\left|D^{2} u\right|-A^{\prime \prime}|D u|\right)^{2}+\left(C \lambda-A^{\prime \prime 2}\right)|D u|^{2}
\end{aligned}
$$

which is clearly non-negative if $\lambda \geq A^{\prime \prime 2} / C$. Hence $L v_{\lambda} \leq 0$, so that Theorem 1 in 6.4.1 in Evans implies that

$$
\left\|v_{\lambda}\right\|_{L^{\infty}(U)}=\left\|v_{\lambda}\right\|_{L^{\infty}(\partial U)} .
$$

Hence

$$
\begin{aligned}
\|D u\|_{L^{\infty}(U)} & \leq\left\|\sqrt{v_{\lambda}}\right\|_{L^{\infty}(U)}=\left\|\sqrt{v_{\lambda}}\right\|_{L^{\infty}(\partial U)} \\
& \leq \sqrt{\left\||D u|^{2}\right\|_{L^{\infty}(\partial U)}+\lambda\left\||u|^{2}\right\|_{L^{\infty}(\partial U)}} \\
& \leq \lambda^{\prime}\left(\|D u\|_{L^{\infty}(\partial U)}+\|u\|_{L^{\infty}(\partial U)}\right)
\end{aligned}
$$

10. (Solution by Alex Bergman)

Let $U \subset \mathbb{R}^{n}$ be open, bounded with smooth boundary ∂U. Suppose also U is connected. Suppose u is a smooth solution of

$$
\left\{\begin{array}{l}
-\Delta u=0, \text { in } U \\
\frac{\partial u}{\partial v}=0, \text { in } \partial U
\end{array}\right.
$$

Show $u \equiv C$ for some constant C.

1. Using an energy method.

Proof. By Green's formula

$$
\int_{U}|D u|^{2} d x=-\int_{U} u \Delta u d x+\int_{\partial U} \frac{\partial u}{\partial v} u d S=0 .
$$

So $D u \equiv 0$. Since U is connected we have $u \equiv C$ for some constant C.
2. Using a maximum principle argument.

Proof. Suppose the maximum is not achieved in the interior, i.e. there exists some $x_{0} \in \partial U$, such that $u\left(x_{0}\right)>u(x)$ for all $x \in U$. Then the Hopf lemma (∂U is smooth so in particular C^{2} and thus has the interior ball condition) implies $\frac{\partial u}{\partial v}\left(x_{0}\right)>0$ which is a contradiction. Thus the maximum is achieved in U, since U is connected we have $u \equiv C$ by the strong maximum principle.
12. (Solution by Filip Jonsson Kling)

Problem:

We say that the uniformly elliptic operator

$$
L u=-\sum_{i, j=1}^{n} a^{i j} u_{x_{i} x_{j}}+\sum_{i=1}^{n} b^{i} u_{x_{i}}+c u
$$

satisfies the weak maximum principle if for all $u \in C^{2}(U) \cap C(\bar{U})$

$$
\left\{\begin{aligned}
L u \leq 0 & \text { in } U \\
u \leq 0 & \text { in } \partial U
\end{aligned}\right.
$$

implies that $u \leq 0$ in U.
Suppose that there exists a function $v \in C^{2}(U) \cap C(\bar{U})$ such that $L v \geq 0$ in U and $v>0$ on \bar{U}. Show that L satisfies the weak maximum principle.

Solution:

Pick u as above and define $w=u / v$. This is well defined on U since $v>0$ on \bar{U}. Then

$$
\left(v^{2} w_{x_{i}}\right)_{x_{j}}=\left(u_{x_{i}} v-v_{x_{i}} u\right)_{x_{j}}=u_{x_{i} x_{j}} v+u_{x_{i}} v_{x_{j}}-v_{x_{i} x_{j}} u-v_{x_{i}} u_{x_{j}} .
$$

We want to find an elliptic operator M such that $M w \leq 0$ in $\{u>0\}$ and M has no zeroth-order term. In the light of the above calculation we try

$$
\begin{aligned}
M w & =-\sum_{i, j=1}^{n} a^{i j}\left(v^{2} w_{x_{i}}\right)_{x_{j}} \\
& =-\sum_{i, j=1}^{n} a^{i j}\left(u_{x_{i} x_{j}} v+u_{x_{i}} v_{x_{j}}-v_{x_{i} x_{j}} u-v_{x_{i}} u_{x_{j}}\right) \\
& =-\sum_{i, j=1}^{n} a^{i j}\left(u_{x_{i}} v_{x_{j}}-v_{x_{i}} u_{x_{j}}\right)+v\left(-\sum_{i, j=1}^{n} a^{i j} u_{x_{i} x_{j}}\right)-u\left(-\sum_{i, j=1}^{n} a^{i j} v_{x_{i} x_{j}}\right) \\
& =0+v\left(L u-\sum_{i=1}^{n} b^{i} u_{x_{i}}-c u\right)-u\left(L v-\sum_{i=1}^{n} b^{i} v_{x_{i}}-c v\right) \\
& =v L u-u L v+u \sum_{i=1}^{n} b^{i} v_{x_{i}}-v \sum_{i=1}^{n} b^{i} u_{x_{i}} \\
& =v L u-u L v-\sum_{i=1}^{n} b^{i} v^{2} w_{x_{i}}
\end{aligned}
$$

where we used that $a^{i j}=a^{j i}$. Now adding that last term as a first order term to our definition of M, we get that

$$
M w=v L u-u L v \leq 0
$$

on the set $\{u>0\}$ since there $u L v \geq 0$ and $v L u \leq 0$. Since M is uniformly elliptic (note that v^{2} is bounded in \bar{U} strictly above zero), we may use the weak maximum principle for $c=0$ to say that

$$
\max _{\{u \geq 0\}} w=\max _{\partial\{u \geq 0\}} w=0
$$

since $u \leq 0$ on ∂U and $v>0$ in \bar{U}. Hence $\{u>0\}=\emptyset$ so $u \leq 0$ in U and thus L satisfies the weak maximum principle.

Evans 7.5

7. (Solution by Simon Halvdansson)

Problem:

Suppose u is a smooth solution of

$$
\left\{\begin{array}{l}
u_{t}-\Delta u+c u=0 \text { in } U \times(0, \infty) \\
u=0 \text { on } \partial U \times[0, \infty) \\
u=g \text { on } U \times\{t=0\}
\end{array}\right.
$$

and $c \geq \gamma>0$. Prove the pointwise exponential decay estimate

$$
|u(x, t)| \leq C e^{-\gamma t}
$$

Solution:

Consider the auxiliary function $v(x, t)=e^{\gamma t} u(x, t)$. A simple calculation shows that

$$
\{\begin{array}{l}
u_{t}=e^{-\gamma t}\left(-\gamma v+v_{t}\right) \\
\Delta u=e^{-\gamma t} \Delta v \\
c u=e^{-\gamma t} c v
\end{array} \quad \Longrightarrow 0=u_{t}-\Delta u+c u=v_{t}-\Delta v+\underbrace{(c-\gamma)}_{\geq 0} v=0
$$

and so the weak maximum principle yields (see the remark on p .391)

$$
\max _{U_{T}}|v|=\max _{\Gamma_{T}}|v|
$$

but since $u=v=0$ on $\partial U \times[0, \infty)$, the above maximum is bounded by $\max _{\bar{U}}|g|=: C$. Now

$$
|u(x, t)|=e^{-\gamma t}|v(x, t)| \leq e^{-\gamma t} \max _{\bar{U}_{T}}|v| \leq C e^{-\gamma t}
$$

as desired.
8. (Solution by Simon Halvdansson)

Problem:

Suppose u is a smooth solution of the PDE from Problem 7, that $g \geq 0$, and that c is bounded. Show $u \geq 0$.

Solution:

Using the same auxiliary function $v(x, t)=e^{\lambda t} u(x, t)$ we again have

$$
v_{t}-\Delta v+\underbrace{(c-\lambda)}_{\geq 0} v=0 .
$$

Since $c(x, t)$ is bounded we can choose λ so that the last term is positive by growing or shrinking λ. The maximum principle with $v_{t}+L v \geq 0, c \geq 0$ then yields that

$$
\min _{\bar{U}_{T}} v \geq-\max _{\bar{\Gamma}_{T}} v^{-}=-\max _{\bar{U}} g^{-}=0
$$

since $v=0$ on ∂U for all t so $v \geq 0$ which yields $u \geq 0$ since u, v have the same sign.

