PDE Lecture

Evolution equations with variable coefficients

April 28

2nd order parabolic equations

$$\begin{cases} u_t + Lu = f \text{ in } U_T, \\ u = 0 \text{ on } \partial U \times [0, T] \\ u = g \text{ on } U \times \{t = 0\}. \end{cases}$$
 (1

$$\begin{cases} u_t + Lu = f \text{ in } U_T, \\ u = 0 \text{ on } \partial U \times [0, T] \\ u = g \text{ on } U \times \{t = 0\}. \end{cases}$$
 (1)

Divergence form:

$$Lu = -\sum_{i,j=1}^{n} (a^{ij}(x,t)u_{x_i})_{x_j} + \sum_{i=1}^{n} b^i(x,t)u_{x_i} + c(x,t)u$$
 (2)

$$\begin{cases} u_t + Lu = f \text{ in } U_T, \\ u = 0 \text{ on } \partial U \times [0, T] \\ u = g \text{ on } U \times \{t = 0\}. \end{cases}$$
 (1)

Divergence form:

$$Lu = -\sum_{i,j=1}^{n} (a^{ij}(x,t)u_{x_i})_{x_j} + \sum_{i=1}^{n} b^{i}(x,t)u_{x_i} + c(x,t)u$$
 (2)

Non-divergence form:

$$Lu = -\sum_{i,j=1}^{n} a^{ij}(x,t)u_{x_ix_j} + \sum_{i=1}^{n} b^i(x,t)u_{x_i} + c(x,t)u$$
 (3)

$$\begin{cases} u_t + Lu = f \text{ in } U_T, \\ u = 0 \text{ on } \partial U \times [0, T] \\ u = g \text{ on } U \times \{t = 0\}. \end{cases}$$
 (1)

Divergence form:

$$Lu = -\sum_{i,j=1}^{n} (a^{ij}(x,t)u_{x_i})_{x_j} + \sum_{i=1}^{n} b^{i}(x,t)u_{x_i} + c(x,t)u$$
 (2)

Non-divergence form:

$$Lu = -\sum_{i,j=1}^{n} a^{ij}(x,t)u_{x_ix_j} + \sum_{i=1}^{n} b^i(x,t)u_{x_i} + c(x,t)u$$
 (3)

Uniformly parabolic if:

$$\sum_{i,j=1}^n a^{ij}(x,t)\xi_i\xi_j \ge \theta |\xi|^2 \quad \forall x \in U \text{ and } \xi \in \mathbb{R}^n$$

► Heat/diffusion eq: $L = -\Delta$

- ► Heat/diffusion eq: $L = -\Delta$
- Diffusion in anisotropic, non-homogeneous media: Fick's law $\mathbf{F} = -A(x)Du$, $A(x) = (a^{ij}(x))_{i,j}$, s.p.d $L = -\sum_{i,i=1}^{n} (a^{ij}(x)u_{x_i})_{x_i}$

- ► Heat/diffusion eq: $L = -\Delta$
- ▶ Diffusion in anisotropic, non-homogeneous media: Fick's law $\mathbf{F} = -A(x)Du$, $A(x) = (a^{ij}(x))_{i,j}$, s.p.d $L = -\sum_{i,i=1}^{n} (a^{ij}(x)u_{x_i})_{x_i}$
- ► Fokker-Planck eq: $L = -\sum_{i,j=1}^{n} (a^{ij}u)_{x_ix_j} \sum_{i=1}^{n} (b^iu)_{x_i}$

- ► Heat/diffusion eq: $L = -\Delta$
- ▶ Diffusion in anisotropic, non-homogeneous media: Fick's law $\mathbf{F} = -A(x)Du$, $A(x) = (a^{ij}(x))_{i,j}$, s.p.d $L = -\sum_{i,j=1}^{n} (a^{ij}(x)u_{x_i})_{x_j}$
- ► Fokker-Planck eq: $L = -\sum_{i,j=1}^{n} (a^{ij}u)_{x_ix_j} \sum_{i=1}^{n} (b^iu)_{x_i}$

Interpretation

▶ Second-order terms → diffusion.

- ► Heat/diffusion eq: $L = -\Delta$
- ▶ Diffusion in anisotropic, non-homogeneous media: Fick's law $\mathbf{F} = -A(x)Du$, $A(x) = (a^{ij}(x))_{i,j}$, s.p.d $L = -\sum_{i,i=1}^{n} (a^{ij}(x)u_{x_i})_{x_i}$
- ► Fokker-Planck eq: $L = -\sum_{i,j=1}^{n} (a^{ij}u)_{x_ix_j} \sum_{i=1}^{n} (b^iu)_{x_i}$

Interpretation

- Second-order terms → diffusion.
- First-order terms → transport.

- ► Heat/diffusion eq: $L = -\Delta$
- ▶ Diffusion in anisotropic, non-homogeneous media: Fick's law $\mathbf{F} = -A(x)Du$, $A(x) = (a^{ij}(x))_{i,j}$, s.p.d $L = -\sum_{i,i=1}^{n} (a^{ij}(x)u_{x_i})_{x_i}$
- ► Fokker-Planck eq: $L = -\sum_{i,j=1}^{n} (a^{ij}u)_{x_ix_j} \sum_{i=1}^{n} (b^iu)_{x_i}$

Interpretation

- Second-order terms → diffusion.
- ► First-order terms → transport.
- ➤ Zeroth-order term → creation/depletion.

Weak solutions and regularity (Evans 7.1.1 & 7.1.2)

L of divergence form with a^{ij} , b^i , $c \in L^{\infty}(U_T)$, uniformly parabolic $f \in L^2(U_T)$, $g \in L^2(U)$

L of divergence form with $a^{ij},\,b^i,\,c\in L^\infty(U_T),$ uniformly parabolic $f\in L^2(U_T),\,g\in L^2(U)$

Bilinear form

$$B[u,v;t] := \int_{U} \left(\sum_{i,j=1}^{n} a^{ij}(\cdot,t) u_{x_i} v_{x_j} + \sum_{i=1}^{n} b^{i}(\cdot,t) u_{x_i} v + c(\cdot,t) uv \right) dx$$

L of divergence form with a^{ij} , b^i , $c\in L^\infty(U_T)$, uniformly parabolic $f\in L^2(U_T)$, $g\in L^2(U)$

Bilinear form

$$B[u,v;t] := \int_{U} \left(\sum_{i,j=1}^{n} a^{ij}(\cdot,t) u_{x_{i}} v_{x_{j}} + \sum_{i=1}^{n} b^{i}(\cdot,t) u_{x_{i}} v + c(\cdot,t) u v \right) dx$$

View solution as map $\mathbf{u} \colon [0,T] \to H^1_0(U)$, $[\mathbf{u}(t)](x) \coloneqq u(x,t)$, and similar for f.

L of divergence form with a^{ij} , b^i , $c\in L^\infty(U_T)$, uniformly parabolic $f\in L^2(U_T)$, $g\in L^2(U)$

Bilinear form

$$B[u,v;t] := \int_{U} \left(\sum_{i,j=1}^{n} a^{ij}(\cdot,t) u_{x_{i}} v_{x_{j}} + \sum_{i=1}^{n} b^{i}(\cdot,t) u_{x_{i}} v + c(\cdot,t) u v \right) dx$$

View solution as map $\mathbf{u} \colon [0,T] \to H^1_0(U), \ [\mathbf{u}(t)](x) \coloneqq u(x,t),$ and similar for f.

Assume u smooth solution, multiply by test function $v \in H^1_0(U)$ and int. by parts

L of divergence form with a^{ij} , b^i , $c\in L^\infty(U_T)$, uniformly parabolic $f\in L^2(U_T)$, $g\in L^2(U)$

Bilinear form

$$B[u,v;t] := \int_{U} \left(\sum_{i,j=1}^{n} a^{ij}(\cdot,t) u_{x_i} v_{x_j} + \sum_{i=1}^{n} b^{i}(\cdot,t) u_{x_i} v + c(\cdot,t) uv \right) dx$$

View solution as map $\mathbf{u} \colon [0,T] \to H^1_0(U), \ [\mathbf{u}(t)](x) \coloneqq u(x,t),$ and similar for f.

Assume u smooth solution, multiply by test function $v \in H^1_0(U)$ and int. by parts

$$(\mathbf{u}',v)_{L^2(U)}+B[\mathbf{u},v;t]=(\mathbf{f},v)_{L^2(U)}, \qquad \mathbf{u}'=\frac{d}{dt}\mathbf{u}.$$

L of divergence form with a^{ij} , b^i , $c \in L^{\infty}(U_T)$, uniformly parabolic $f \in L^2(U_T)$, $g \in L^2(U)$

Bilinear form

$$B[u,v;t] := \int_{U} \left(\sum_{i,j=1}^{n} a^{ij}(\cdot,t) u_{x_i} v_{x_j} + \sum_{i=1}^{n} b^{i}(\cdot,t) u_{x_i} v + c(\cdot,t) uv \right) dx$$

View solution as map $\mathbf{u} \colon [0,T] \to H^1_0(U)$, $[\mathbf{u}(t)](x) \coloneqq u(x,t)$, and similar for f.

Assume u smooth solution, multiply by test function $v \in H^1_0(U)$ and int. by parts

$$(\mathbf{u}',v)_{L^2(U)}+B[\mathbf{u},v;t]=(\mathbf{f},v)_{L^2(U)}, \qquad \mathbf{u}'=\frac{d}{dt}\mathbf{u}.$$

Also makes sense if $\mathbf{u}'(t) \in H^{-1}(U) = (H_0^1(U))'$ and $(\cdot, \cdot)_{L^2(U)}$ replaced by pairing $\langle \cdot, \cdot \rangle$ between H^{-1} and H_0^1 .

 $\mathbf{u} \in L^2(0,T;H^1_0(U))$ with $\mathbf{u}' \in L^2(0,T;H^{-1}(U))$ is a *weak solution* of the IBVP (1) if

- 1. $\langle \mathbf{u}', v \rangle + B[\mathbf{u}, v; t] = (\mathbf{f}, v)$ for each $v \in H_0^1(U)$ and a.e. $t \in [0, T]$,
- 2. $\mathbf{u}(0) = g$.

 $\mathbf{u} \in L^2(0,T;H^1_0(U))$ with $\mathbf{u}' \in L^2(0,T;H^{-1}(U))$ is a *weak solution* of the IBVP (1) if

- 1. $\langle \mathbf{u}', v \rangle + B[\mathbf{u}, v; t] = (\mathbf{f}, v)$ for each $v \in H_0^1(U)$ and a.e. $t \in [0, T]$,
- **2**. $\mathbf{u}(0) = g$.

Remark: Can show that $\mathbf{u} \in C([0,T];L^2(U))$, so that IC makes sense.

 $\mathbf{u} \in L^2(0,T;H^1_0(U))$ with $\mathbf{u}' \in L^2(0,T;H^{-1}(U))$ is a *weak solution* of the IBVP (1) if

- 1. $\langle \mathbf{u}', v \rangle + B[\mathbf{u}, v; t] = (\mathbf{f}, v)$ for each $v \in H_0^1(U)$ and a.e. $t \in [0, T]$,
- **2**. $\mathbf{u}(0) = g$.

Remark: Can show that $\mathbf{u} \in C([0,T];L^2(U))$, so that IC makes sense.

Remark: Could also integrate by parts in time to get a slightly weaker solution notion.

 $\mathbf{u} \in L^2(0,T;H^1_0(U))$ with $\mathbf{u}' \in L^2(0,T;H^{-1}(U))$ is a *weak solution* of the IBVP (1) if

- 1. $\langle \mathbf{u}', v \rangle + B[\mathbf{u}, v; t] = (\mathbf{f}, v)$ for each $v \in H_0^1(U)$ and a.e. $t \in [0, T]$,
- **2**. $\mathbf{u}(0) = g$.

Remark: Can show that $\mathbf{u} \in C([0,T];L^2(U))$, so that IC makes sense.

Remark: Could also integrate by parts in time to get a slightly weaker solution notion.

Theorem

 \exists ! weak sol. of (1).

 $\{w_k\}_{k=1}^{\infty}$ ON basis of $H_0^1(U)$ and $L^2(U)$

$$\{w_k\}_{k=1}^{\infty}$$
 ON basis of $H_0^1(U)$ and $L^2(U)$

Choose d_m^k in

$$\mathbf{u}_m(t) := \sum_{k=1}^m d_m^k(t) w_k$$

so that

$$d_m^k(0) = (g, w_k), \qquad 1 \le k \le m$$

and

$$(\mathbf{u}'_m, w_k) + B[\mathbf{u}_m, w_k; t]) = (\mathbf{f}, w_k).$$

$$\{w_k\}_{k=1}^{\infty}$$
 ON basis of $H_0^1(U)$ and $L^2(U)$

Choose d_m^k in

$$\mathbf{u}_m(t) := \sum_{k=1}^m d_m^k(t) w_k$$

so that

$$d_m^k(0) = (g, w_k), \qquad 1 \le k \le m$$

and

$$(\mathbf{u}'_m, w_k) + B[\mathbf{u}_m, w_k; t]) = (\mathbf{f}, w_k).$$

Linear system of ODEs for d_m^k .

$$\{w_k\}_{k=1}^{\infty}$$
 ON basis of $H_0^1(U)$ and $L^2(U)$

Choose d_m^k in

$$\mathbf{u}_m(t) := \sum_{k=1}^m d_m^k(t) w_k$$

so that

$$d_m^k(0) = (g, w_k), \qquad 1 \le k \le m$$

and

$$(\mathbf{u}'_m, w_k) + B[\mathbf{u}_m, w_k; t]) = (\mathbf{f}, w_k).$$

Linear system of ODEs for d_m^k .

Let $m \to \infty$. (Difficult!)

$$\{w_k\}_{k=1}^{\infty}$$
 ON basis of $H_0^1(U)$ and $L^2(U)$

Choose d_m^k in

$$\mathbf{u}_m(t) \coloneqq \sum_{k=1}^m d_m^k(t) w_k$$

so that

$$d_m^k(0) = (g, w_k), \qquad 1 \le k \le m$$

and

$$(\mathbf{u}'_m, w_k) + B[\mathbf{u}_m, w_k; t]) = (\mathbf{f}, w_k).$$

Linear system of ODEs for d_m^k .

Let $m \to \infty$. (Difficult!)

Uniqueness by energy estimates and Grönwall.

Regularity of the solution requires a little bit more than regularity of coefficients, data and boundary.

Regularity of the solution requires a little bit more than regularity of coefficients, data and boundary.

If we can differentiate $u|_{\partial U}=0$ w.r.t. t, then $u_t|_{\partial U}=0$ for all $0\leq t\leq T$.

Regularity of the solution requires a little bit more than regularity of coefficients, data and boundary.

If we can differentiate $u|_{\partial U}=0$ w.r.t. t, then $u_t|_{\partial U}=0$ for all $0\leq t\leq T$.

Hence $f - Lu|_{\partial U} = 0$ for all $0 \le t \le T$.

Regularity of the solution requires a little bit more than regularity of coefficients, data and boundary.

If we can differentiate $u|_{\partial U}=0$ w.r.t. t, then $u_t|_{\partial U}=0$ for all $0\leq t\leq T$.

Hence $f - Lu|_{\partial U} = 0$ for all $0 \le t \le T$.

Hence $\mathbf{f}(0) - Lg|_{\partial U} = 0$.

Regularity of the solution requires a little bit more than regularity of coefficients, data and boundary.

If we can differentiate $u|_{\partial U}=0$ w.r.t. t, then $u_t|_{\partial U}=0$ for all $0\leq t\leq T$.

Hence $f - Lu|_{\partial U} = 0$ for all $0 \le t \le T$.

Hence $\mathbf{f}(0) - Lg|_{\partial U} = 0$.

Weak form: $g_1 := \mathbf{f}(0) - Lg \in H_0^1(U)$.

Regularity of the solution requires a little bit more than regularity of coefficients, data and boundary.

If we can differentiate $u|_{\partial U}=0$ w.r.t. t, then $u_t|_{\partial U}=0$ for all $0\leq t\leq T$.

Hence $f - Lu|_{\partial U} = 0$ for all $0 \le t \le T$.

Hence $\mathbf{f}(0) - Lg|_{\partial U} = 0$.

Weak form: $g_1 := \mathbf{f}(0) - Lg \in H_0^1(U)$.

mth order: $g_m := \frac{d^{m-1}\mathbf{f}}{dt^{m-1}}(0) - Lg_{m-1} \in H^1_0(U)$

Regularity of the solution requires a little bit more than regularity of coefficients, data and boundary.

If we can differentiate $u|_{\partial U}=0$ w.r.t. t, then $u_t|_{\partial U}=0$ for all $0\leq t\leq T$.

Hence $f - Lu|_{\partial U} = 0$ for all $0 \le t \le T$.

Hence $\mathbf{f}(0) - Lg|_{\partial U} = 0$.

Weak form: $g_1 := \mathbf{f}(0) - Lg \in H_0^1(U)$.

mth order: $g_m := \frac{d^{m-1}\mathbf{f}}{dt^{m-1}}(0) - Lg_{m-1} \in H^1_0(U)$

Theorem

Assume $g \in C^{\infty}(\overline{U})$, $f \in C^{\infty}(\overline{U}_T)$ and mth order compatibility conditions hold for $m = 0, 1, \ldots$ Then the unique weak solution $u \in C^{\infty}(\overline{U}_T)$.

Maximum principles (Evans 7.1.4)

$$Lu = -\sum_{i=1}^{n} a^{ij}(x,t)u_{x_ix_j} + \sum_{i=1}^{n} b^{i}(x,t)u_{x_i} + c(x,t)u$$

uniformly elliptic, $a^{ij}, b^i, c \in C(\overline{U}_T)$, U open & bdd. $a^{ij} = a^{ji}$ w.l.o.g. Parabolic boundary: $\Gamma_T = \overline{U}_T \setminus U_T$.

$$Lu = -\sum_{ij=1}^{n} a^{ij}(x,t)u_{x_ix_j} + \sum_{i=1}^{n} b^{i}(x,t)u_{x_i} + c(x,t)u$$

uniformly elliptic, $a^{ij}, b^i, c \in C(\overline{U}_T)$, U open & bdd. $a^{ij} = a^{ji}$ w.l.o.g. Parabolic boundary: $\Gamma_T = \overline{U}_T \setminus U_T$.

Definition

Let $u \in C_1^2(U_T)$.

- ▶ u is called a <u>subsolution</u> if $u_t + Lu \le 0$ in U_T .
- ▶ u is called a supersolution if $u_t + Lu \ge 0$ in U_T .

$$Lu = -\sum_{ij=1}^{n} a^{ij}(x,t)u_{x_ix_j} + \sum_{i=1}^{n} b^{i}(x,t)u_{x_i} + c(x,t)u$$

uniformly elliptic, $a^{ij}, b^i, c \in C(\overline{U}_T)$, U open & bdd. $a^{ij} = a^{ji}$ w.l.o.g. Parabolic boundary: $\Gamma_T = \overline{U}_T \setminus U_T$.

Definition

Let $u \in C_1^2(U_T)$.

- ▶ u is called a <u>subsolution</u> if $u_t + Lu \le 0$ in U_T .
- ▶ u is called a supersolution if $u_t + Lu \ge 0$ in U_T .

Theorem (Weak maximum principle with $c \equiv 0$)

Let $U \subset \mathbb{R}^n$ open, bounded. Assume $u \in C_1^2(U_T) \cap C(\overline{U}_T)$ and $c \equiv 0$ in U. If $u_t + Lu \leq 0$ in U_T , then

$$\max_{\overline{U}_T} u = \max_{\Gamma_T} u.$$

$$Lu = -\sum_{ij=1}^{n} a^{ij}(x,t)u_{x_ix_j} + \sum_{i=1}^{n} b^{i}(x,t)u_{x_i} + c(x,t)u$$

uniformly elliptic, $a^{ij}, b^i, c \in C(\overline{U}_T)$, U open & bdd. $a^{ij} = a^{ji}$ w.l.o.g. Parabolic boundary: $\Gamma_T = \overline{U}_T \setminus U_T$.

Definition

Let $u \in C_1^2(U_T)$.

- ▶ u is called a <u>subsolution</u> if $u_t + Lu \le 0$ in U_T .
- ▶ u is called a supersolution if $u_t + Lu \ge 0$ in U_T .

Theorem (Weak maximum principle with $c \equiv 0$)

Let $U \subset \mathbb{R}^n$ open, bounded. Assume $u \in C_1^2(U_T) \cap C(\overline{U}_T)$ and $c \equiv 0$ in U. If $u_t + Lu \leq 0$ in U_T , then

$$\max_{\overline{U}_T} u = \max_{\Gamma_T} u.$$

Remark: subsolutions \leftrightarrow supersolutions, max \leftrightarrow min.

1. Assume $u_t + Lu < 0$ & $\exists (x_0, t_0) \in U_T$ s.t. $u(x_0, t_0) = \max_{\overline{U}_T} u$.

- 1. Assume $u_t + Lu < 0$ & $\exists (x_0, t_0) \in U_T$ s.t. $u(x_0, t_0) = \max_{\overline{U}_T} u$.
- 2. If $0 < t_0 < T$, $u_t(x_0, t_0) = 0 \Rightarrow Lu(x_0, t_0) < 0$.

- 1. Assume $u_t + Lu < 0$ & $\exists (x_0, t_0) \in U_T$ s.t. $u(x_0, t_0) = \max_{\overline{U}_T} u$.
- 2. If $0 < t_0 < T$, $u_t(x_0, t_0) = 0 \Rightarrow Lu(x_0, t_0) < 0$.

But $Lu(x_0,t_0)\geq 0$ by the proof of the weak max. princ. for elliptic equations (since $c\equiv 0$).

- 1. Assume $u_t + Lu < 0$ & $\exists (x_0, t_0) \in U_T$ s.t. $u(x_0, t_0) = \max_{\overline{U}_T} u$.
- 2. If $0 < t_0 < T$, $u_t(x_0, t_0) = 0 \Rightarrow Lu(x_0, t_0) < 0$.

But $Lu(x_0,t_0)\geq 0$ by the proof of the weak max. princ. for elliptic equations (since $c\equiv 0$).

Contradiction!

- 1. Assume $u_t + Lu < 0$ & $\exists (x_0, t_0) \in U_T$ s.t. $u(x_0, t_0) = \max_{\overline{U}_T} u$.
- 2. If $0 < t_0 < T$, $u_t(x_0, t_0) = 0 \Rightarrow Lu(x_0, t_0) < 0$.

But $Lu(x_0,t_0) \ge 0$ by the proof of the weak max. princ. for elliptic equations (since $c \equiv 0$).

Contradiction!

3. If $t_0 = T$ we get $u_t(x_0, t_0) \ge 0$. The rest is the same.

- 1. Assume $u_t + Lu < 0$ & $\exists (x_0, t_0) \in U_T$ s.t. $u(x_0, t_0) = \max_{\overline{U}_T} u$.
- 2. If $0 < t_0 < T$, $u_t(x_0, t_0) = 0 \Rightarrow Lu(x_0, t_0) < 0$.

But $Lu(x_0,t_0) \ge 0$ by the proof of the weak max. princ. for elliptic equations (since $c \equiv 0$).

Contradiction!

- 3. If $t_0 = T$ we get $u_t(x_0, t_0) \ge 0$. The rest is the same.
- 4. If $u_t + Lu \le 0$, write $u^{\varepsilon}(x,t) := u(x,t) \varepsilon t$.

$$u_t^{\varepsilon} + Lu^{\varepsilon} = u_t + Lu - \varepsilon < 0$$
 in U_T ,

where we used that $c \equiv 0$.

- 1. Assume $u_t + Lu < 0$ & $\exists (x_0, t_0) \in U_T$ s.t. $u(x_0, t_0) = \max_{\overline{U}_T} u$.
- 2. If $0 < t_0 < T$, $u_t(x_0, t_0) = 0 \Rightarrow Lu(x_0, t_0) < 0$.

But $Lu(x_0,t_0) \ge 0$ by the proof of the weak max. princ. for elliptic equations (since $c \equiv 0$).

Contradiction!

- 3. If $t_0 = T$ we get $u_t(x_0, t_0) \ge 0$. The rest is the same.
- 4. If $u_t + Lu \le 0$, write $u^{\varepsilon}(x,t) := u(x,t) \varepsilon t$.

$$u_t^{\varepsilon} + Lu^{\varepsilon} = u_t + Lu - \varepsilon < 0$$
 in U_T ,

where we used that $c \equiv 0$.

1-3 give

$$\max_{\overline{U}_T} u^{\varepsilon} = \max_{\Gamma_T} u^{\varepsilon}.$$

- 1. Assume $u_t + Lu < 0$ & $\exists (x_0, t_0) \in U_T$ s.t. $u(x_0, t_0) = \max_{\overline{U}_T} u$.
- 2. If $0 < t_0 < T$, $u_t(x_0, t_0) = 0 \Rightarrow Lu(x_0, t_0) < 0$.

But $Lu(x_0,t_0) \ge 0$ by the proof of the weak max. princ. for elliptic equations (since $c \equiv 0$).

Contradiction!

- 3. If $t_0 = T$ we get $u_t(x_0, t_0) \ge 0$. The rest is the same.
- 4. If $u_t + Lu \le 0$, write $u^{\varepsilon}(x,t) := u(x,t) \varepsilon t$.

$$u_t^{\varepsilon} + Lu^{\varepsilon} = u_t + Lu - \varepsilon < 0$$
 in U_T ,

where we used that $c \equiv 0$.

1-3 give

$$\max_{\overline{U}_T} u^{\varepsilon} = \max_{\Gamma_T} u^{\varepsilon}.$$

Let $\varepsilon \downarrow 0$.

Theorem (Weak max. principle with $c \ge 0$)

If instead $c \geq 0$, then $\max_{\overline{U}_T} u \leq \max_{\Gamma_T} u^+$.

Theorem (Weak max. principle with $c \ge 0$)

If instead $c \ge 0$, then $\max_{\overline{U}_T} u \le \max_{\Gamma_T} u^+$.

Proof.

1. If $u_t + Lu < 0$ in U_T we obtain

$$\max_{\overline{U}_T} u \leq \max_{\Gamma_T} u^+$$

since if $\max_{\overline{U}_T} u = u(x_0, t_0) > 0$, $0 < t_0 \le T$, we still obtain

$$u_t + Lu \ge 0$$
 at (x_0, t_0) ,

as
$$c(x_0, t_0)u(x_0, t_0) \ge 0$$
.

Theorem (Weak max. principle with $c \ge 0$)

If instead $c \ge 0$, then $\max_{\overline{U}_T} u \le \max_{\Gamma_T} u^+$.

Proof.

1. If $u_t + Lu < 0$ in U_T we obtain

$$\max_{\overline{U}_T} u \le \max_{\Gamma_T} u^+$$

since if $\max_{\overline{U}_T} u = u(x_0, t_0) > 0$, $0 < t_0 \le T$, we still obtain

$$u_t + Lu \ge 0$$
 at (x_0, t_0) ,

as
$$c(x_0, t_0)u(x_0, t_0) \ge 0$$
.

2. If $u_t + Lu \le 0$, introduce $u^{\varepsilon} = u - \varepsilon t$ as before and let $\varepsilon \downarrow 0$. We still get $u_t^{\varepsilon} + Lu^{\varepsilon} < 0$ since $-\varepsilon c(x,t)t \le 0$.

Theorem

Under the same assumptions on L, \exists at most one solution $u \in C^2_1(U_T) \cap C(\overline{U}_T)$ to the BVP

$$\begin{cases} u_t + Lu = f \text{ in } U_T, \\ u = 0 \text{ on } \partial U \times [0, T] \\ u = g \text{ on } U \times \{t = 0\}. \end{cases}$$

Theorem

Under the same assumptions on L, \exists at most one solution $u \in C_1^2(U_T) \cap C(\overline{U}_T)$ to the BVP

$$\begin{cases} u_t + Lu = f \text{ in } U_T, \\ u = 0 \text{ on } \partial U \times [0, T] \\ u = g \text{ on } U \times \{t = 0\}. \end{cases}$$

Proof.

Suffices to show $u \equiv 0$ if $f \equiv 0$ and $g \equiv 0$.

Theorem

Under the same assumptions on L, \exists at most one solution $u \in C^2_1(U_T) \cap C(\overline{U}_T)$ to the BVP

$$\begin{cases} u_t + Lu = f \text{ in } U_T, \\ u = 0 \text{ on } \partial U \times [0, T] \\ u = g \text{ on } U \times \{t = 0\}. \end{cases}$$

Proof.

Suffices to show $u \equiv 0$ if $f \equiv 0$ and $g \equiv 0$.

But then $\max_{\overline{U}_T} u = \max_{\Gamma_T} u = 0$ since u is a subsolution.

Theorem

Under the same assumptions on L, \exists at most one solution $u \in C^2_1(U_T) \cap C(\overline{U}_T)$ to the BVP

$$\begin{cases} u_t + Lu = f \text{ in } U_T, \\ u = 0 \text{ on } \partial U \times [0, T] \\ u = g \text{ on } U \times \{t = 0\}. \end{cases}$$

Proof.

Suffices to show $u \equiv 0$ if $f \equiv 0$ and $g \equiv 0$.

But then $\max_{\overline{U}_T} u = \max_{\Gamma_T} u = 0$ since u is a subsolution.

Similarly, $\min_{\overline{U}_T} u = \min_{\Gamma_T} u = 0$ since u is a supersolution.

14/19

Theorem

Under the same assumptions on L, \exists at most one solution $u \in C^2_1(U_T) \cap C(\overline{U}_T)$ to the BVP

$$\begin{cases} u_t + Lu = f \text{ in } U_T, \\ u = 0 \text{ on } \partial U \times [0, T] \\ u = g \text{ on } U \times \{t = 0\}. \end{cases}$$

Proof.

Suffices to show $u \equiv 0$ if $f \equiv 0$ and $g \equiv 0$.

But then $\max_{\overline{U}_T} u = \max_{\Gamma_T} u = 0$ since u is a subsolution.

Similarly, $\min_{\overline{U}_T} u = \min_{\Gamma_T} u = 0$ since u is a supersolution.

Hence, $u \equiv 0$.

Theorem

Under the same assumptions on L, \exists at most one solution $u \in C^2_1(U_T) \cap C(\overline{U}_T)$ to the BVP

$$\begin{cases} u_t + Lu = f \text{ in } U_T, \\ u = 0 \text{ on } \partial U \times [0, T] \\ u = g \text{ on } U \times \{t = 0\}. \end{cases}$$

Proof.

Suffices to show $u \equiv 0$ if $f \equiv 0$ and $g \equiv 0$.

But then $\max_{\overline{U}_T} u = \max_{\Gamma_T} u = 0$ since u is a subsolution.

Similarly, $\min_{\overline{U}_T} u = \min_{\Gamma_T} u = 0$ since u is a supersolution.

Hence, $u \equiv 0$.

The condition $c \ge 0$ is not needed! See the trick in problem 8.

Harnack's inequality

Elliptic version:

Theorem

Assume $u \ge 0$ is a C^2 sol. of

$$-\sum_{i,j=1}^{n} a^{ij}(x)u_{x_ix_j} + \sum_{i=1}^{n} b^i(x)u_{x_i} + c(x)u = 0$$

in U and suppose $V \subset\subset U$ is connected. Then \exists constant C>0 (indep. of u) s.t.

$$\sup_{V} u \leq C \inf_{V} u.$$

Harnack's inequality

Elliptic version:

Theorem

Assume $u \ge 0$ is a C^2 sol. of

$$-\sum_{i,j=1}^{n} a^{ij}(x)u_{x_ix_j} + \sum_{i=1}^{n} b^i(x)u_{x_i} + c(x)u = 0$$

in U and suppose $V \subset\subset U$ is connected. Then \exists constant C>0 (indep. of u) s.t.

$$\sup_{V} u \leq C \inf_{V} u.$$

The proof is technical, but see Evans 2.2.3f for a non-technical proof for Laplace's equation using the mean-value property.

Parabolic version:

Theorem

Assume $u \ge 0$ is a C_1^2 solution of

$$u_t + Lu = 0$$

in U_T and suppose $V \subset\subset U$ is connected. Then for all $0 < t_1 < t_2 \le T$, \exists constant C > 0 (indep. of u) s.t.

$$\sup_{V} u(\cdot,t_1) \leq C \inf_{V} u(\cdot,t_2).$$

The proof is even more technical.

Assume $u \in C_1^2(U_T) \cap C(\overline{U}_T)$ satisfies $u_t + Lu \le 0$ in U_T , where the equation is uniformly parabolic and $c \equiv 0$. Assume also that U is connected. If $\max_{\overline{U}_T} u = u(x_0, t_0)$, $(x_0, t_0) \in U_T$, then u is constant on U_{t_0} .

Assume $u \in C_1^2(U_T) \cap C(\overline{U}_T)$ satisfies $u_t + Lu \le 0$ in U_T , where the equation is uniformly parabolic and $c \equiv 0$. Assume also that U is connected. If $\max_{\overline{U}_T} u = u(x_0, t_0)$, $(x_0, t_0) \in U_T$, then u is constant on U_{t_0} .

Remark: This implies 'infinite speed of propagation' in the sense that if $u \ge 0$ on Γ_T , then u > 0 in U_T , unless $u \equiv 0$.

Assume $u \in C_1^2(U_T) \cap C(\overline{U}_T)$ satisfies $u_t + Lu \le 0$ in U_T , where the equation is uniformly parabolic and $c \equiv 0$. Assume also that U is connected. If $\max_{\overline{U}_T} u = u(x_0, t_0), \ (x_0, t_0) \in U_T$, then u is constant on U_{t_0} .

Remark: This implies 'infinite speed of propagation' in the sense that if $u \ge 0$ on Γ_T , then u > 0 in U_T , unless $u \equiv 0$.

Proof. (Assuming *u* and coefficients smooth.)

1. Let (x_0, t_0) be as above and $W \subset\subset U$, open, ∂W smooth.

Assume $u \in C_1^2(U_T) \cap C(\overline{U}_T)$ satisfies $u_t + Lu \le 0$ in U_T , where the equation is uniformly parabolic and $c \equiv 0$. Assume also that U is connected. If $\max_{\overline{U}_T} u = u(x_0,t_0), \ (x_0,t_0) \in U_T$, then u is constant on U_{t_0} .

Remark: This implies 'infinite speed of propagation' in the sense that if $u \ge 0$ on Γ_T , then u > 0 in U_T , unless $u \equiv 0$.

Proof. (Assuming *u* and coefficients smooth.)

1. Let (x_0, t_0) be as above and $W \subset\subset U$, open, ∂W smooth. Let v solve

$$\begin{cases} v_t + Lv = 0 \text{ in } W_T, \\ v = u \text{ on } \Delta_T, \end{cases}$$

 Δ_T = parabolic bdry of W_T .

Assume $u \in C_1^2(U_T) \cap C(\overline{U}_T)$ satisfies $u_t + Lu \le 0$ in U_T , where the equation is uniformly parabolic and $c \equiv 0$. Assume also that U is connected. If $\max_{\overline{U}_T} u = u(x_0, t_0)$, $(x_0, t_0) \in U_T$, then u is constant on U_{t_0} .

Remark: This implies 'infinite speed of propagation' in the sense that if $u \ge 0$ on Γ_T , then u > 0 in U_T , unless $u \equiv 0$.

Proof. (Assuming *u* and coefficients smooth.)

1. Let (x_0,t_0) be as above and $W\subset\subset U$, open, ∂W smooth.

Let v solve

$$\begin{cases} v_t + Lv = 0 \text{ in } W_T, \\ v = u \text{ on } \Delta_T, \end{cases}$$

 $\Delta_T = \text{parabolic bdry of } W_T.$

Weak max. principle \Rightarrow

$$u \le v \le M$$
, $M := \max_{\overline{U}_T} u = u(x_0, t_0)$.

Assume $u \in C_1^2(U_T) \cap C(\overline{U}_T)$ satisfies $u_t + Lu \le 0$ in U_T , where the equation is uniformly parabolic and $c \equiv 0$. Assume also that U is connected. If $\max_{\overline{U}_T} u = u(x_0, t_0)$, $(x_0, t_0) \in U_T$, then u is constant on U_{t_0} .

Remark: This implies 'infinite speed of propagation' in the sense that if $u \ge 0$ on Γ_T , then u > 0 in U_T , unless $u \equiv 0$.

Proof. (Assuming *u* and coefficients smooth.)

1. Let (x_0, t_0) be as above and $W \subset\subset U$, open, ∂W smooth.

Let v solve

$$\begin{cases} v_t + Lv = 0 \text{ in } W_T, \\ v = u \text{ on } \Delta_T, \end{cases}$$

 Δ_T = parabolic bdry of W_T .

Weak max. principle \Rightarrow

$$u \le v \le M$$
, $M := \max_{\overline{U}_T} u = u(x_0, t_0)$.

Hence, $v(x_0, t_0) = M$.

Since $c \equiv 0$,

$$\tilde{v}_t + L\tilde{v} = 0, \quad \tilde{v} \ge 0 \quad \text{ in } W_T.$$

Since $c \equiv 0$,

$$\tilde{v}_t + L\tilde{v} = 0, \quad \tilde{v} \ge 0 \quad \text{ in } W_T.$$

Choose $V \subset\subset W$, $x_0 \in V$, V connected. Let $0 < t < t_0$.

Since $c \equiv 0$,

$$\tilde{v}_t + L\tilde{v} = 0, \quad \tilde{v} \ge 0 \quad \text{ in } W_T.$$

Choose $V \subset \subset W$, $x_0 \in V$, V connected. Let $0 < t < t_0$.

$$\sup_{V} \tilde{v}(\cdot,t) \leq C \inf_{V} \tilde{v}(\cdot,t_0)$$

Since $c \equiv 0$,

$$\tilde{v}_t + L\tilde{v} = 0, \quad \tilde{v} \ge 0 \quad \text{ in } W_T.$$

Choose $V \subset \subset W$, $x_0 \in V$, V connected. Let $0 < t < t_0$.

$$\sup_{V} \tilde{v}(\cdot, t) \le C \inf_{V} \tilde{v}(\cdot, t_{0})$$

$$\le C \tilde{v}(x_{0}, t_{0})$$

Since $c \equiv 0$,

$$\tilde{v}_t + L\tilde{v} = 0, \quad \tilde{v} \ge 0 \quad \text{ in } W_T.$$

Choose $V \subset\subset W$, $x_0 \in V$, V connected. Let $0 < t < t_0$.

$$\sup_{V} \tilde{v}(\cdot,t) \leq C \inf_{V} \tilde{v}(\cdot,t_0)$$

$$\leq C \tilde{v}(x_0,t_0)$$

$$= 0.$$

Since $c \equiv 0$,

$$\tilde{v}_t + L\tilde{v} = 0, \quad \tilde{v} \ge 0 \quad \text{ in } W_T.$$

Choose $V \subset \subset W$, $x_0 \in V$, V connected. Let $0 < t < t_0$.

$$\sup_{V} \tilde{v}(\cdot,t) \leq C \inf_{V} \tilde{v}(\cdot,t_0)$$

$$\leq C \tilde{v}(x_0,t_0)$$

$$= 0.$$

$$\tilde{v} \geq 0 \Rightarrow \tilde{v} \equiv 0 \text{ on } V_{t_0}.$$

2. Set
$$\tilde{v} = M - v$$
.

$$\tilde{v}_t + L\tilde{v} = 0, \quad \tilde{v} \ge 0 \quad \text{ in } W_T.$$

Choose $V \subset \subset W$, $x_0 \in V$, V connected. Let $0 < t < t_0$.

Harnack ⇒

$$\sup_{V} \tilde{v}(\cdot,t) \leq C \inf_{V} \tilde{v}(\cdot,t_0)$$

$$\leq C \tilde{v}(x_0,t_0)$$

$$= 0.$$

$$\tilde{v} \geq 0 \Rightarrow \tilde{v} \equiv 0 \text{ on } V_{t_0}.$$

V arbitrary $\Rightarrow \tilde{v} \equiv 0$ on W_{t_0} .

2. Set
$$\tilde{v} = M - v$$
.

$$\tilde{v}_t + L\tilde{v} = 0, \quad \tilde{v} \ge 0 \quad \text{ in } W_T.$$

Choose $V \subset \subset W$, $x_0 \in V$, V connected. Let $0 < t < t_0$.

Harnack ⇒

$$\sup_{V} \tilde{v}(\cdot, t) \leq C \inf_{V} \tilde{v}(\cdot, t_{0})
\leq C \tilde{v}(x_{0}, t_{0})
= 0.$$

$$\tilde{v} \geq 0 \Rightarrow \tilde{v} \equiv 0 \text{ on } V_{t_0}.$$

V arbitrary $\Rightarrow \tilde{v} \equiv 0$ on W_{t_0} .

Hence $v \equiv M$ in W_{t_0} .

2. Set
$$\tilde{v} = M - v$$
.

$$\tilde{v}_t + L\tilde{v} = 0, \quad \tilde{v} \ge 0 \quad \text{ in } W_T.$$

Choose $V \subset \subset W$, $x_0 \in V$, V connected. Let $0 < t < t_0$.

Harnack ⇒

$$\sup_{V} \tilde{v}(\cdot, t) \leq C \inf_{V} \tilde{v}(\cdot, t_{0})$$

$$\leq C \tilde{v}(x_{0}, t_{0})$$

$$= 0.$$

$$\tilde{v} \geq 0 \Rightarrow \tilde{v} \equiv 0 \text{ on } V_{t_0}.$$

V arbitrary $\Rightarrow \tilde{v} \equiv 0$ on W_{t_0} .

Hence $v \equiv M$ in W_{t_0} .

$$v = u$$
 on $\Delta_T \Rightarrow u \equiv M$ on $\partial W \times [0, t_0]$.

2. Set
$$\tilde{v} = M - v$$
.

$$\tilde{v}_t + L\tilde{v} = 0, \quad \tilde{v} \ge 0 \quad \text{ in } W_T.$$

Choose $V \subset\subset W$, $x_0 \in V$, V connected. Let $0 < t < t_0$.

Harnack ⇒

$$\sup_{V} \tilde{v}(\cdot, t) \leq C \inf_{V} \tilde{v}(\cdot, t_{0})
\leq C \tilde{v}(x_{0}, t_{0})
= 0.$$

$$\tilde{v} \geq 0 \Rightarrow \tilde{v} \equiv 0 \text{ on } V_{t_0}.$$

$$V$$
 arbitrary $\Rightarrow \tilde{v} \equiv 0$ on W_{t_0} .

Hence $v \equiv M$ in W_{t_0} .

$$v = u$$
 on $\Delta_T \Rightarrow u \equiv M$ on $\partial W \times [0, t_0]$.

W arbitrary $\Rightarrow u \equiv M$ on U_{t_0} .

Theorem (Strong maximum principle with $c \ge 0$)

Under the same assumptions, but with $c \ge 0$, if a subsolution u attains a nonnegative maximum at an interior point, then u is constant in U_{t_0} .

Theorem (Strong maximum principle with $c \ge 0$)

Under the same assumptions, but with $c \ge 0$, if a subsolution u attains a nonnegative maximum at an interior point, then u is constant in U_{t_0} .

Proof: see Evans.