PDE Lecture

Evolution equations with variable coefficients

April 28

2nd order parabolic equations

$U \subset \mathbb{R}^{n}$ open, bdd. $U_{T}=U \times(0, T], T>0$ fixed. $f: U_{T} \rightarrow \mathbb{R}, g: U \rightarrow \mathbb{R}$ given.

$$
\left\{\begin{align*}
u_{t}+L u & =f \text { in } U_{T}, \tag{1}\\
u & =0 \text { on } \partial U \times[0, T] \\
u & =g \text { on } U \times\{t=0\} .
\end{align*}\right.
$$

$U \subset \mathbb{R}^{n}$ open, bdd. $U_{T}=U \times(0, T], T>0$ fixed. $f: U_{T} \rightarrow \mathbb{R}, g: U \rightarrow \mathbb{R}$ given.

$$
\left\{\begin{align*}
u_{t}+L u & =f \text { in } U_{T}, \tag{1}\\
u & =0 \text { on } \partial U \times[0, T] \\
u & =g \text { on } U \times\{t=0\} .
\end{align*}\right.
$$

Divergence form:

$$
\begin{equation*}
L u=-\sum_{i, j=1}^{n}\left(a^{i j}(x, t) u_{x_{i}}\right)_{x_{j}}+\sum_{i=1}^{n} b^{i}(x, t) u_{x_{i}}+c(x, t) u \tag{2}
\end{equation*}
$$

$U \subset \mathbb{R}^{n}$ open, bdd. $U_{T}=U \times(0, T], T>0$ fixed. $f: U_{T} \rightarrow \mathbb{R}, g: U \rightarrow \mathbb{R}$ given.

$$
\left\{\begin{align*}
u_{t}+L u & =f \text { in } U_{T}, \tag{1}\\
u & =0 \text { on } \partial U \times[0, T] \\
u & =g \text { on } U \times\{t=0\} .
\end{align*}\right.
$$

Divergence form:

$$
\begin{equation*}
L u=-\sum_{i, j=1}^{n}\left(a^{i j}(x, t) u_{x_{i}}\right)_{x_{j}}+\sum_{i=1}^{n} b^{i}(x, t) u_{x_{i}}+c(x, t) u \tag{2}
\end{equation*}
$$

Non-divergence form:

$$
\begin{equation*}
L u=-\sum_{i, j=1}^{n} a^{i j}(x, t) u_{x_{i} x_{j}}+\sum_{i=1}^{n} b^{i}(x, t) u_{x_{i}}+c(x, t) u \tag{3}
\end{equation*}
$$

$U \subset \mathbb{R}^{n}$ open, bdd. $U_{T}=U \times(0, T], T>0$ fixed. $f: U_{T} \rightarrow \mathbb{R}, g: U \rightarrow \mathbb{R}$ given.

$$
\left\{\begin{align*}
u_{t}+L u & =f \text { in } U_{T}, \tag{1}\\
u & =0 \text { on } \partial U \times[0, T] \\
u & =g \text { on } U \times\{t=0\} .
\end{align*}\right.
$$

Divergence form:

$$
\begin{equation*}
L u=-\sum_{i, j=1}^{n}\left(a^{i j}(x, t) u_{x_{i}}\right)_{x_{j}}+\sum_{i=1}^{n} b^{i}(x, t) u_{x_{i}}+c(x, t) u \tag{2}
\end{equation*}
$$

Non-divergence form:

$$
\begin{equation*}
L u=-\sum_{i, j=1}^{n} a^{i j}(x, t) u_{x_{i} x_{j}}+\sum_{i=1}^{n} b^{i}(x, t) u_{x_{i}}+c(x, t) u \tag{3}
\end{equation*}
$$

Uniformly parabolic if:

$$
\sum_{i, j=1}^{n} a^{i j}(x, t) \xi_{i} \xi_{j} \geq \theta|\xi|^{2} \quad \forall x \in U \text { and } \xi \in \mathbb{R}^{n}
$$

Examples

- Heat/diffusion eq: $L=-\Delta$

Examples

- Heat/diffusion eq: $L=-\Delta$
- Diffusion in anisotropic, non-homogeneous media:

Fick's law $\mathbf{F}=-A(x) D u, A(x)=\left(a^{i j}(x)\right)_{i, j}$, s.p.d $L=-\sum_{i, j=1}^{n}\left(a^{i j}(x) u_{x_{i}}\right)_{x_{j}}$

Examples

- Heat/diffusion eq: $L=-\Delta$
- Diffusion in anisotropic, non-homogeneous media:

Fick's law $\mathbf{F}=-A(x) D u, A(x)=\left(a^{i j}(x)\right)_{i, j}$, s.p.d $L=-\sum_{i, j=1}^{n}\left(a^{i j}(x) u_{x_{i}}\right)_{x_{j}}$

- Fokker-Planck eq: $L=-\sum_{i, j=1}^{n}\left(a^{i j} u\right)_{x_{i} x_{j}}-\sum_{i=1}^{n}\left(b^{i} u\right)_{x_{i}}$

Examples

- Heat/diffusion eq: $L=-\Delta$
- Diffusion in anisotropic, non-homogeneous media:

Fick's law $\mathbf{F}=-A(x) D u, A(x)=\left(a^{i j}(x)\right)_{i, j}$, s.p.d
$L=-\sum_{i, j=1}^{n}\left(a^{i j}(x) u_{x_{i}}\right)_{x_{j}}$

- Fokker-Planck eq: $L=-\sum_{i, j=1}^{n}\left(a^{i j} u\right)_{x_{i} x_{j}}-\sum_{i=1}^{n}\left(b^{i} u\right)_{x_{i}}$

Interpretation

- Second-order terms \rightarrow diffusion.

Examples

- Heat/diffusion eq: $L=-\Delta$
- Diffusion in anisotropic, non-homogeneous media:

Fick's law $\mathbf{F}=-A(x) D u, A(x)=\left(a^{i j}(x)\right)_{i, j}$, s.p.d
$L=-\sum_{i, j=1}^{n}\left(a^{i j}(x) u_{x_{i}}\right)_{x_{j}}$

- Fokker-Planck eq: $L=-\sum_{i, j=1}^{n}\left(a^{i j} u\right)_{x_{i} x_{j}}-\sum_{i=1}^{n}\left(b^{i} u\right)_{x_{i}}$

Interpretation

- Second-order terms \rightarrow diffusion.
- First-order terms \rightarrow transport.

Examples

- Heat/diffusion eq: $L=-\Delta$
- Diffusion in anisotropic, non-homogeneous media:

Fick's law $\mathbf{F}=-A(x) D u, A(x)=\left(a^{i j}(x)\right)_{i, j}$, s.p.d
$L=-\sum_{i, j=1}^{n}\left(a^{i j}(x) u_{x_{i}}\right)_{x_{j}}$

- Fokker-Planck eq: $L=-\sum_{i, j=1}^{n}\left(a^{i j} u\right)_{x_{i} x_{j}}-\sum_{i=1}^{n}\left(b^{i} u\right)_{x_{i}}$

Interpretation

- Second-order terms \rightarrow diffusion.
- First-order terms \rightarrow transport.
- Zeroth-order term \rightarrow creation/depletion.

Weak solutions and regularity (Evans 7.1.1 \& 7.1.2)

Weak solutions

L of divergence form with $a^{i j}, b^{i}, c \in L^{\infty}\left(U_{T}\right)$, uniformly parabolic $f \in L^{2}\left(U_{T}\right), g \in L^{2}(U)$

Weak solutions

L of divergence form with $a^{i j}, b^{i}, c \in L^{\infty}\left(U_{T}\right)$, uniformly parabolic $f \in L^{2}\left(U_{T}\right), g \in L^{2}(U)$
Bilinear form

$$
B[u, v ; t]:=\int_{U}\left(\sum_{i, j=1}^{n} a^{i j}(\cdot, t) u_{x_{i}} v_{x_{j}}+\sum_{i=1}^{n} b^{i}(\cdot, t) u_{x_{i}} v+c(\cdot, t) u v\right) d x
$$

Weak solutions

L of divergence form with $a^{i j}, b^{i}, c \in L^{\infty}\left(U_{T}\right)$, uniformly parabolic $f \in L^{2}\left(U_{T}\right), g \in L^{2}(U)$
Bilinear form

$$
B[u, v ; t]:=\int_{U}\left(\sum_{i, j=1}^{n} a^{i j}(\cdot, t) u_{x_{i}} v_{x_{j}}+\sum_{i=1}^{n} b^{i}(\cdot, t) u_{x_{i}} v+c(\cdot, t) u v\right) d x
$$

View solution as map $\mathbf{u}:[0, T] \rightarrow H_{0}^{1}(U),[\mathbf{u}(t)](x):=u(x, t)$, and similar for f.

Weak solutions

L of divergence form with $a^{i j}, b^{i}, c \in L^{\infty}\left(U_{T}\right)$, uniformly parabolic $f \in L^{2}\left(U_{T}\right), g \in L^{2}(U)$
Bilinear form

$$
B[u, v ; t]:=\int_{U}\left(\sum_{i, j=1}^{n} a^{i j}(\cdot, t) u_{x_{i}} v_{x_{j}}+\sum_{i=1}^{n} b^{i}(\cdot, t) u_{x_{i}} v+c(\cdot, t) u v\right) d x
$$

View solution as map $\mathbf{u}:[0, T] \rightarrow H_{0}^{1}(U),[\mathbf{u}(t)](x):=u(x, t)$, and similar for f.
Assume u smooth solution, multiply by test function $v \in H_{0}^{1}(U)$ and int. by parts

Weak solutions

L of divergence form with $a^{i j}, b^{i}, c \in L^{\infty}\left(U_{T}\right)$, uniformly parabolic $f \in L^{2}\left(U_{T}\right), g \in L^{2}(U)$
Bilinear form

$$
B[u, v ; t]:=\int_{U}\left(\sum_{i, j=1}^{n} a^{i j}(\cdot, t) u_{x_{i}} v_{x_{j}}+\sum_{i=1}^{n} b^{i}(\cdot, t) u_{x_{i}} v+c(\cdot, t) u v\right) d x
$$

View solution as map $\mathbf{u}:[0, T] \rightarrow H_{0}^{1}(U),[\mathbf{u}(t)](x):=u(x, t)$, and similar for f.
Assume u smooth solution, multiply by test function $v \in H_{0}^{1}(U)$ and int. by parts

$$
\left(\mathbf{u}^{\prime}, v\right)_{L^{2}(U)}+B[\mathbf{u}, v ; t]=(\mathbf{f}, v)_{L^{2}(U)}, \quad \mathbf{u}^{\prime}=\frac{d}{d t} \mathbf{u}
$$

Weak solutions

L of divergence form with $a^{i j}, b^{i}, c \in L^{\infty}\left(U_{T}\right)$, uniformly parabolic $f \in L^{2}\left(U_{T}\right), g \in L^{2}(U)$
Bilinear form

$$
B[u, v ; t]:=\int_{U}\left(\sum_{i, j=1}^{n} a^{i j}(\cdot, t) u_{x_{i}} v_{x_{j}}+\sum_{i=1}^{n} b^{i}(\cdot, t) u_{x_{i}} v+c(\cdot, t) u v\right) d x
$$

View solution as map $\mathbf{u}:[0, T] \rightarrow H_{0}^{1}(U),[\mathbf{u}(t)](x):=u(x, t)$, and similar for f.
Assume u smooth solution, multiply by test function $v \in H_{0}^{1}(U)$ and int. by parts

$$
\left(\mathbf{u}^{\prime}, v\right)_{L^{2}(U)}+B[\mathbf{u}, v ; t]=(\mathbf{f}, v)_{L^{2}(U)}, \quad \mathbf{u}^{\prime}=\frac{d}{d t} \mathbf{u}
$$

Also makes sense if $\mathbf{u}^{\prime}(t) \in H^{-1}(U)=\left(H_{0}^{1}(U)\right)^{\prime}$ and $(\cdot, \cdot)_{L^{2}(U)}$ replaced by pairing $\langle\cdot, \cdot\rangle$ between H^{-1} and H_{0}^{1}.

Definition

$\mathbf{u} \in L^{2}\left(0, T ; H_{0}^{1}(U)\right)$ with $\mathbf{u}^{\prime} \in L^{2}\left(0, T ; H^{-1}(U)\right)$ is a weak solution of the IBVP (1) if

1. $\left\langle\mathbf{u}^{\prime}, v\right\rangle+B[\mathbf{u}, v ; t]=(\mathbf{f}, v)$ for each $v \in H_{0}^{1}(U)$ and a.e. $t \in[0, T]$,
2. $\mathbf{u}(0)=g$.

Definition

$\mathbf{u} \in L^{2}\left(0, T ; H_{0}^{1}(U)\right)$ with $\mathbf{u}^{\prime} \in L^{2}\left(0, T ; H^{-1}(U)\right)$ is a weak solution of the IBVP (1) if

1. $\left\langle\mathbf{u}^{\prime}, v\right\rangle+B[\mathbf{u}, v ; t]=(\mathbf{f}, v)$ for each $v \in H_{0}^{1}(U)$ and a.e. $t \in[0, T]$,
2. $\mathbf{u}(0)=g$.

Remark: Can show that $\mathbf{u} \in C\left([0, T] ; L^{2}(U)\right)$, so that IC makes sense.

Definition

$\mathbf{u} \in L^{2}\left(0, T ; H_{0}^{1}(U)\right)$ with $\mathbf{u}^{\prime} \in L^{2}\left(0, T ; H^{-1}(U)\right)$ is a weak solution of the IBVP (1) if

1. $\left\langle\mathbf{u}^{\prime}, v\right\rangle+B[\mathbf{u}, v ; t]=(\mathbf{f}, v)$ for each $v \in H_{0}^{1}(U)$ and a.e. $t \in[0, T]$,
2. $\mathbf{u}(0)=g$.

Remark: Can show that $\mathbf{u} \in C\left([0, T] ; L^{2}(U)\right)$, so that IC makes sense.

Remark: Could also integrate by parts in time to get a slightly weaker solution notion.

Definition

$\mathbf{u} \in L^{2}\left(0, T ; H_{0}^{1}(U)\right)$ with $\mathbf{u}^{\prime} \in L^{2}\left(0, T ; H^{-1}(U)\right)$ is a weak solution of the IBVP (1) if

1. $\left\langle\mathbf{u}^{\prime}, v\right\rangle+B[\mathbf{u}, v ; t]=(\mathbf{f}, v)$ for each $v \in H_{0}^{1}(U)$ and a.e. $t \in[0, T]$,
2. $\mathbf{u}(0)=g$.

Remark: Can show that $\mathbf{u} \in C\left([0, T] ; L^{2}(U)\right)$, so that IC makes sense.

Remark: Could also integrate by parts in time to get a slightly weaker solution notion.

Theorem

ヨ! weak sol. of (1).

Idea of proof.
$\left\{w_{k}\right\}_{k=1}^{\infty}$ ON basis of $H_{0}^{1}(U)$ and $L^{2}(U)$

Idea of proof.

$\left\{w_{k}\right\}_{k=1}^{\infty}$ ON basis of $H_{0}^{1}(U)$ and $L^{2}(U)$
Choose d_{m}^{k} in

$$
\mathbf{u}_{m}(t):=\sum_{k=1}^{m} d_{m}^{k}(t) w_{k}
$$

so that

$$
d_{m}^{k}(0)=\left(g, w_{k}\right), \quad 1 \leq k \leq m
$$

and

$$
\left.\left(\mathbf{u}_{m}^{\prime}, w_{k}\right)+B\left[\mathbf{u}_{m}, w_{k} ; t\right]\right)=\left(\mathbf{f}, w_{k}\right) .
$$

Idea of proof.

$\left\{w_{k}\right\}_{k=1}^{\infty}$ ON basis of $H_{0}^{1}(U)$ and $L^{2}(U)$
Choose d_{m}^{k} in

$$
\mathbf{u}_{m}(t):=\sum_{k=1}^{m} d_{m}^{k}(t) w_{k}
$$

so that

$$
d_{m}^{k}(0)=\left(g, w_{k}\right), \quad 1 \leq k \leq m
$$

and

$$
\left.\left(\mathbf{u}_{m}^{\prime}, w_{k}\right)+B\left[\mathbf{u}_{m}, w_{k} ; t\right]\right)=\left(\mathbf{f}, w_{k}\right)
$$

Linear system of ODEs for d_{m}^{k}.

Idea of proof.

$\left\{w_{k}\right\}_{k=1}^{\infty}$ ON basis of $H_{0}^{1}(U)$ and $L^{2}(U)$
Choose d_{m}^{k} in

$$
\mathbf{u}_{m}(t):=\sum_{k=1}^{m} d_{m}^{k}(t) w_{k}
$$

so that

$$
d_{m}^{k}(0)=\left(g, w_{k}\right), \quad 1 \leq k \leq m
$$

and

$$
\left.\left(\mathbf{u}_{m}^{\prime}, w_{k}\right)+B\left[\mathbf{u}_{m}, w_{k} ; t\right]\right)=\left(\mathbf{f}, w_{k}\right) .
$$

Linear system of ODEs for d_{m}^{k}.
Let $m \rightarrow \infty$. (Difficult!)

Idea of proof.

$\left\{w_{k}\right\}_{k=1}^{\infty} \mathrm{ON}$ basis of $H_{0}^{1}(U)$ and $L^{2}(U)$
Choose d_{m}^{k} in

$$
\mathbf{u}_{m}(t):=\sum_{k=1}^{m} d_{m}^{k}(t) w_{k}
$$

so that

$$
d_{m}^{k}(0)=\left(g, w_{k}\right), \quad 1 \leq k \leq m
$$

and

$$
\left.\left(\mathbf{u}_{m}^{\prime}, w_{k}\right)+B\left[\mathbf{u}_{m}, w_{k} ; t\right]\right)=\left(\mathbf{f}, w_{k}\right)
$$

Linear system of ODEs for d_{m}^{k}.
Let $m \rightarrow \infty$. (Difficult!)
Uniqueness by energy estimates and Grönwall.

Regularity

Regularity of the solution requires a little bit more than regularity of coefficients, data and boundary.

Regularity

Regularity of the solution requires a little bit more than regularity of coefficients, data and boundary.

If we can differentiate $\left.u\right|_{\partial U}=0$ w.r.t. t, then $\left.u_{t}\right|_{\partial U}=0$ for all $0 \leq$ $t \leq T$.

Regularity

Regularity of the solution requires a little bit more than regularity of coefficients, data and boundary.

If we can differentiate $\left.u\right|_{\partial U}=0$ w.r.t. t, then $\left.u_{t}\right|_{\partial U}=0$ for all $0 \leq$ $t \leq T$.

Hence $f-\left.L u\right|_{\partial U}=0$ for all $0 \leq t \leq T$.

Regularity

Regularity of the solution requires a little bit more than regularity of coefficients, data and boundary.

If we can differentiate $\left.u\right|_{\partial U}=0$ w.r.t. t, then $\left.u_{t}\right|_{\partial U}=0$ for all $0 \leq$ $t \leq T$.

Hence $f-\left.L u\right|_{\partial U}=0$ for all $0 \leq t \leq T$.
Hence $\mathbf{f}(0)-\left.L g\right|_{\partial U}=0$.

Regularity

Regularity of the solution requires a little bit more than regularity of coefficients, data and boundary.

If we can differentiate $\left.u\right|_{\partial U}=0$ w.r.t. t, then $\left.u_{t}\right|_{\partial U}=0$ for all $0 \leq$ $t \leq T$.

Hence $f-\left.L u\right|_{\partial U}=0$ for all $0 \leq t \leq T$.
Hence $\mathbf{f}(0)-\left.L g\right|_{\partial U}=0$.
Weak form: $g_{1}:=\mathbf{f}(0)-L g \in H_{0}^{1}(U)$.

Regularity

Regularity of the solution requires a little bit more than regularity of coefficients, data and boundary.

If we can differentiate $\left.u\right|_{\partial U}=0$ w.r.t. t, then $\left.u_{t}\right|_{\partial U}=0$ for all $0 \leq$ $t \leq T$.

Hence $f-\left.L u\right|_{\partial U}=0$ for all $0 \leq t \leq T$.
Hence $\mathbf{f}(0)-\left.L g\right|_{\partial U}=0$.
Weak form: $g_{1}:=\mathbf{f}(0)-L g \in H_{0}^{1}(U)$.
m th order: $g_{m}:=\frac{d^{m-1} \mathbf{f}}{d t^{m-1}}(0)-L g_{m-1} \in H_{0}^{1}(U)$

Regularity

Regularity of the solution requires a little bit more than regularity of coefficients, data and boundary.

If we can differentiate $\left.u\right|_{\partial U}=0$ w.r.t. t, then $\left.u_{t}\right|_{\partial U}=0$ for all $0 \leq$ $t \leq T$.

Hence $f-\left.L u\right|_{\partial U}=0$ for all $0 \leq t \leq T$.
Hence $\mathbf{f}(0)-\left.L g\right|_{\partial U}=0$.
Weak form: $g_{1}:=\mathbf{f}(0)-L g \in H_{0}^{1}(U)$.
m th order: $g_{m}:=\frac{d^{m-1} \mathbf{f}}{d t^{m-1}}(0)-L g_{m-1} \in H_{0}^{1}(U)$
Theorem
Assume $g \in C^{\infty}(\bar{U}), f \in C^{\infty}\left(\bar{U}_{T}\right)$ and m th order compatibility conditions hold for $m=0,1, \ldots$. Then the unique weak solution $u \in C^{\infty}\left(\bar{U}_{T}\right)$.

Maximum principles (Evans 7.1.4)

We consider

$$
L u=-\sum_{i j=1}^{n} a^{i j}(x, t) u_{x_{i} x_{j}}+\sum_{i=1}^{n} b^{i}(x, t) u_{x_{i}}+c(x, t) u
$$

uniformly elliptic, $a^{i j}, b^{i}, c \in C\left(\bar{U}_{T}\right), U$ open \& bdd. $a^{i j}=a^{j i}$ w.l.o.g. Parabolic boundary: $\Gamma_{T}=\bar{U}_{T} \backslash U_{T}$.

We consider

$$
L u=-\sum_{i j=1}^{n} a^{i j}(x, t) u_{x_{i} x_{j}}+\sum_{i=1}^{n} b^{i}(x, t) u_{x_{i}}+c(x, t) u
$$

uniformly elliptic, $a^{i j}, b^{i}, c \in C\left(\bar{U}_{T}\right), U$ open \& bdd. $a^{i j}=a^{j i}$ w.l.o.g. Parabolic boundary: $\Gamma_{T}=\bar{U}_{T} \backslash U_{T}$.
Definition
Let $u \in C_{1}^{2}\left(U_{T}\right)$.

- u is called a subsolution if $u_{t}+L u \leq 0$ in U_{T}.
- u is called a supersolution if $u_{t}+L u \geq 0$ in U_{T}.

We consider

$$
L u=-\sum_{i j=1}^{n} a^{i j}(x, t) u_{x_{i} x_{j}}+\sum_{i=1}^{n} b^{i}(x, t) u_{x_{i}}+c(x, t) u
$$

uniformly elliptic, $a^{i j}, b^{i}, c \in C\left(\bar{U}_{T}\right), U$ open \& bdd. $a^{i j}=a^{j i}$ w.l.o.g. Parabolic boundary: $\Gamma_{T}=\bar{U}_{T} \backslash U_{T}$.
Definition
Let $u \in C_{1}^{2}\left(U_{T}\right)$.

- u is called a subsolution if $u_{t}+L u \leq 0$ in U_{T}.
- u is called a supersolution if $u_{t}+L u \geq 0$ in U_{T}.

Theorem (Weak maximum principle with $c \equiv 0$)
Let $U \subset \mathbb{R}^{n}$ open, bounded. Assume $u \in C_{1}^{2}\left(U_{T}\right) \cap C\left(\bar{U}_{T}\right)$ and $c \equiv 0$ in U. If $u_{t}+L u \leq 0$ in U_{T}, then

$$
\max _{\bar{U}_{T}} u=\max _{\Gamma_{T}} u
$$

We consider

$$
L u=-\sum_{i j=1}^{n} a^{i j}(x, t) u_{x_{i} x_{j}}+\sum_{i=1}^{n} b^{i}(x, t) u_{x_{i}}+c(x, t) u
$$

uniformly elliptic, $a^{i j}, b^{i}, c \in C\left(\bar{U}_{T}\right), U$ open \& bdd. $a^{i j}=a^{j i}$ w.l.o.g. Parabolic boundary: $\Gamma_{T}=\bar{U}_{T} \backslash U_{T}$.
Definition
Let $u \in C_{1}^{2}\left(U_{T}\right)$.

- u is called a subsolution if $u_{t}+L u \leq 0$ in U_{T}.
- u is called a supersolution if $u_{t}+L u \geq 0$ in U_{T}.

Theorem (Weak maximum principle with $c \equiv 0$)
Let $U \subset \mathbb{R}^{n}$ open, bounded. Assume $u \in C_{1}^{2}\left(U_{T}\right) \cap C\left(\bar{U}_{T}\right)$ and $c \equiv 0$ in U. If $u_{t}+L u \leq 0$ in U_{T}, then

$$
\max _{\bar{U}_{T}} u=\max _{\Gamma_{T}} u
$$

Remark: subsolutions \leftrightarrow supersolutions, $\max \leftrightarrow \min$.

Proof

1. Assume $u_{t}+L u<0 \& \exists\left(x_{0}, t_{0}\right) \in U_{T}$ s.t. $u\left(x_{0}, t_{0}\right)=\max _{\bar{U}_{T}} u$.

Proof

1. Assume $u_{t}+L u<0 \& \exists\left(x_{0}, t_{0}\right) \in U_{T}$ s.t. $u\left(x_{0}, t_{0}\right)=\max _{\bar{U}_{T}} u$.
2. If $0<t_{0}<T, u_{t}\left(x_{0}, t_{0}\right)=0 \Rightarrow \operatorname{Lu}\left(x_{0}, t_{0}\right)<0$.

Proof

1. Assume $u_{t}+L u<0 \& \exists\left(x_{0}, t_{0}\right) \in U_{T}$ s.t. $u\left(x_{0}, t_{0}\right)=\max _{\bar{U}_{T}} u$.
2. If $0<t_{0}<T, u_{t}\left(x_{0}, t_{0}\right)=0 \Rightarrow L u\left(x_{0}, t_{0}\right)<0$.

But $L u\left(x_{0}, t_{0}\right) \geq 0$ by the proof of the weak max. princ. for elliptic equations (since $c \equiv 0$).

Proof

1. Assume $u_{t}+L u<0 \& \exists\left(x_{0}, t_{0}\right) \in U_{T}$ s.t. $u\left(x_{0}, t_{0}\right)=\max _{\bar{U}_{T}} u$.
2. If $0<t_{0}<T, u_{t}\left(x_{0}, t_{0}\right)=0 \Rightarrow L u\left(x_{0}, t_{0}\right)<0$.

But $L u\left(x_{0}, t_{0}\right) \geq 0$ by the proof of the weak max. princ. for elliptic equations (since $c \equiv 0$).
Contradiction!

Proof

1. Assume $u_{t}+L u<0 \& \exists\left(x_{0}, t_{0}\right) \in U_{T}$ s.t. $u\left(x_{0}, t_{0}\right)=\max _{\bar{U}_{T}} u$.
2. If $0<t_{0}<T, u_{t}\left(x_{0}, t_{0}\right)=0 \Rightarrow L u\left(x_{0}, t_{0}\right)<0$.

But $L u\left(x_{0}, t_{0}\right) \geq 0$ by the proof of the weak max. princ. for elliptic equations (since $c \equiv 0$).
Contradiction!
3. If $t_{0}=T$ we get $u_{t}\left(x_{0}, t_{0}\right) \geq 0$. The rest is the same.

Proof

1. Assume $u_{t}+L u<0 \& \exists\left(x_{0}, t_{0}\right) \in U_{T}$ s.t. $u\left(x_{0}, t_{0}\right)=\max _{\bar{U}_{T}} u$.
2. If $0<t_{0}<T, u_{t}\left(x_{0}, t_{0}\right)=0 \Rightarrow L u\left(x_{0}, t_{0}\right)<0$.

But $L u\left(x_{0}, t_{0}\right) \geq 0$ by the proof of the weak max. princ. for elliptic equations (since $c \equiv 0$).
Contradiction!
3. If $t_{0}=T$ we get $u_{t}\left(x_{0}, t_{0}\right) \geq 0$. The rest is the same.
4. If $u_{t}+L u \leq 0$, write $u^{\varepsilon}(x, t):=u(x, t)-\varepsilon t$.

$$
u_{t}^{\varepsilon}+L u^{\varepsilon}=u_{t}+L u-\varepsilon<0 \quad \text { in } U_{T},
$$

where we used that $c \equiv 0$.

Proof

1. Assume $u_{t}+L u<0 \& \exists\left(x_{0}, t_{0}\right) \in U_{T}$ s.t. $u\left(x_{0}, t_{0}\right)=\max _{\bar{U}_{T}} u$.
2. If $0<t_{0}<T, u_{t}\left(x_{0}, t_{0}\right)=0 \Rightarrow L u\left(x_{0}, t_{0}\right)<0$.

But $L u\left(x_{0}, t_{0}\right) \geq 0$ by the proof of the weak max. princ. for elliptic equations (since $c \equiv 0$).
Contradiction!
3. If $t_{0}=T$ we get $u_{t}\left(x_{0}, t_{0}\right) \geq 0$. The rest is the same.
4. If $u_{t}+L u \leq 0$, write $u^{\varepsilon}(x, t):=u(x, t)-\varepsilon t$.

$$
u_{t}^{\varepsilon}+L u^{\varepsilon}=u_{t}+L u-\varepsilon<0 \quad \text { in } U_{T}
$$

where we used that $c \equiv 0$.
1-3 give

$$
\max _{\bar{U}_{T}} u^{\varepsilon}=\max _{\Gamma_{T}} u^{\varepsilon} .
$$

Proof

1. Assume $u_{t}+L u<0 \& \exists\left(x_{0}, t_{0}\right) \in U_{T}$ s.t. $u\left(x_{0}, t_{0}\right)=\max _{\bar{U}_{T}} u$.
2. If $0<t_{0}<T, u_{t}\left(x_{0}, t_{0}\right)=0 \Rightarrow L u\left(x_{0}, t_{0}\right)<0$.

But $L u\left(x_{0}, t_{0}\right) \geq 0$ by the proof of the weak max. princ. for elliptic equations (since $c \equiv 0$).
Contradiction!
3. If $t_{0}=T$ we get $u_{t}\left(x_{0}, t_{0}\right) \geq 0$. The rest is the same.
4. If $u_{t}+L u \leq 0$, write $u^{\varepsilon}(x, t):=u(x, t)-\varepsilon t$.

$$
u_{t}^{\varepsilon}+L u^{\varepsilon}=u_{t}+L u-\varepsilon<0 \quad \text { in } U_{T}
$$

where we used that $c \equiv 0$.
1-3 give

$$
\max _{\bar{U}_{T}} u^{\varepsilon}=\max _{\Gamma_{T}} u^{\varepsilon} .
$$

Let $\varepsilon \downarrow 0$.

Theorem (Weak max. principle with $c \geq 0$)
If instead $c \geq 0$, then $\max _{\bar{U}_{T}} u \leq \max _{\Gamma_{T}} u^{+}$.

Theorem (Weak max. principle with $c \geq 0$)
If instead $c \geq 0$, then $\max _{\bar{U}_{T}} u \leq \max _{\Gamma_{T}} u^{+}$.

Proof.

1. If $u_{t}+L u<0$ in U_{T} we obtain

$$
\max _{\bar{U}_{T}} u \leq \max _{\Gamma_{T}} u^{+}
$$

since if $\max _{\bar{U}_{T}} u=u\left(x_{0}, t_{0}\right)>0,0<t_{0} \leq T$, we still obtain

$$
u_{t}+L u \geq 0 \quad \text { at }\left(x_{0}, t_{0}\right),
$$

as $c\left(x_{0}, t_{0}\right) u\left(x_{0}, t_{0}\right) \geq 0$.

Theorem (Weak max. principle with $c \geq 0$)
If instead $c \geq 0$, then $\max _{\bar{U}_{T}} u \leq \max _{\Gamma_{T}} u^{+}$.
Proof.

1. If $u_{t}+L u<0$ in U_{T} we obtain

$$
\max _{\bar{U}_{T}} u \leq \max _{\Gamma_{T}} u^{+}
$$

since if $\max _{\bar{U}_{T}} u=u\left(x_{0}, t_{0}\right)>0,0<t_{0} \leq T$, we still obtain

$$
u_{t}+L u \geq 0 \quad \text { at }\left(x_{0}, t_{0}\right),
$$

as $c\left(x_{0}, t_{0}\right) u\left(x_{0}, t_{0}\right) \geq 0$.
2. If $u_{t}+L u \leq 0$, introduce $u^{\varepsilon}=u-\varepsilon t$ as before and let $\varepsilon \downarrow 0$. We still get $u_{t}^{\varepsilon}+L u^{\varepsilon}<0$ since $-\varepsilon c(x, t) t \leq 0$.

Application: Uniqueness

Theorem
Under the same assumptions on L, \exists at most one solution $u \in C_{1}^{2}\left(U_{T}\right) \cap C\left(\bar{U}_{T}\right)$ to the BVP

$$
\left\{\begin{aligned}
u_{t}+L u & =f \text { in } U_{T}, \\
u & =0 \text { on } \partial U \times[0, T] \\
u & =g \text { on } U \times\{t=0\} .
\end{aligned}\right.
$$

Application: Uniqueness

Theorem
Under the same assumptions on L, \exists at most one solution $u \in C_{1}^{2}\left(U_{T}\right) \cap C\left(\bar{U}_{T}\right)$ to the $B V P$

$$
\left\{\begin{aligned}
u_{t}+L u & =f \text { in } U_{T}, \\
u & =0 \text { on } \partial U \times[0, T] \\
u & =g \text { on } U \times\{t=0\} .
\end{aligned}\right.
$$

Proof.
Suffices to show $u \equiv 0$ if $f \equiv 0$ and $g \equiv 0$.

Application: Uniqueness

Theorem
Under the same assumptions on L, \exists at most one solution $u \in C_{1}^{2}\left(U_{T}\right) \cap C\left(\bar{U}_{T}\right)$ to the BVP

$$
\left\{\begin{aligned}
u_{t}+L u & =f \text { in } U_{T}, \\
u & =0 \text { on } \partial U \times[0, T] \\
u & =g \text { on } U \times\{t=0\} .
\end{aligned}\right.
$$

Proof.
Suffices to show $u \equiv 0$ if $f \equiv 0$ and $g \equiv 0$.
But then $\max _{\bar{U}_{T}} u=\max _{\Gamma_{T}} u=0$ since u is a subsolution.

Application: Uniqueness

Theorem
Under the same assumptions on L, \exists at most one solution $u \in C_{1}^{2}\left(U_{T}\right) \cap C\left(\bar{U}_{T}\right)$ to the BVP

$$
\left\{\begin{aligned}
u_{t}+L u & =f \text { in } U_{T}, \\
u & =0 \text { on } \partial U \times[0, T] \\
u & =g \text { on } U \times\{t=0\} .
\end{aligned}\right.
$$

Proof.
Suffices to show $u \equiv 0$ if $f \equiv 0$ and $g \equiv 0$.
But then $\max _{\bar{U}_{T}} u=\max _{\Gamma_{T}} u=0$ since u is a subsolution.
Similarly, $\min _{\bar{U}_{T}} u=\min _{\Gamma_{T}} u=0$ since u is a supersolution.

Application: Uniqueness

Theorem
Under the same assumptions on L, \exists at most one solution $u \in C_{1}^{2}\left(U_{T}\right) \cap C\left(\bar{U}_{T}\right)$ to the BVP

$$
\left\{\begin{aligned}
u_{t}+L u & =f \text { in } U_{T}, \\
u & =0 \text { on } \partial U \times[0, T] \\
u & =g \text { on } U \times\{t=0\} .
\end{aligned}\right.
$$

Proof.
Suffices to show $u \equiv 0$ if $f \equiv 0$ and $g \equiv 0$.
But then $\max _{\bar{U}_{T}} u=\max _{\Gamma_{T}} u=0$ since u is a subsolution.
Similarly, $\min _{\bar{U}_{T}} u=\min _{\Gamma_{T}} u=0$ since u is a supersolution.
Hence, $u \equiv 0$.

Application: Uniqueness

Theorem
Under the same assumptions on L, \exists at most one solution $u \in C_{1}^{2}\left(U_{T}\right) \cap C\left(\bar{U}_{T}\right)$ to the BVP

$$
\left\{\begin{aligned}
u_{t}+L u & =f \text { in } U_{T}, \\
u & =0 \text { on } \partial U \times[0, T] \\
u & =g \text { on } U \times\{t=0\} .
\end{aligned}\right.
$$

Proof.
Suffices to show $u \equiv 0$ if $f \equiv 0$ and $g \equiv 0$.
But then $\max _{\bar{U}_{T}} u=\max _{\Gamma_{T}} u=0$ since u is a subsolution.
Similarly, $\min _{\bar{U}_{T}} u=\min _{\Gamma_{T}} u=0$ since u is a supersolution.
Hence, $u \equiv 0$.
The condition $c \geq 0$ is not needed! See the trick in problem 8 .

Harnack's inequality

Elliptic version:
Theorem
Assume $u \geq 0$ is a C^{2} sol. of

$$
-\sum_{i, j=1}^{n} a^{i j}(x) u_{x_{i} x_{j}}+\sum_{i=1}^{n} b^{i}(x) u_{x_{i}}+c(x) u=0
$$

in U and suppose $V \subset \subset U$ is connected. Then \exists constant $C>0$ (indep. of u) s.t.

$$
\sup _{V} u \leq C \inf _{V} u
$$

Harnack's inequality

Elliptic version:
Theorem
Assume $u \geq 0$ is a C^{2} sol. of

$$
-\sum_{i, j=1}^{n} a^{i j}(x) u_{x_{i} x_{j}}+\sum_{i=1}^{n} b^{i}(x) u_{x_{i}}+c(x) u=0
$$

in U and suppose $V \subset \subset U$ is connected. Then \exists constant $C>0$ (indep. of u) s.t.

$$
\sup _{V} u \leq C \inf _{V} u
$$

The proof is technical, but see Evans 2.2.3f for a non-technical proof for Laplace's equation using the mean-value property.

Parabolic version:
Theorem
Assume $u \geq 0$ is a C_{1}^{2} solution of

$$
u_{t}+L u=0
$$

in U_{T} and suppose $V \subset \subset U$ is connected. Then for all $0<t_{1}<t_{2} \leq T, \exists$ constant $C>0$ (indep. of u) s.t.

$$
\sup _{V} u\left(\cdot, t_{1}\right) \leq C \inf _{V} u\left(\cdot, t_{2}\right)
$$

The proof is even more technical.

Theorem (Strong max. principle with $c \equiv 0$) Assume $u \in C_{1}^{2}\left(U_{T}\right) \cap C\left(\bar{U}_{T}\right)$ satisfies $u_{t}+L u \leq 0$ in U_{T}, where the equation is uniformly parabolic and $c \equiv 0$. Assume also that U is connected. If $\max _{\bar{U}_{T}} u=u\left(x_{0}, t_{0}\right),\left(x_{0}, t_{0}\right) \in U_{T}$, then u is constant on $U_{t_{0}}$.

Theorem (Strong max. principle with $c \equiv 0$) Assume $u \in C_{1}^{2}\left(U_{T}\right) \cap C\left(\bar{U}_{T}\right)$ satisfies $u_{t}+L u \leq 0$ in U_{T}, where the equation is uniformly parabolic and $c \equiv 0$. Assume also that U is connected. If $\max _{\bar{U}_{T}} u=u\left(x_{0}, t_{0}\right),\left(x_{0}, t_{0}\right) \in U_{T}$, then u is constant on $U_{t_{0}}$.

Remark: This implies 'infinite speed of propagation' in the sense that if $u \geq 0$ on Γ_{T}, then $u>0$ in U_{T}, unless $u \equiv 0$.

Theorem (Strong max. principle with $c \equiv 0$) Assume $u \in C_{1}^{2}\left(U_{T}\right) \cap C\left(\bar{U}_{T}\right)$ satisfies $u_{t}+L u \leq 0$ in U_{T}, where the equation is uniformly parabolic and $c \equiv 0$. Assume also that U is connected. If $\max _{\bar{U}_{T}} u=u\left(x_{0}, t_{0}\right),\left(x_{0}, t_{0}\right) \in U_{T}$, then u is constant on $U_{t_{0}}$.

Remark: This implies 'infinite speed of propagation' in the sense that if $u \geq 0$ on Γ_{T}, then $u>0$ in U_{T}, unless $u \equiv 0$.
Proof. (Assuming u and coefficients smooth.)

1. Let $\left(x_{0}, t_{0}\right)$ be as above and $W \subset \subset U$, open, ∂W smooth.

Theorem (Strong max. principle with $c \equiv 0$) Assume $u \in C_{1}^{2}\left(U_{T}\right) \cap C\left(\bar{U}_{T}\right)$ satisfies $u_{t}+L u \leq 0$ in U_{T}, where the equation is uniformly parabolic and $c \equiv 0$. Assume also that U is connected. If $\max _{\bar{U}_{T}} u=u\left(x_{0}, t_{0}\right),\left(x_{0}, t_{0}\right) \in U_{T}$, then u is constant on $U_{t_{0}}$.

Remark: This implies 'infinite speed of propagation' in the sense that if $u \geq 0$ on Γ_{T}, then $u>0$ in U_{T}, unless $u \equiv 0$.
Proof. (Assuming u and coefficients smooth.)

1. Let $\left(x_{0}, t_{0}\right)$ be as above and $W \subset \subset U$, open, ∂W smooth.

Let v solve

$$
\left\{\begin{aligned}
v_{t}+L v & =0 \text { in } W_{T}, \\
v & =u \text { on } \Delta_{T},
\end{aligned}\right.
$$

$\Delta_{T}=$ parabolic bdry of W_{T}.

Theorem (Strong max. principle with $c \equiv 0$) Assume $u \in C_{1}^{2}\left(U_{T}\right) \cap C\left(\bar{U}_{T}\right)$ satisfies $u_{t}+L u \leq 0$ in U_{T}, where the equation is uniformly parabolic and $c \equiv 0$. Assume also that U is connected. If $\max _{\bar{U}_{T}} u=u\left(x_{0}, t_{0}\right),\left(x_{0}, t_{0}\right) \in U_{T}$, then u is constant on $U_{t_{0}}$.

Remark: This implies 'infinite speed of propagation' in the sense that if $u \geq 0$ on Γ_{T}, then $u>0$ in U_{T}, unless $u \equiv 0$.
Proof. (Assuming u and coefficients smooth.)

1. Let $\left(x_{0}, t_{0}\right)$ be as above and $W \subset \subset U$, open, ∂W smooth.

Let v solve

$$
\left\{\begin{aligned}
v_{t}+L v & =0 \text { in } W_{T}, \\
v & =u \text { on } \Delta_{T},
\end{aligned}\right.
$$

$\Delta_{T}=$ parabolic bdry of W_{T}.
Weak max. principle \Rightarrow

$$
u \leq v \leq M, \quad M:=\max _{\bar{U}_{T}} u=u\left(x_{0}, t_{0}\right)
$$

Theorem (Strong max. principle with $c \equiv 0$) Assume $u \in C_{1}^{2}\left(U_{T}\right) \cap C\left(\bar{U}_{T}\right)$ satisfies $u_{t}+L u \leq 0$ in U_{T}, where the equation is uniformly parabolic and $c \equiv 0$. Assume also that U is connected. If $\max _{\bar{U}_{T}} u=u\left(x_{0}, t_{0}\right),\left(x_{0}, t_{0}\right) \in U_{T}$, then u is constant on $U_{t_{0}}$.

Remark: This implies 'infinite speed of propagation' in the sense that if $u \geq 0$ on Γ_{T}, then $u>0$ in U_{T}, unless $u \equiv 0$.
Proof. (Assuming u and coefficients smooth.)

1. Let $\left(x_{0}, t_{0}\right)$ be as above and $W \subset \subset U$, open, ∂W smooth.

Let v solve

$$
\left\{\begin{aligned}
v_{t}+L v & =0 \text { in } W_{T}, \\
v & =u \text { on } \Delta_{T},
\end{aligned}\right.
$$

$\Delta_{T}=$ parabolic bdry of W_{T}.
Weak max. principle \Rightarrow

$$
u \leq v \leq M, \quad M:=\max _{\bar{U}_{T}} u=u\left(x_{0}, t_{0}\right)
$$

Hence, $v\left(x_{0}, t_{0}\right)=M$.
2. Set $\tilde{v}=M-v$.
2. Set $\tilde{v}=M-v$.

Since $c \equiv 0$,

$$
\tilde{v}_{t}+L \tilde{v}=0, \quad \tilde{v} \geq 0 \quad \text { in } W_{T} .
$$

2. Set $\tilde{v}=M-v$.

Since $c \equiv 0$,

$$
\tilde{v}_{t}+L \tilde{v}=0, \quad \tilde{v} \geq 0 \quad \text { in } W_{T} .
$$

Choose $V \subset \subset W, x_{0} \in V, V$ connected. Let $0<t<t_{0}$.
2. Set $\tilde{v}=M-v$.

Since $c \equiv 0$,

$$
\tilde{v}_{t}+L \tilde{v}=0, \quad \tilde{v} \geq 0 \quad \text { in } W_{T} .
$$

Choose $V \subset \subset W, x_{0} \in V, V$ connected. Let $0<t<t_{0}$. Harnack \Rightarrow

$$
\sup _{V} \tilde{v}(\cdot, t) \leq C \inf _{V} \tilde{v}\left(\cdot, t_{0}\right)
$$

2. Set $\tilde{v}=M-v$.

Since $c \equiv 0$,

$$
\tilde{v}_{t}+L \tilde{v}=0, \quad \tilde{v} \geq 0 \quad \text { in } W_{T} .
$$

Choose $V \subset \subset W, x_{0} \in V, V$ connected. Let $0<t<t_{0}$. Harnack \Rightarrow

$$
\begin{aligned}
\sup _{V} \tilde{v}(\cdot, t) & \leq C \inf _{V}^{\tilde{v}}\left(\cdot, t_{0}\right) \\
& \leq C \tilde{v}\left(x_{0}, t_{0}\right)
\end{aligned}
$$

2. Set $\tilde{v}=M-v$.

Since $c \equiv 0$,

$$
\tilde{v}_{t}+L \tilde{v}=0, \quad \tilde{v} \geq 0 \quad \text { in } W_{T} .
$$

Choose $V \subset \subset W, x_{0} \in V, V$ connected. Let $0<t<t_{0}$. Harnack \Rightarrow

$$
\begin{aligned}
\sup _{V} \tilde{v}(\cdot, t) & \leq C \inf _{V} \tilde{v}\left(\cdot, t_{0}\right) \\
& \leq C \tilde{v}\left(x_{0}, t_{0}\right) \\
& =0
\end{aligned}
$$

2. Set $\tilde{v}=M-v$.

Since $c \equiv 0$,

$$
\tilde{v}_{t}+L \tilde{v}=0, \quad \tilde{v} \geq 0 \quad \text { in } W_{T} .
$$

Choose $V \subset \subset W, x_{0} \in V, V$ connected. Let $0<t<t_{0}$. Harnack \Rightarrow

$$
\begin{aligned}
\sup _{V} \tilde{v}(\cdot, t) & \leq C \inf _{V} \tilde{v}\left(\cdot, t_{0}\right) \\
& \leq C \tilde{v}\left(x_{0}, t_{0}\right) \\
& =0
\end{aligned}
$$

$\tilde{v} \geq 0 \Rightarrow \tilde{v} \equiv 0$ on $V_{t_{0}}$.
2. Set $\tilde{v}=M-v$.

Since $c \equiv 0$,

$$
\tilde{v}_{t}+L \tilde{v}=0, \quad \tilde{v} \geq 0 \quad \text { in } W_{T} .
$$

Choose $V \subset \subset W, x_{0} \in V, V$ connected. Let $0<t<t_{0}$. Harnack \Rightarrow

$$
\begin{aligned}
\sup _{V} \tilde{v}(\cdot, t) & \leq C \inf _{V} \tilde{v}\left(\cdot, t_{0}\right) \\
& \leq C \tilde{v}\left(x_{0}, t_{0}\right) \\
& =0
\end{aligned}
$$

$\tilde{v} \geq 0 \Rightarrow \tilde{v} \equiv 0$ on $V_{t_{0}}$.
V arbitrary $\Rightarrow \tilde{v} \equiv 0$ on $W_{t_{0}}$.
2. Set $\tilde{v}=M-v$.

Since $c \equiv 0$,

$$
\tilde{v}_{t}+L \tilde{v}=0, \quad \tilde{v} \geq 0 \quad \text { in } W_{T} .
$$

Choose $V \subset \subset W, x_{0} \in V, V$ connected. Let $0<t<t_{0}$. Harnack \Rightarrow

$$
\begin{aligned}
\sup _{V} \tilde{v}(\cdot, t) & \leq C \inf _{V} \tilde{v}\left(\cdot, t_{0}\right) \\
& \leq C \tilde{v}\left(x_{0}, t_{0}\right) \\
& =0
\end{aligned}
$$

$\tilde{v} \geq 0 \Rightarrow \tilde{v} \equiv 0$ on $V_{t_{0}}$.
V arbitrary $\Rightarrow \tilde{v} \equiv 0$ on $W_{t_{0}}$.
Hence $v \equiv M$ in $W_{t_{0}}$.
2. Set $\tilde{v}=M-v$.

Since $c \equiv 0$,

$$
\tilde{v}_{t}+L \tilde{v}=0, \quad \tilde{v} \geq 0 \quad \text { in } W_{T} .
$$

Choose $V \subset \subset W, x_{0} \in V, V$ connected. Let $0<t<t_{0}$. Harnack \Rightarrow

$$
\begin{aligned}
\sup _{V} \tilde{v}(\cdot, t) & \leq C \inf _{V} \tilde{v}\left(\cdot, t_{0}\right) \\
& \leq C \tilde{v}\left(x_{0}, t_{0}\right) \\
& =0
\end{aligned}
$$

$\tilde{v} \geq 0 \Rightarrow \tilde{v} \equiv 0$ on $V_{t_{0}}$.
V arbitrary $\Rightarrow \tilde{v} \equiv 0$ on $W_{t_{0}}$.
Hence $v \equiv M$ in $W_{t_{0}}$.
$v=u$ on $\Delta_{T} \Rightarrow u \equiv M$ on $\partial W \times\left[0, t_{0}\right]$.
2. Set $\tilde{v}=M-v$.

Since $c \equiv 0$,

$$
\tilde{v}_{t}+L \tilde{v}=0, \quad \tilde{v} \geq 0 \quad \text { in } W_{T} .
$$

Choose $V \subset \subset W, x_{0} \in V, V$ connected. Let $0<t<t_{0}$. Harnack \Rightarrow

$$
\begin{aligned}
\sup _{V} \tilde{v}(\cdot, t) & \leq C \inf _{V} \tilde{v}\left(\cdot, t_{0}\right) \\
& \leq C \tilde{v}\left(x_{0}, t_{0}\right) \\
& =0
\end{aligned}
$$

$\tilde{v} \geq 0 \Rightarrow \tilde{v} \equiv 0$ on $V_{t_{0}}$.
V arbitrary $\Rightarrow \tilde{v} \equiv 0$ on $W_{t_{0}}$.
Hence $v \equiv M$ in $W_{t_{0}}$.
$v=u$ on $\Delta_{T} \Rightarrow u \equiv M$ on $\partial W \times\left[0, t_{0}\right]$.
W arbitrary $\Rightarrow u \equiv M$ on $U_{t_{0}}$.

Theorem (Strong maximum principle with $c \geq 0$)

Under the same assumptions, but with $c \geq 0$, if a subsolution u attains a nonnegative maximum at an interior point, then u is constant in $U_{t_{0}}$.

Theorem (Strong maximum principle with $c \geq 0$)

Under the same assumptions, but with $c \geq 0$, if a subsolution u attains a nonnegative maximum at an interior point, then u is constant in $U_{t_{0}}$.

Proof: see Evans.

