PDE Lecture

Evolution equations with variable coefficients

April 28
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2nd order parabolic equations
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U C R" open, bdd. Uy = U x (0,T], T > 0 fixed.
f:Ur—R, g: U— R given.

u,+Lu=fin Ur,
u=00ndU x[0,T] (1)
u=gonUx{r=0}.
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U C R" open, bdd. Uy = U x (0,T], T > 0 fixed.
f:Ur—R, g: U— R given.

u,+Lu=fin Ur,
u=00ndU x[0,T]
u=gonUx{t=0}.
Divergence form:

n

Lu=— Z (a¥(x, iy )x; + ibi(x, Dy, +c(x,t)u

ij=1 i=1

Non-divergence form:

n

n
Lu=— Z a” (3, 1)y, + Zb’(x, Ny, +c(x,1)u
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U C R" open, bdd. Uy = U x (0,T], T > 0 fixed.
f:Ur—R, g: U— R given.

u+Lu=fin Uy,
u=00ndU x[0,T]
u=gonUx{t=0}.
Divergence form:

n

Lu=— Z (a¥(x, iy )x; + ibi(x, Dy, +c(x,t)u

ij=1 i=1

Non-divergence form:

n

n
Lu=— Y a’(x,0)ugy + Y b (x, 1)y, +c(x,0)u

ij=1 i=1
Uniformly parabolic if:

Y dl(x,0)&E > 01E]* Yxe Uand & € R”
ij=1
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Examples

» Heat/diffusion eq: L = —A

» Diffusion in anisotropic, non-homogeneous media:

Fick's law F = —A(x)Du, A(x) = (a¥(x));;, s.p.d

L=— ?,j:l(aij(x)uxi)xj
> Fokker-Planck eq: L= —Y;_ (au) . — Yy (b'u).,
Interpretation

» Second-order terms — diffusion.
» First-order terms — transport.
» Zeroth-order term — creation/depletion.

4/19



Weak solutions and regularity
(Evans 7.1.1 & 7.1.2)
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Weak solutions

L of divergence form with a¥, b', ¢ € L*(Ur), uniformly parabolic
feL*(Ur), g L*(U)
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Weak solutions

L of divergence form with a¥, b', ¢ € L*(Ur), uniformly parabolic
feL*(Ur), g L*(U)
Bilinear form

Blu,v;1] : /(Za” ux,vx,—i—Zb Dy +c(-,t)u >dx

ij=1
View solution as map u: [0,7] — H}(U), [u(?)](x) = u(x,t), and
similar for f.

Assume u smooth solution, multiply by test function v € H}(U)
and int. by parts

(u/’v)Lz(U) +B[u7 v, t] = (f, V)LZ(U)’ u = Eu‘

Also makes sense if u'(r) e H'(U) = (Hy(U))" and (-,-)2(y) re-
placed by pairing (-,-) between H~! and H|.
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Definition
uc L*(0,T;H}(U)) withu’ € L2(0,T; H~(U)) is a weak solution
of the IBVP (1) if

1. (W',v)+Bu,v;f] = (f,v) for each v € H}(U) and a.e. 1 € [0, T},

2. u(0)=g.
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Definition
uc L*(0,T;H}(U)) withu’ € L2(0,T; H~(U)) is a weak solution
of the IBVP (1) if
1. (W',v)+Bu,v;f] = (f,v) for each v € H}(U) and a.e. 1 € [0, T},
2. u(0)=g.
Remark: Can show that u € C([0,T];L*(U)), so that IC makes
sense.

Remark: Could also integrate by parts in time to get a slightly
weaker solution notion.

Theorem
3! weak sol. of (1).
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Idea of proof.
{wi}7_, ON basis of H}(U) and L*(U)
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|dea of proof.
{wi}7_, ON basis of H}(U) and L*(U)
Choose d*, in
u,(t) = i d* (1)wy
so that
d,(0) = (g:we),  1<k<m

and
(ullnvwk) +B[um,Wk;t]) = (f,Wk).

Linear system of ODEs for d¥,.
Let m — . (Difficult))

Uniqueness by energy estimates and Gronwall.
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Regularity

Regularity of the solution requires a little bit more than regularity
of coefficients, data and boundary.
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Regularity

Regularity of the solution requires a little bit more than regularity
of coefficients, data and boundary.

If we can differentiate u|yy; = 0 w.r.t. ¢, then u,|y; =0 for all 0 <
t<T.

Hence f — Lu|yy =0forall 0 <r<T.
Hence f(0) — Lg|yy = 0.
Weak form: g, := f(0) — Lg € H} (V).

mth order: g, == ©-1(0) — Lg,, € H}(U)

Theorem

Assume g € C*(U), f € C*(Ur) and mth order compatibility
conditions hold form = 0,1,.... Then the unique weak solution
uecC” (UT)
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Maximum principles (Evans 7.1.4)
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We consider

n
Lu=— Z alj(xa t)”x,-x/' + Zb’(x, t)uxi +C(x’ t)u

n
ii=1 i=1

uniformly elliptic, a’,b*,c € C(Ur), U open & bdd. a/ = &' w.l.0.g.
Parabolic boundary: I'y = Uz \ Ur.
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We consider
n
L= = Y a5, 0t + Yt + 1)
ij=1 i=1

uniformly elliptic, a’,b*,c € C(Ur), U open & bdd. a/ = &' w.l.0.g.
Parabolic boundary: I'r = Uz \ Ur.
Definition
Let u € C3(Uy).
» u is called a subsolution if u; +Lu <0 in Ur.
> u is called a supersolution if u;+Lu > 0 in Uy.

n

Theorem (Weak maximum principle with ¢ = 0)

Let U C R" open, bounded. Assume u € C3(Ur) N C(Ur) and
c=0inU. Ifu;+Lu <0 in Uy, then

maxu = maxu.
UT 1—‘T
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We consider

n
S WLT TS e

n
ii=1 i=1

uniformly elliptic, a’,b*,c € C(Ur), U open & bdd. a/ = &' w.l.0.g.

Parabolic boundary: I'y = Uz \ Ur.

Definition

Let u € C3(Uy).
» u is called a subsolution if u; +Lu <0 in Ur.
> u is called a supersolution if u;+Lu > 0 in Uy.

Theorem (Weak maximum principle with ¢ = 0)

Let U C R" open, bounded. Assume u € C3(Ur) N C(Ur) and
c=0inU. Ifu;+Lu <0 in Uy, then

max i = maxu.
Ur 1—‘T

Remark: subsolutions < supersolutions, max < min.
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Proof

1. Assume u; + Lu < 0 & I(xo,20) € Ur s.t. u(xo,%) = maxy, u.
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1. Assume u; + Lu < 0 & I(xo,20) € Ur s.t. u(xo,%) = maxy, u.
2. 1f0 <19 < T, uxp,t0) =0 = Lu(xp,t) <O.
But Lu(xo,1p) > 0 by the proof of the weak max. princ. for elliptic
equations (since ¢ =0).
Contradiction!

3. If 1o = T we get u,(xo,%) > 0. The rest is the same.
4. If u,+ Lu <0, write u®(x,t) :== u(x,1) — et.
uf +Lu® =u,+Lu—e <0 inUr,

where we used that ¢ = 0.
1-3 give

max u® = maxu®.
Ur I'r

Lete | 0. O
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Theorem (Weak max. principle with ¢ > 0)
If instead ¢ > 0, then maxy; u < maxr, u*.
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1. If u;+Lu < 0in Ur we obtain

maxu < maxu "
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since if maxg, u = u(xo,t9) > 0,0 <19 < T, we still obtain
ur+Lu>0 at (XQ,to),

as C(XO,I())M()C(),I‘()) >0.
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Theorem (Weak max. principle with ¢ > 0)
If instead ¢ > 0, then maxy_u < maxr, ut.

Proof.
1. If u;+Lu < 0in Ur we obtain

maxu < maxu "

ijr 1—‘T
since if maxg, u = u(xo,t9) > 0,0 <19 < T, we still obtain
ur+Lu>0 at (XQ,to),

as C(XO,I())M()C(),I‘()) >0.

2. If u; + Lu <0, introduce u® = u— €r as before and let € | 0. We
still get uf + Lu® < 0 since —ec(x,1)t <O0. O
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Application: Uniqueness

Theorem
Under the same assumptions on L, 3 at most one solution
u € C3(Ur)NC(Ur) to the BVP

M[%‘ldl::f‘hq L/T,
u=00ndU x[0,T]
u=gonUx{t=0}.
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Application: Uniqueness

Theorem
Under the same assumptions on L, 3 at most one solution
u € C3(Ur)NC(Ur) to the BVP

u,+Lu=fin Uy,
u=00ndU x[0,T]
u=gonUx{t=0}.

Proof.
Suffices to show u=0if f=0and g =0.

But then maxg, u = maxp, u =0 since u is a subsolution.
Similarly, ming, u = minr, u =0 since u is a supersolution.
Hence, u =0. O

The condition ¢ > 0 is not needed! See the trick in problem 8.
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Harnack’s inequality
Elliptic version:

Theorem
Assume u >0 is a C? sol. of

n n

— Z aij(X)ux,-x_, + Z b (x)uy, +c(x)u=0
=1 i=1

in U and suppose V CC U is connected. Then 3 constant C >0
(indep. of u) s.t.
supu < Cinfu.
Vv \4
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Harnack’s inequality
Elliptic version:

Theorem
Assume u >0 is a C? sol. of

n n

— Z aij(x)uxi)c_, + Zbi(x)uxi +e(x)u=0
ij=1 i=1

in U and suppose V CC U is connected. Then 3 constant C >0
(indep. of u) s.t.
supu < Cinfu.
Vv \4

The proof is technical, but see Evans 2.2.3f for a non-technical
proof for Laplace’s equation using the mean-value property.
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Parabolic version:

Theorem
Assume u > 0 is a C? solution of

u;+Lu=20

in Ur and suppose V CC U is connected. Then for all
0<1n <t <T,3constant C >0 (indep. of u) s.t.

supu(-,t1) < Cinfu(-,1).
% v

The proof is even more technical.
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Theorem (Strong max. principle with ¢ = 0)

Assume u € C}(Ur) N C(Ur) satisfies u;+Lu < 0 in Ur, where
the equation is uniformly parabolic and ¢ = 0. Assume also that
U is connected. If maxg_ u = u(xo,t0), (Xo,%) € Ur, then u is
constant on Uy, .
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Remark: This implies ‘infinite speed of propagation’ in the sense
that if u >0 on I'7, then u > 0in Uz, unless u = 0.

Proof. (Assuming u« and coefficients smooth.)
1. Let (xo,%9) be as above and W CC U, open, dW smooth.
Let v solve

V[+LV:0 |n WT,
v=uonAr,

Ar = parabolic bdry of Wr.
Weak max. principle =

u<v<M, M = maxu = u(xg, ).
Ur
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the equation is uniformly parabolic and ¢ = 0. Assume also that
U is connected. If maxg_ u = u(xo,t0), (Xo,%) € Ur, then u is
constant on Uy,.

Remark: This implies ‘infinite speed of propagation’ in the sense
that if u >0 on I'7, then u > 0in Uz, unless u = 0.

Proof. (Assuming u« and coefficients smooth.)
1. Let (xo,%9) be as above and W CC U, open, dW smooth.
Let v solve

V[+LV:O |n WT,
v=uonAr,

Ar = parabolic bdry of Wr.
Weak max. principle =

u<v<M, M = maxu = u(xg, ).
Ur

Hence, v(xo, 1) = M.
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Theorem (Strong maximum principle with ¢ > 0)

Under the same assumptions, but with ¢ > 0, if a subsolution u

attains a nonnegative maximum at an interior point, then u is
constant in Uy,.
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Theorem (Strong maximum principle with ¢ > 0)

Under the same assumptions, but with ¢ > 0, if a subsolution u
attains a nonnegative maximum at an interior point, then u is
constant in Uy,.

Proof: see Evans.
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