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15. Since P(D) is elliptic by assumption, pm(ξ ) 6= 0 for all ξ 6= 0. But this means that c :=
min|ξ |=1 |pm(ξ )|> 0. Since pm is homogeneous of degree m, we get

pm(ξ ) = pm(|ξ |ξ/|ξ |) = |ξ |m pm(ξ/|ξ |)≥ c|ξ |m

for ξ 6= 0 (and clearly also for ξ = 0). Hence,

p(ξ ) = pm(ξ )+ p(ξ )− pm(ξ )≥ c|ξ |m +O(|ξ |m−1) = |ξ |m(c+O(|ξ |−1))≥ c
2
|ξ |m

if |ξ | ≥ R for some sufficiently large radius R.
By hypothesis,

(1+ |ξ |s)p(ξ )û ∈ L2(Rn),

and by the above, this means that

|ξ |s+mû ∈ L2(Rn).

Since also û ∈ L2(Rn), we get

(1+ |ξ |s+m)û ∈ L2(Rn),

so that u ∈ Hs+m(Rn).

16. We have
Re p(ξ ) = Re(am)ξ

m.

If m is even, this is bounded if and only if Re(am)≤ 0. If m is odd, it is bounded if and only
if Re(am) = 0, that is, if am is purely imaginary.

18. Here we only consider t ≥ 0. Taking the Fourier transform of both sides of the equation

utt = ∆u,

which holds as an equality between Hs functions, we get

ûtt(ξ , t) =−|ξ |2û(ξ , t) (1)

for almost every ξ and û(ξ ,0) = ĝ(ξ ), ût(ξ ,0) = ĥ(ξ ). Clearly one solution is

û(ξ , t) = cos(|ξ |t)ĝ(ξ )+ sin(|ξ |t)
|ξ |

ĥ(ξ ).

Please, turn over!



Noting that
|sin(|ξ |t)|
|ξ |

≤min{t, |ξ |−1} ≤ 1+ t
1+ |ξ |

,

we can estimate
|û(ξ , t)| ≤ |ĝ(ξ )|+ 1+ t

1+ |ξ |
|ĥ(ξ )|.

Therefore, for each fixed t (or uniformly over any interval [0,T ], T > 0), we can estimate the
Hs+2 norm of u by the Hs+2 norm of g and the Hs+1 norm of h (recall that (1+ |ξ |s+2)/(1+
|ξ |)≤ (1+ |ξ |s+1)). Similarly,

ût(ξ , t) =−|ξ |sin(|ξ |t)ĝ(ξ )+ cos(|ξ |t)ĥ(ξ ).

giving
|ût(ξ , t)| ≤ |ξ ||ĝ(ξ )|+ |ĥ(ξ )|.

From this it is clear that the Hs+1 norm of ut can be estimated in the same way.
To see that the solution is continuous as a function of t with values in Hs+2(Rn) one can use
the dominated convergence theorem. Note that

‖u(·, t + τ)−u(·, t)‖Hs+2 ≤
(∫

Rn
(1+ |ξ |s+2)2(cos(|ξ |(t + τ))− cos(|ξ |t))2|ĝ(ξ )|2 dξ

)1/2

+

(∫
Rn
(1+ |ξ |s+2)2 (sin(|ξ |(t + τ))− sin(|ξ |t))2

|ξ |2
|ĥ(ξ )|2 dξ

)1/2

with both integrands tending pointwise to 0 as τ → 0, and with

(1+ |ξ |s+2)(cos(|ξ |(t + τ))− cos(|ξ |t))2|ĝ(ξ )|2 ≤ 4(1+ |ξ |s+2)|ĝ(ξ )|2 ∈ L1

and

(1+ |ξ |s+2)2 (sin(|ξ |(t + τ))− sin(|ξ |t))2

|ξ |2
|ĥ(ξ )|2 ≤ (1+ |ξ |s+2)2

(1+ |ξ |)2 (2+2t + τ)2|ĥ(ξ )|2

≤ (1+ |ξ |s+1)2(3+2t)2|ĥ(ξ )|2 ∈ L1

if |τ| ≤ 1. To show that u ∈C1([0,∞);Hs+1(Rn)) one can mimic the proof of Theorem 4.25,
using the inequalities

|cos(x+ y)− cos(x)| ≤ |y| and |sin(x+ y)− sin(x)| ≤ |y|.

Repeating this gives u ∈C2([0,∞);Hs(Rn)).
For the uniqueness, one possibility is to use the energy method. Assuming that u is a solution
in C([0,T );H2(Rn))∩C1([0,T );H1(Rn))∩C2([0,T );L2(Rn)) (but without assuming that it
is given by the above formula), we get∫

Rn
(u2

t + |Du|2)dx =
∫
Rn
(|ût |2 + |ξ |2|û|2)dξ

and therefore
d
dt

∫
Rn
(u2

t + |Du|2)dx = 2Re
∫
Rn
(ût ûtt + |ξ |2ûût)dx

= 2Re
∫
Rn
(utt + |ξ |2û)ût dx

= 0

by (1). Thus if g = h = 0, we get ut = 0. But this implies that u = g = 0 for all t by Proposition
4.23.
Alternatively, one can use uniqueness for ODEs, but it’s a little bit tricky since there is an
‘almost everywhere’ issue in (1).



Evans 5.10

1. For simplicity we consider only the case k = 0. The case k > 0 is similar (recall that if uk ∈C1

and uk→ u, Duk→ v uniformly, then u is C1 with Du = v). The fact that C0,γ(U) is a normed
vector space is easy to show, so we concentrate on showing completeness. We already know
that C(U) is complete, so it suffices to show that if {un} is a Cauchy sequence in C0,γ(U), and
u ∈C(U), then u ∈C0,γ(U) and [un−u]C0,γ (U)→ 0. By the definition of a Cauchy sequence,
we can for each ε > 0 find an N such that

|un(x)−un(y)− (um(x)−um(y))|
|x− y|γ

≤ ε, x,y ∈U, x 6= y

if n,m≥ N. Hence,
|un(x)−un(y)|
|x− y|γ

≤C, x,y ∈U, x 6= y

for all n≥ N, where C := ε +[uN ]C0,γ . Letting n→ ∞, we get

|u(x)−u(y)|
|x− y|γ

≤C, x,y ∈U, x 6= y.

Thus u ∈C0,γ(U). On the other hand, letting m→ ∞ above we get

|un(x)−un(y)− (u(x)−u(y))|
|x− y|γ

≤ ε, x,y ∈U, x 6= y

for n≥ N, which implies that [un−u]C0,γ → 0.

20. We have
u(x) =

1
(2π)n/2

∫
Rn

û(ξ )eix·ξ dξ .

and thus

|u(x)| ≤ 1
(2π)n/2

∫
Rn
|û(ξ )|dξ =

1
(2π)n/2

∫
Rn

1+ |ξ |s

1+ |ξ |s
|û(ξ )|dξ

≤ 1
(2π)n/2

(∫
Rn

1
(1+ |ξ |s)2 dξ

)1/2(∫
Rn
(1+ |ξ |s)2|û(ξ )|2 dξ

)1/2

.

The first integral converges if s > n/2 and then the result holds with

C =
1

(2π)n/2

(∫
Rn

1
(1+ |ξ |s)2 dξ

)1/2

.

Evans 6.6

2. We already know that there is a constant α > 0 such that

|B[u,v]| ≤ α‖u‖H1
0 (U)‖v‖H1

0 (U)

from Theorem 2. It remains to show the lower bound. We have

B[u,u] =
∫

U

(
n

∑
i, j=1

ai juxiux j + cu2

)
dx≥ θ‖Du‖2

L2(U)−µ‖u‖2
L2(U).

Please, turn over!



From Poincaré’s inequality, we know that there are constants C1,C2 > 0 such that

‖u‖L2(U) ≤C1‖Du‖L2(U).

and
‖u‖H1

0 (U) ≤C2‖Du‖L2(U)

for u ∈ H1
0 (U). Thus,

B[u,u]≥ (θ −C2
1 µ)‖Du‖2

L2(U) ≥ (θ −C2
1 µ)C2

2‖u‖2
H1

0 (U).

The hypotheses of the Lax-Milgram theorem are therefore satisfied with β = (θ −C2
1 µ)C2

2 if
µ < θ/C2

1 .

3. We verify the hypothesis of the Lax-Milgram theorem (Riesz’ representation theorem can also
be used) with

B[u,v] =
∫

U
∆u∆vdx, u,v ∈ H2

0 (U).

Clearly there is a constant C > 0 such that

|B[u,v]| ≤C‖D2u‖L2(U)‖D2v‖L2(U) ≤C‖u‖H2
0 (U)‖v‖H2

0 (U).

To prove the lower bound, note that

B[u,u] =
∫

U
(∆u)2 dx.

If u ∈C∞
c (U), then integration by parts gives∫

U
(∆u)2 dx =

∫
U

n

∑
i, j=1

uxixiux jx j dx =
n

∑
i, j=1

∫
U

u2
xix j

dx

and by approximation this still holds if u ∈ H2
0 (U). On the other hand,∫

U
u2

xi
dx≤C

n

∑
j=1

∫
U

u2
xix j

dx

by Poincaré’s inequality if uxi ∈ H1
0 (U), so

n

∑
i=1

∫
U

u2
xi

dx≤C
n

∑
i, j=1

∫
U

u2
xix j

dx

if u ∈ H2
0 (U). Finally,

‖u‖2
L2(U) ≤C‖Du‖2

L2(U) ≤C2
n

∑
i, j=1

∫
U

u2
xix j

dx

if u ∈ H2
0 (U). Altogether, we have proved that

β‖u‖2
H2

0 (U) ≤
n

∑
i, j=1

∫
U

u2
xix j

dx = B[u,u], u ∈ H2
0 (U),

where β = 1/(1+C+C2).



4. For the ‘only if’ part, we note that∫
U

f dx =
∫

U
f ·1dx =

∫
U

Du ·D1dx = 0

if u is a weak solution. To show the existence of a weak solution, assuming the necessary
condition, we apply Lax-Milgram to the bilinear form

B[u,v] =
∫

U
Du ·Dvdx

on the space

H =

{
u ∈ H1(U) :

∫
U

udx = 0
}
.

The upper bound is clear, so we concentrate on the lower bound. Here we need Theorem 1 in
Evans, 5.8, which says that there exists a constant C > 0 such that

‖u‖L2(U) ≤C‖Du‖L2(U)

for each u ∈ H. This implies that the ‘homogeneous Sobolev norm’ ‖Du‖L2(U) is equivalent
to the usual Sobolev norm ‖u‖H1(U) on H and hence there is a constant β > 0 with

β‖u‖2
H1(U) ≤ ‖Du‖2

L2(U) = B[u,u], u ∈ H.

Lax-Milgram gives the existence of a u ∈H s.t. B[u,v] = ( f ,v)L2(U) for all v ∈H. We are still
not completely done, since we want B[u,v] = ( f ,v)L2(U) for all v ∈ H1(U). To get this, note
that if v ∈ H1(U), then v− (v)U ∈ H, where (v)U := |U |−1 ∫

U vdx is the average of v over U .
But then

B[u,v] = B[u,v− (v)U ]+B[u,(v)U ] = B[u,v− (v)U ] = ( f ,v− (v)U)L2(U) = ( f ,v)L2(U)

since D((v)U) = 0 and ( f ,(v)U)L2(U).


