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Since P(D) is elliptic by assumption, p,,(&) # 0 for all £ # 0. But this means that ¢ :=
minjg|_ [pm(&)| > 0. Since p,, is homogeneous of degree m, we get

pm(&) = pm(IS16/1S]) = &1 Pm(§/IG]) = clS|™
for & # 0 (and clearly also for & = 0). Hence,

(&) = Pu(&) + (&) = pu(&) 2 clg" +O(IE["") = [E]" (c +O(IE]T) = glél’"

if |£| > R for some sufficiently large radius R.
By hypothesis,
(1+1E[)p(6)a e LX(R),
and by the above, this means that
E["TMa € L (R™).
Since also & € L*(R"), we get
(1+ &) ™ae L2 (R),
so that u € H*"(R").

We have
Rep(§) =Re(am)S™.

If m is even, this is bounded if and only if Re(a,,) < 0. If m is odd, it is bounded if and only
if Re(ay,) = 0, that is, if a,, is purely imaginary.

Here we only consider ¢ > 0. Taking the Fourier transform of both sides of the equation
uyy = Au,

which holds as an equality between H* functions, we get

i (1) = —|E"a(&,1) (M
for almost every & and @(€,0) = g(&), i;(E,0) = h(&). Clearly one solution is
sin(|&17)

a(§,1) = cos(|g]1)& (&) + h(&).

4
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Noting that

Isin(E00] _ ey < 150
we can estimate L4r .
a(&.,1)] < [8(8)+ ().

1+(¢]
Therefore, for each fixed ¢ (or uniformly over any interval [0, 7], T > 0), we can estimate the
H**2 norm of u by the H°+2 norm of g and the H**! norm of / (recall that (14 |E[**2)/(1 +
E]) < (14 &), Similarly,

i (&,1) = —|&|sin(€1)§(E) + cos(|E[1)A(&).
giving X
(&, 0)1 < |E112(E)]+ A(S)]

From this it is clear that the H°*! norm of u, can be estimated in the same way.
To see that the solution is continuous as a function of # with values in H**2(R") one can use
the dominated convergence theorem. Note that

1/2
Ju(st+7) —ul 1) |2 < </Rn(1+!§”2)2(008(15\(f+f))—COS(\élt))2|§(§)|2d<§>

ciavo (sin(|E](t+ 1)) —sin(|€]r))? 1/2
i </R"(1H§‘ "y E12 |h(5)|2d§>

with both integrands tending pointwise to 0 as T — 0, and with
(1 1EP2) (cos(|€| (1 + 1)) —cos(|&]1))*[(E)1> < 4(1+[E2)Ig(&)> e L!

and

(sin(|&[(r+ 7)) —sin(|€]))* > o2 (L+E[F2)? 2070812

(1+1E)72)? (&))" < e 2+ 21+ 7)7[A(8)]
&2 (1+1E])?
< (LGP 3+ 20 R(E))* e L!
if |7| < 1. To show that u € C'(]0,00); H**!(R")) one can mimic the proof of Theorem 4.25,
using the inequalities
|cos(x+y)—cos(x)| <|y] and [sin(x+y)—sin(x)| <[y

Repeating this gives u € C?([0,0); H*(R")).
For the uniqueness, one possibility is to use the energy method. Assuming that u is a solution
in C([0,T); H*(R"))NC'([0,T); H' (R")) N C?([0,T); L*(R")) (but without assuming that it
is given by the above formula), we get

L ipuPydx= [ (P + 1P d

and therefore

d _ B
> / (1 + |Dul?) dx = 2Re / (T + |E |27, ) dx
1 JRe R»

:2Re/R (e + |E[28) dx
—0

by (1). Thus if g = h =0, we get u, = 0. But this implies that u = g = 0 for all # by Proposition
4.23.

Alternatively, one can use uniqueness for ODEs, but it’s a little bit tricky since there is an
‘almost everywhere’ issue in (1).



Evans 5.10

1. For simplicity we consider only the case k = 0. The case k > 0 is similar (recall that if u; € C!
and uy — u, Duy — v uniformly, then u is C! with Du = v). The fact that C%(TU) is a normed
vector space is easy to show, so we concentrate on showing completeness. We already know
that C(U) is complete, so it suffices to show that if {u, } is a Cauchy sequence in C%Y(U), and
u € C(U), then u € COY(U) and [u, — u] oy 7@y — 0. By the definition of a Cauchy sequence,

we can for each € > 0 find an N such that

[t (x) = tn (¥) = (14 (x) — 4 (¥))]

x —y[¥

<&, x,yeU, x#y

if n,m > N. Hence,
‘”n(x) - un(y)|

<C, x,yelU, x#y
lx—y|"

for all n > N, where C := € + [uy]coy. Letting n — oo, we get

MSC7 x)y€U7 x;éy.
e =yl

Thus u € C®Y(U). On the other hand, letting m — o above we get

|14 (%) — 1t (y) = (u(x) —u(y))|

[x —y|7

<k, x,yeU, x#y

for n > N, which implies that [u, — u]coy — 0.

20. We have |

u(x) = W/Rnﬁ(g)efxfdg.

and thus

1 B 1+[Ef
()| € s [ ) dE = s [ @l

i
(L) (Loslerricrae)

2m)n/2
The first integral converges if s > n/2 and then the result holds with

1/2
€= (2”1)"/2 </R (1+|1€|“)2d§> '

1/2
< —
(

Evans 6.6

2.  We already know that there is a constant o > 0 such that
|Blu,v]| < allull gy ) IVl g )

from Theorem 2. It remains to show the lower bound. We have

Blu,u] :/U ( Z aijuxiuxj +cu2> dx > 9||Du||i2(U) _NH“Hiz(U)

Please, turn over!



From Poincaré’s inequality, we know that there are constants Cy,C; > 0 such that
||”||L2(U) <G HDMHLZ(U)-

and
[ull g wy < CollDul| 2wy

foru € HY(U). Thus,
Blu,u] = (0 — 1) [DullZ ) > (6~ Cou)CHuly )

The hypotheses of the Lax-Milgram theorem are therefore satisfied with § = (6 — C?u)C5 if
pu<0/C

We verify the hypothesis of the Lax-Milgram theorem (Riesz’ representation theorem can also
be used) with

Blu,v] :/AuAvdx, u,v € H3(U).
U
Clearly there is a constant C > 0 such that
|Blu,v]| < ClID?ull 20 |1 DIl 2wy < Cllull gz ) IV 2 -

To prove the lower bound, note that

Blu, u] :/U(Au)zdx.

If u € C*(U), then integration by parts gives

) n B n 5
A(Au) dx—/U Z Mx,-x,-uxjxjdx_ Z Auxix_/dx

i,j=1 i,j=1

and by approximation this still holds if u € H3(U). On the other hand,

n
/ui.deCZ/uix,dx
v =

by Poincaré’s inequality if u,, € H}(U), so

n n
2 2
usdx<C / us . dx
;/U § i,jzz'l v
if u € HZ(U). Finally,
n
el o) < ClPul <€ 3 [ i
i,j=
if u € H(U). Altogether, we have proved that
2 - 2 2
Blulpy < X [ o dx=Bluul, weH3(U),
ij=1

where 8 = 1/(1+C+C?).



For the ‘only if” part, we note that

/fdx:/f-ldx:/Du-Dldxzo
U U U

if u is a weak solution. To show the existence of a weak solution, assuming the necessary
condition, we apply Lax-Milgram to the bilinear form

B[u,v]z/Dvadx
U

H:{uEHl(U):/Uudxzo}.

The upper bound is clear, so we concentrate on the lower bound. Here we need Theorem 1 in
Evans, 5.8, which says that there exists a constant C > 0 such that

on the space

[ull 20y < Cl|Dull 2 (v

for each u € H. This implies that the ‘homogeneous Sobolev norm’ |[Dul| 2y is equivalent
to the usual Sobolev norm |[ul| 1 () on H and hence there is a constant § > 0 with

B||”H12-11(U) < ||D”||%2(U) =Blu,u], ueH.

Lax-Milgram gives the existence of au € H s.t. Blu,v| = (f,v)2(y) for all v € H. We are still
not completely done, since we want Blu,v] = (f,v);2) for all v e H' (U). To get this, note
thatif v e H'(U), then v— (v)y € H, where (v)y == [U|™! [, vdx is the average of v over U.
But then

Blu,v] = Blu,v = (v)u] + Blu, (v)u] = Blu,v = (V)u] = (f,v = V)v)2w) = (fV)w)

since D((v)y) = 0and (f, (V)v)2v)-



