LUND

UNIVERSITY

Centre for Mathematical Sciences

Mathematics, Faculty of Science

Solutions, April 17

Wahlén

15. Since $P(D)$ is elliptic by assumption, $p_{m}(\xi) \neq 0$ for all $\xi \neq 0$. But this means that $c:=$ $\min _{|\xi|=1}\left|p_{m}(\xi)\right|>0$. Since p_{m} is homogeneous of degree m, we get

$$
p_{m}(\xi)=p_{m}(|\xi| \xi /|\xi|)=|\xi|^{m} p_{m}(\xi /|\xi|) \geq c|\xi|^{m}
$$

for $\xi \neq 0$ (and clearly also for $\xi=0$). Hence,

$$
p(\xi)=p_{m}(\xi)+p(\xi)-p_{m}(\xi) \geq c|\xi|^{m}+O\left(|\xi|^{m-1}\right)=|\xi|^{m}\left(c+O\left(|\xi|^{-1}\right)\right) \geq \frac{c}{2}|\xi|^{m}
$$

if $|\xi| \geq R$ for some sufficiently large radius R.
By hypothesis,

$$
\left(1+|\xi|^{s}\right) p(\xi) \hat{u} \in L^{2}\left(\mathbb{R}^{n}\right)
$$

and by the above, this means that

$$
|\xi|^{s+m} \hat{u} \in L^{2}\left(\mathbb{R}^{n}\right)
$$

Since also $\hat{u} \in L^{2}\left(\mathbb{R}^{n}\right)$, we get

$$
\left(1+|\xi|^{s+m}\right) \hat{u} \in L^{2}\left(\mathbb{R}^{n}\right)
$$

so that $u \in H^{s+m}\left(\mathbb{R}^{n}\right)$.
16. We have

$$
\operatorname{Re} p(\xi)=\operatorname{Re}\left(a_{m}\right) \xi^{m}
$$

If m is even, this is bounded if and only if $\operatorname{Re}\left(a_{m}\right) \leq 0$. If m is odd, it is bounded if and only if $\operatorname{Re}\left(a_{m}\right)=0$, that is, if a_{m} is purely imaginary.
18. Here we only consider $t \geq 0$. Taking the Fourier transform of both sides of the equation

$$
u_{t t}=\Delta u
$$

which holds as an equality between H^{s} functions, we get

$$
\begin{equation*}
\hat{u}_{t t}(\xi, t)=-|\xi|^{2} \hat{u}(\xi, t) \tag{1}
\end{equation*}
$$

for almost every ξ and $\hat{u}(\xi, 0)=\hat{g}(\xi), \hat{u}_{t}(\xi, 0)=\hat{h}(\xi)$. Clearly one solution is

$$
\hat{u}(\xi, t)=\cos (|\xi| t) \hat{g}(\xi)+\frac{\sin (|\xi| t)}{|\xi|} \hat{h}(\xi)
$$

Noting that

$$
\frac{|\sin (|\xi| t)|}{|\xi|} \leq \min \left\{t,|\xi|^{-1}\right\} \leq \frac{1+t}{1+|\xi|},
$$

we can estimate

$$
|\hat{u}(\xi, t)| \leq|\hat{g}(\xi)|+\frac{1+t}{1+|\xi|}|\hat{h}(\xi)| .
$$

Therefore, for each fixed t (or uniformly over any interval $[0, T], T>0$), we can estimate the H^{s+2} norm of u by the H^{s+2} norm of g and the H^{s+1} norm of h (recall that $\left(1+|\xi|^{s+2}\right) /(1+$ $|\xi|) \leq\left(1+|\xi|^{s+1}\right)$). Similarly,

$$
\hat{u}_{t}(\xi, t)=-|\xi| \sin (|\xi| t) \hat{g}(\xi)+\cos (|\xi| t) \hat{h}(\xi) .
$$

giving

$$
\left|\hat{u}_{t}(\xi, t)\right| \leq|\xi||\hat{g}(\xi)|+|\hat{h}(\xi)| .
$$

From this it is clear that the H^{s+1} norm of u_{t} can be estimated in the same way.
To see that the solution is continuous as a function of t with values in $H^{s+2}\left(\mathbb{R}^{n}\right)$ one can use the dominated convergence theorem. Note that

$$
\begin{aligned}
\|u(\cdot, t+\tau)-u(\cdot, t)\|_{H^{s+2}} \leq & \left(\int_{\mathbb{R}^{n}}\left(1+|\xi|^{s+2}\right)^{2}(\cos (|\xi|(t+\tau))-\cos (|\xi| t))^{2}|\hat{g}(\xi)|^{2} d \xi\right)^{1 / 2} \\
& +\left(\int_{\mathbb{R}^{n}}\left(1+|\xi|^{s+2}\right)^{2} \frac{(\sin (|\xi|(t+\tau))-\sin (|\xi| t))^{2}}{|\xi|^{2}}|\hat{h}(\xi)|^{2} d \xi\right)^{1 / 2}
\end{aligned}
$$

with both integrands tending pointwise to 0 as $\tau \rightarrow 0$, and with

$$
\left(1+|\xi|^{s+2}\right)(\cos (|\xi|(t+\tau))-\cos (|\xi| t))^{2}|\hat{g}(\xi)|^{2} \leq 4\left(1+|\xi|^{s+2}\right)|\hat{g}(\xi)|^{2} \in L^{1}
$$

and

$$
\begin{aligned}
\left(1+|\xi|^{s+2}\right)^{2} \frac{(\sin (|\xi|(t+\tau))-\sin (|\xi| t))^{2}}{|\xi|^{2}}|\hat{h}(\xi)|^{2} & \leq \frac{\left(1+|\xi|^{s+2}\right)^{2}}{(1+|\xi|)^{2}}(2+2 t+\tau)^{2}|\hat{h}(\xi)|^{2} \\
& \leq\left(1+|\xi|^{s+1}\right)^{2}(3+2 t)^{2}|\hat{h}(\xi)|^{2} \in L^{1}
\end{aligned}
$$

if $|\tau| \leq 1$. To show that $u \in C^{1}\left([0, \infty) ; H^{s+1}\left(\mathbb{R}^{n}\right)\right)$ one can mimic the proof of Theorem 4.25, using the inequalities

$$
|\cos (x+y)-\cos (x)| \leq|y| \quad \text { and } \quad|\sin (x+y)-\sin (x)| \leq|y| .
$$

Repeating this gives $u \in C^{2}\left([0, \infty) ; H^{s}\left(\mathbb{R}^{n}\right)\right)$.
For the uniqueness, one possibility is to use the energy method. Assuming that u is a solution in $C\left([0, T) ; H^{2}\left(\mathbb{R}^{n}\right)\right) \cap C^{1}\left([0, T) ; H^{1}\left(\mathbb{R}^{n}\right)\right) \cap C^{2}\left([0, T) ; L^{2}\left(\mathbb{R}^{n}\right)\right)$ (but without assuming that it is given by the above formula), we get

$$
\int_{\mathbb{R}^{n}}\left(u_{t}^{2}+|D u|^{2}\right) d x=\int_{\mathbb{R}^{n}}\left(\left|\hat{u}_{t}\right|^{2}+|\xi|^{2}|\hat{u}|^{2}\right) d \xi
$$

and therefore

$$
\begin{aligned}
\frac{d}{d t} \int_{\mathbb{R}^{n}}\left(u_{t}^{2}+|D u|^{2}\right) d x & =2 \operatorname{Re} \int_{\mathbb{R}^{n}}\left(\hat{u}_{t} \overline{\hat{u}}_{t t}+|\xi|^{2} \hat{u}_{\hat{u}}^{\hat{u}_{t}}\right) d x \\
& =2 \operatorname{Re} \int_{\mathbb{R}^{n}}\left(u_{t t}+|\xi|^{2} \hat{u}\right) \overline{\hat{u}}_{t} d x \\
& =0
\end{aligned}
$$

by (1). Thus if $g=h=0$, we get $u_{t}=0$. But this implies that $u=g=0$ for all t by Proposition 4.23.

Alternatively, one can use uniqueness for ODEs, but it's a little bit tricky since there is an 'almost everywhere' issue in (1).

Evans 5.10

1. For simplicity we consider only the case $k=0$. The case $k>0$ is similar (recall that if $u_{k} \in C^{1}$ and $u_{k} \rightarrow u, D u_{k} \rightarrow v$ uniformly, then u is C^{1} with $\left.D u=v\right)$. The fact that $C^{0, \gamma}(\bar{U})$ is a normed vector space is easy to show, so we concentrate on showing completeness. We already know that $C(\bar{U})$ is complete, so it suffices to show that if $\left\{u_{n}\right\}$ is a Cauchy sequence in $C^{0, \gamma}(\bar{U})$, and $u \in C(\bar{U})$, then $u \in C^{0, \gamma}(\bar{U})$ and $\left[u_{n}-u\right]_{C^{0, \gamma}(\bar{U})} \rightarrow 0$. By the definition of a Cauchy sequence, we can for each $\varepsilon>0$ find an N such that

$$
\frac{\left|u_{n}(x)-u_{n}(y)-\left(u_{m}(x)-u_{m}(y)\right)\right|}{|x-y|^{\gamma}} \leq \varepsilon, \quad x, y \in U, \quad x \neq y
$$

if $n, m \geq N$. Hence,

$$
\frac{\left|u_{n}(x)-u_{n}(y)\right|}{|x-y|^{\gamma}} \leq C, \quad x, y \in U, \quad x \neq y
$$

for all $n \geq N$, where $C:=\varepsilon+\left[u_{N}\right]_{C^{0, \gamma}}$. Letting $n \rightarrow \infty$, we get

$$
\frac{|u(x)-u(y)|}{|x-y|^{\gamma}} \leq C, \quad x, y \in U, \quad x \neq y .
$$

Thus $u \in C^{0, \gamma}(\bar{U})$. On the other hand, letting $m \rightarrow \infty$ above we get

$$
\frac{\left|u_{n}(x)-u_{n}(y)-(u(x)-u(y))\right|}{|x-y|^{\gamma}} \leq \varepsilon, \quad x, y \in U, \quad x \neq y
$$

for $n \geq N$, which implies that $\left[u_{n}-u\right]_{C^{0, \gamma}} \rightarrow 0$.
20. We have

$$
u(x)=\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} \hat{u}(\xi) e^{i x \cdot \xi} d \xi
$$

and thus

$$
\begin{aligned}
|u(x)| & \leq \frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}}|\hat{u}(\xi)| d \xi=\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} \frac{1+|\xi|^{s}}{1+|\xi| s}|\hat{u}(\xi)| d \xi \\
& \leq \frac{1}{(2 \pi)^{n / 2}}\left(\int_{\mathbb{R}^{n}} \frac{1}{\left(1+|\xi|^{s}\right)^{2}} d \xi\right)^{1 / 2}\left(\int_{\mathbb{R}^{n}}\left(1+|\xi|^{s}\right)^{2}|\hat{u}(\xi)|^{2} d \xi\right)^{1 / 2}
\end{aligned}
$$

The first integral converges if $s>n / 2$ and then the result holds with

$$
C=\frac{1}{(2 \pi)^{n / 2}}\left(\int_{\mathbb{R}^{n}} \frac{1}{\left(1+|\xi|^{s}\right)^{2}} d \xi\right)^{1 / 2}
$$

Evans 6.6

2. We already know that there is a constant $\alpha>0$ such that

$$
|B[u, v]| \leq \alpha\|u\|_{H_{0}^{1}(U)}\|v\|_{H_{0}^{1}(U)}
$$

from Theorem 2. It remains to show the lower bound. We have

$$
B[u, u]=\int_{U}\left(\sum_{i, j=1}^{n} a^{i j} u_{x_{i}} u_{x_{j}}+c u^{2}\right) d x \geq \theta\|D u\|_{L^{2}(U)}^{2}-\mu\|u\|_{L^{2}(U)}^{2}
$$

From Poincaré's inequality, we know that there are constants $C_{1}, C_{2}>0$ such that

$$
\|u\|_{L^{2}(U)} \leq C_{1}\|D u\|_{L^{2}(U)} .
$$

and

$$
\|u\|_{H_{0}^{1}(U)} \leq C_{2}\|D u\|_{L^{2}(U)}
$$

for $u \in H_{0}^{1}(U)$. Thus,

$$
B[u, u] \geq\left(\theta-C_{1}^{2} \mu\right)\|D u\|_{L^{2}(U)}^{2} \geq\left(\theta-C_{1}^{2} \mu\right) C_{2}^{2}\|u\|_{H_{0}^{1}(U)}^{2}
$$

The hypotheses of the Lax-Milgram theorem are therefore satisfied with $\beta=\left(\theta-C_{1}^{2} \mu\right) C_{2}^{2}$ if $\mu<\theta / C_{1}^{2}$.
3. We verify the hypothesis of the Lax-Milgram theorem (Riesz' representation theorem can also be used) with

$$
B[u, v]=\int_{U} \Delta u \Delta v d x, \quad u, v \in H_{0}^{2}(U) .
$$

Clearly there is a constant $C>0$ such that

$$
|B[u, v]| \leq C\left\|D^{2} u\right\|_{L^{2}(U)}\left\|D^{2} v\right\|_{L^{2}(U)} \leq C\|u\|_{H_{0}^{2}(U)}\|v\|_{H_{0}^{2}(U)} .
$$

To prove the lower bound, note that

$$
B[u, u]=\int_{U}(\Delta u)^{2} d x
$$

If $u \in C_{c}^{\infty}(U)$, then integration by parts gives

$$
\int_{U}(\Delta u)^{2} d x=\int_{U} \sum_{i, j=1}^{n} u_{x_{i} x_{i}} u_{x_{j} x_{j}} d x=\sum_{i, j=1}^{n} \int_{U} u_{x_{i} x_{j}}^{2} d x
$$

and by approximation this still holds if $u \in H_{0}^{2}(U)$. On the other hand,

$$
\int_{U} u_{x_{i}}^{2} d x \leq C \sum_{j=1}^{n} \int_{U} u_{x_{i} x_{j}}^{2} d x
$$

by Poincaré's inequality if $u_{x_{i}} \in H_{0}^{1}(U)$, so

$$
\sum_{i=1}^{n} \int_{U} u_{x_{i}}^{2} d x \leq C \sum_{i, j=1}^{n} \int_{U} u_{x_{i} x_{j}}^{2} d x
$$

if $u \in H_{0}^{2}(U)$. Finally,

$$
\|u\|_{L^{2}(U)}^{2} \leq C\|D u\|_{L^{2}(U)}^{2} \leq C^{2} \sum_{i, j=1}^{n} \int_{U} u_{x_{i} x_{j}}^{2} d x
$$

if $u \in H_{0}^{2}(U)$. Altogether, we have proved that

$$
\beta\|u\|_{H_{0}^{2}(U)}^{2} \leq \sum_{i, j=1}^{n} \int_{U} u_{x_{i} x_{j}}^{2} d x=B[u, u], \quad u \in H_{0}^{2}(U),
$$

where $\beta=1 /\left(1+C+C^{2}\right)$.
4. For the 'only if' part, we note that

$$
\int_{U} f d x=\int_{U} f \cdot 1 d x=\int_{U} D u \cdot D 1 d x=0
$$

if u is a weak solution. To show the existence of a weak solution, assuming the necessary condition, we apply Lax-Milgram to the bilinear form

$$
B[u, v]=\int_{U} D u \cdot D v d x
$$

on the space

$$
H=\left\{u \in H^{1}(U): \int_{U} u d x=0\right\} .
$$

The upper bound is clear, so we concentrate on the lower bound. Here we need Theorem 1 in Evans, 5.8 , which says that there exists a constant $C>0$ such that

$$
\|u\|_{L^{2}(U)} \leq C\|D u\|_{L^{2}(U)}
$$

for each $u \in H$. This implies that the 'homogeneous Sobolev norm' $\|D u\|_{L^{2}(U)}$ is equivalent to the usual Sobolev norm $\|u\|_{H^{1}(U)}$ on H and hence there is a constant $\beta>0$ with

$$
\beta\|u\|_{H^{1}(U)}^{2} \leq\|D u\|_{L^{2}(U)}^{2}=B[u, u], \quad u \in H .
$$

Lax-Milgram gives the existence of a $u \in H$ s.t. $B[u, v]=(f, v)_{L^{2}(U)}$ for all $v \in H$. We are still not completely done, since we want $B[u, v]=(f, v)_{L^{2}(U)}$ for all $v \in H^{1}(U)$. To get this, note that if $v \in H^{1}(U)$, then $v-(v)_{U} \in H$, where $(v)_{U}:=|U|^{-1} \int_{U} v d x$ is the average of v over U. But then

$$
B[u, v]=B\left[u, v-(v)_{U}\right]+B\left[u,(v)_{U}\right]=B\left[u, v-(v)_{U}\right]=\left(f, v-(v)_{U}\right)_{L^{2}(U)}=(f, v)_{L^{2}(U)}
$$

since $D\left((v)_{U}\right)=0$ and $\left(f,(v)_{U}\right)_{L^{2}(U)}$.

