PDE Lecture

Sobolev spaces

April 14

Fourier methods and Sobolev spaces

Fourier characterization of Sobolev spaces

Recall:

Let $u \in L^{2}\left(\mathbb{R}^{n}\right)$.
$u \in H^{k}\left(\mathbb{R}^{n}\right) \Leftrightarrow\left(1+|\xi|^{k}\right) \hat{u} \in L^{2}\left(\mathbb{R}^{n}\right), k=0,1,2, \ldots$.

Fourier characterization of Sobolev spaces

Recall:

Let $u \in L^{2}\left(\mathbb{R}^{n}\right)$.
$u \in H^{k}\left(\mathbb{R}^{n}\right) \Leftrightarrow\left(1+|\xi|^{k}\right) \hat{u} \in L^{2}\left(\mathbb{R}^{n}\right), k=0,1,2, \ldots$.
Fractional Sobolev norm

$$
\|u\|_{H^{s}\left(\mathbb{R}^{n}\right)}:=\left\|\left(1+|\xi|^{s}\right) \hat{u}\right\|_{L^{2}}=\left(\int_{\mathbb{R}^{n}}\left(1+|\xi|^{s}\right)^{2}|\hat{u}(\xi)|^{2} d \xi\right)^{1 / 2}, \quad s \geq 0
$$

Fourier characterization of Sobolev spaces

Recall:
Let $u \in L^{2}\left(\mathbb{R}^{n}\right)$.
$u \in H^{k}\left(\mathbb{R}^{n}\right) \Leftrightarrow\left(1+|\xi|^{k}\right) \hat{u} \in L^{2}\left(\mathbb{R}^{n}\right), k=0,1,2, \ldots$.
Fractional Sobolev norm

$$
\|u\|_{H^{s}\left(\mathbb{R}^{n}\right)}:=\left\|\left(1+|\xi|^{s}\right) \hat{u}\right\|_{L^{2}}=\left(\int_{\mathbb{R}^{n}}\left(1+|\xi|^{s}\right)^{2}|\hat{u}(\xi)|^{2} d \xi\right)^{1 / 2}, \quad s \geq 0
$$

Definition

Let $s \geq 0$. The fractional Sobolev space $H^{s}\left(\mathbb{R}^{n}\right)$ is defined as

$$
H^{s}\left(\mathbb{R}^{n}\right)=\left\{u \in L^{2}\left(\mathbb{R}^{n}\right):\|u\|_{H^{s}}<\infty\right\}
$$

Fourier characterization of Sobolev spaces

Recall:
Let $u \in L^{2}\left(\mathbb{R}^{n}\right)$.
$u \in H^{k}\left(\mathbb{R}^{n}\right) \Leftrightarrow\left(1+|\xi|^{k}\right) \hat{u} \in L^{2}\left(\mathbb{R}^{n}\right), k=0,1,2, \ldots$.
Fractional Sobolev norm

$$
\|u\|_{H^{s}\left(\mathbb{R}^{n}\right)}:=\left\|\left(1+|\xi|^{s}\right) \hat{u}\right\|_{L^{2}}=\left(\int_{\mathbb{R}^{n}}\left(1+|\xi|^{s}\right)^{2}|\hat{u}(\xi)|^{2} d \xi\right)^{1 / 2}, \quad s \geq 0
$$

Definition

Let $s \geq 0$. The fractional Sobolev space $H^{s}\left(\mathbb{R}^{n}\right)$ is defined as

$$
H^{s}\left(\mathbb{R}^{n}\right)=\left\{u \in L^{2}\left(\mathbb{R}^{n}\right):\|u\|_{H^{s}}<\infty\right\}
$$

Coincides with H^{k} if $s=k=0,1,2, \ldots$

Application to PDE with constant coefficients

Example
Consider

$$
-\Delta u+u=f
$$

with $u, f \in \mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right)$.

Application to PDE with constant coefficients

Example
Consider

$$
-\Delta u+u=f
$$

with $u, f \in \mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right)$.
Fourier transform

$$
\left(|\xi|^{2}+1\right) \hat{u}=\hat{f} \Leftrightarrow \hat{u}=\frac{1}{1+|\xi|^{2}} \hat{f}
$$

Application to PDE with constant coefficients

Example
Consider

$$
-\Delta u+u=f
$$

with $u, f \in \mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right)$.
Fourier transform

$$
\left(|\xi|^{2}+1\right) \hat{u}=\hat{f} \Leftrightarrow \hat{u}=\frac{1}{1+|\xi|^{2}} \hat{f}
$$

Thus $f \in L^{2} \Rightarrow u \in H^{2}$.

Application to PDE with constant coefficients

Example
Consider

$$
-\Delta u+u=f
$$

with $u, f \in \mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right)$.
Fourier transform

$$
\left(|\xi|^{2}+1\right) \hat{u}=\hat{f} \Leftrightarrow \hat{u}=\frac{1}{1+|\xi|^{2}} \hat{f}
$$

Thus $f \in L^{2} \Rightarrow u \in H^{2}$.
$f \in H^{s} \Rightarrow u \in H^{s+2}$ since

$$
\frac{1+|\xi|^{s+2}}{1+|\xi|^{2}} \leq 1+|\xi|^{s}
$$

Elliptic equations with constant coefficients

General partial differential operator of order m

$$
P(D)=\sum_{|\alpha| \leq m} a_{\alpha} D^{\alpha}
$$

Elliptic equations with constant coefficients

General partial differential operator of order m

$$
P(D)=\sum_{|\alpha| \leq m} a_{\alpha} D^{\alpha}
$$

Symbol:

$$
p(\xi)=\sum_{|\alpha| \leq m} a_{\alpha}(i \xi)^{\alpha}
$$

Elliptic equations with constant coefficients

General partial differential operator of order m

$$
P(D)=\sum_{|\alpha| \leq m} a_{\alpha} D^{\alpha}
$$

Symbol:

$$
p(\xi)=\sum_{|\alpha| \leq m} a_{\alpha}(i \xi)^{\alpha}
$$

Principal symbol:

$$
p_{m}(\xi)=\sum_{|\alpha|=m} a_{\alpha}(i \xi)^{\alpha}
$$

Elliptic equations with constant coefficients

General partial differential operator of order m

$$
P(D)=\sum_{|\alpha| \leq m} a_{\alpha} D^{\alpha}
$$

Symbol:

$$
p(\xi)=\sum_{|\alpha| \leq m} a_{\alpha}(i \xi)^{\alpha}
$$

Principal symbol:

$$
p_{m}(\xi)=\sum_{|\alpha|=m} a_{\alpha}(i \xi)^{\alpha}
$$

$P(D)$ is elliptic if $p_{m}(\xi) \neq 0 \forall \xi \neq 0$.

Theorem

Assume that $P(D)$ is elliptic and $p(\xi) \neq 0$ for all $\xi \in \mathbb{R}^{n}$. If $f \in H^{s}$, $s \geq 0$, then $P(D) u=f$ has a unique solution $u \in H^{s+m}$ and the $\operatorname{map} f \mapsto u$ from H^{s} to H^{s+m} is continuous.

Theorem

Assume that $P(D)$ is elliptic and $p(\xi) \neq 0$ for all $\xi \in \mathbb{R}^{n}$. If $f \in H^{s}$, $s \geq 0$, then $P(D) u=f$ has a unique solution $u \in H^{s+m}$ and the $\operatorname{map} f \mapsto u$ from H^{s} to H^{s+m} is continuous.

Proof.

$$
\hat{u}(\xi)=\frac{\hat{f}(\xi)}{p(\xi)}
$$

Theorem

Assume that $P(D)$ is elliptic and $p(\xi) \neq 0$ for all $\xi \in \mathbb{R}^{n}$. If $f \in H^{s}$, $s \geq 0$, then $P(D) u=f$ has a unique solution $u \in H^{s+m}$ and the $\operatorname{map} f \mapsto u$ from H^{s} to H^{s+m} is continuous.

Proof.

$$
\hat{u}(\xi)=\frac{\hat{f}(\xi)}{p(\xi)}
$$

Assumptions $\Rightarrow|p(\xi)| \geq c\left(1+|\xi|^{m}\right)$ for some $c>0$ (exercise).

Theorem

Assume that $P(D)$ is elliptic and $p(\xi) \neq 0$ for all $\xi \in \mathbb{R}^{n}$. If $f \in H^{s}$, $s \geq 0$, then $P(D) u=f$ has a unique solution $u \in H^{s+m}$ and the $\operatorname{map} f \mapsto u$ from H^{s} to H^{s+m} is continuous.

Proof.

$$
\hat{u}(\xi)=\frac{\hat{f}(\xi)}{p(\xi)}
$$

Assumptions $\Rightarrow|p(\xi)| \geq c\left(1+|\xi|^{m}\right)$ for some $c>0$ (exercise).

$$
\left(1+|\xi|^{s+m}\right)|\hat{u}(\xi)| \leq \frac{1+|\xi|^{s+m}}{c\left(1+|\xi|^{m}\right)}|\hat{f}(\xi)|
$$

Theorem

Assume that $P(D)$ is elliptic and $p(\xi) \neq 0$ for all $\xi \in \mathbb{R}^{n}$. If $f \in H^{s}$, $s \geq 0$, then $P(D) u=f$ has a unique solution $u \in H^{s+m}$ and the $\operatorname{map} f \mapsto u$ from H^{s} to H^{s+m} is continuous.

Proof.

$$
\hat{u}(\xi)=\frac{\hat{f}(\xi)}{p(\xi)}
$$

Assumptions $\Rightarrow|p(\xi)| \geq c\left(1+|\xi|^{m}\right)$ for some $c>0$ (exercise).

$$
\begin{aligned}
\left(1+|\xi|^{s+m}\right)|\hat{u}(\xi)| & \leq \frac{1+|\xi|^{s+m}}{c\left(1+|\xi|^{m}\right)}|\hat{f}(\xi)| \\
& \leq \frac{1+|\xi|^{s}}{c}|\hat{f}(\xi)|
\end{aligned}
$$

Theorem

Assume that $P(D)$ is elliptic and $p(\xi) \neq 0$ for all $\xi \in \mathbb{R}^{n}$. If $f \in H^{s}$, $s \geq 0$, then $P(D) u=f$ has a unique solution $u \in H^{s+m}$ and the $\operatorname{map} f \mapsto u$ from H^{s} to H^{s+m} is continuous.

Proof.

$$
\hat{u}(\xi)=\frac{\hat{f}(\xi)}{p(\xi)}
$$

Assumptions $\Rightarrow|p(\xi)| \geq c\left(1+|\xi|^{m}\right)$ for some $c>0$ (exercise).

$$
\begin{aligned}
\left(1+|\xi|^{s+m}\right)|\hat{u}(\xi)| & \leq \frac{1+|\xi|^{s+m}}{c\left(1+|\xi|^{m}\right)}|\hat{f}(\xi)| \\
& \leq \frac{1+|\xi|^{s}}{c}|\hat{f}(\xi)| \\
\Rightarrow\|u\|_{H^{s+m}} \leq \frac{1}{c}\|f\|_{H^{s}} &
\end{aligned}
$$

This implies that the problem is well-posed:

This implies that the problem is well-posed:

1. the problem has a solution;

This implies that the problem is well-posed:

1. the problem has a solution;
2. the solution is unique;

This implies that the problem is well-posed:

1. the problem has a solution;
2. the solution is unique;
3. the solution depends continuously on the data.

This implies that the problem is well-posed:

1. the problem has a solution;
2. the solution is unique;
3. the solution depends continuously on the data.

Q1: How do you get the estimate $|p(\xi)| \geq c\left(1+|\xi|^{m}\right)$?
Q2: Can you think of an operator such that $p(\xi) \neq 0$ for all ξ, but $P(D)$ is not elliptic?

Evolution equations

Example

$$
\left\{\begin{aligned}
u_{t}=\Delta u, & t>0 \\
u=g, & t=0
\end{aligned}\right.
$$

Evolution equations

Example

$$
\left\{\begin{aligned}
u_{t}=\Delta u, & t>0 \\
u=g, & t=0
\end{aligned}\right.
$$

Assume $g \in H^{s+2}\left(\mathbb{R}^{n}\right)$.

Evolution equations

Example

$$
\left\{\begin{aligned}
u_{t}=\Delta u, & t>0 \\
u=g, & t=0
\end{aligned}\right.
$$

Assume $g \in H^{s+2}\left(\mathbb{R}^{n}\right)$.
Look at the solution as map $u:[0, \infty) \rightarrow H^{s+2}\left(\mathbb{R}^{n}\right)$.

Evolution equations

Example

$$
\left\{\begin{aligned}
u_{t}=\Delta u, & t>0 \\
u=g, & t=0
\end{aligned}\right.
$$

Assume $g \in H^{s+2}\left(\mathbb{R}^{n}\right)$.
Look at the solution as map $u:[0, \infty) \rightarrow H^{s+2}\left(\mathbb{R}^{n}\right)$.

$$
\hat{u}(\xi, t)=e^{-t|\xi|^{2}} \hat{g}(\xi) \Rightarrow|\hat{u}(\xi, t)| \leq|\hat{g}(\xi)|
$$

Evolution equations

Example

$$
\left\{\begin{aligned}
u_{t}=\Delta u, & t>0 \\
u=g, & t=0
\end{aligned}\right.
$$

Assume $g \in H^{s+2}\left(\mathbb{R}^{n}\right)$.
Look at the solution as map $u:[0, \infty) \rightarrow H^{s+2}\left(\mathbb{R}^{n}\right)$.

$$
\begin{aligned}
\hat{u}(\xi, t)=e^{-t|\xi|^{2}} \hat{g}(\xi) & \Rightarrow|\hat{u}(\xi, t)| \leq|\hat{g}(\xi)| \\
& \Rightarrow u(\cdot, t) \in H^{s+2}\left(\mathbb{R}^{n}\right), \quad t \geq 0
\end{aligned}
$$

Evolution equations

Example

$$
\left\{\begin{aligned}
u_{t}=\Delta u, & t>0 \\
u=g, & t=0
\end{aligned}\right.
$$

Assume $g \in H^{s+2}\left(\mathbb{R}^{n}\right)$.
Look at the solution as map $u:[0, \infty) \rightarrow H^{s+2}\left(\mathbb{R}^{n}\right)$.

$$
\begin{aligned}
\hat{u}(\xi, t)=e^{-t|\xi|^{2}} \hat{g}(\xi) & \Rightarrow|\hat{u}(\xi, t)| \leq|\hat{g}(\xi)| \\
& \Rightarrow u(\cdot, t) \in H^{s+2}\left(\mathbb{R}^{n}\right), \quad t \geq 0
\end{aligned}
$$

Dominated convergence $\Rightarrow u \in C\left([0, T) ; H^{s+2}\left(\mathbb{R}^{n}\right)\right)$.

Similarly $u \in C^{1}\left([0, T) ; H^{s}\left(\mathbb{R}^{n}\right)\right)$:

$$
\lim _{h \rightarrow 0}\left\|\frac{u(t+h)-u(t)}{h}-u_{t}(t)\right\|_{H^{s}}=0
$$

and $u_{t}=\Delta u \in C\left([0, T) ; H^{s}\left(\mathbb{R}^{n}\right)\right)$.

Similarly $u \in C^{1}\left([0, T) ; H^{s}\left(\mathbb{R}^{n}\right)\right)$:

$$
\lim _{h \rightarrow 0}\left\|\frac{u(t+h)-u(t)}{h}-u_{t}(t)\right\|_{H^{s}}=0
$$

and $u_{t}=\Delta u \in C\left([0, T) ; H^{s}\left(\mathbb{R}^{n}\right)\right)$.
More generally, consider
(1)

$$
\left\{\begin{aligned}
& u_{t}=P(D) u, t>0, \\
& u=g, \\
& t=0 .
\end{aligned}\right.
$$

Similarly $u \in C^{1}\left([0, T) ; H^{S}\left(\mathbb{R}^{n}\right)\right)$:

$$
\lim _{h \rightarrow 0}\left\|\frac{u(t+h)-u(t)}{h}-u_{t}(t)\right\|_{H^{s}}=0
$$

and $u_{t}=\Delta u \in C\left([0, T) ; H^{s}\left(\mathbb{R}^{n}\right)\right)$.
More generally, consider

$$
\left\{\begin{align*}
& u_{t}=P(D) u, t>0 \tag{1}\\
& u=g, \\
& u=0
\end{align*}\right.
$$

Theorem

Assume that $\alpha:=\sup _{\xi \in \mathbb{R}^{n}} \operatorname{Re} p(\xi)<\infty$. Then (1) has a unique solution $u \in C\left([0, \infty) ; H^{s+m}\left(\mathbb{R}^{n}\right)\right) \cap C^{1}\left([0, \infty) ; H^{s}\left(\mathbb{R}^{n}\right)\right)$ for each $g \in H^{s+m}\left(\mathbb{R}^{n}\right), s \geq 0$. The solution satisfies

$$
\|u(\cdot, t)\|_{H^{s+m}\left(\mathbb{R}^{n}\right)} \leq e^{\alpha t}\|g\|_{H^{s+m}\left(\mathbb{R}^{n}\right)}
$$

Similarly $u \in C^{1}\left([0, T) ; H^{S}\left(\mathbb{R}^{n}\right)\right)$:

$$
\lim _{h \rightarrow 0}\left\|\frac{u(t+h)-u(t)}{h}-u_{t}(t)\right\|_{H^{s}}=0
$$

and $u_{t}=\Delta u \in C\left([0, T) ; H^{s}\left(\mathbb{R}^{n}\right)\right)$.
More generally, consider

$$
\left\{\begin{align*}
& u_{t}=P(D) u, t>0 \tag{1}\\
& u=g, \\
& u=0
\end{align*}\right.
$$

Theorem

Assume that $\alpha:=\sup _{\xi \in \mathbb{R}^{n}} \operatorname{Re} p(\xi)<\infty$. Then (1) has a unique solution $u \in C\left([0, \infty) ; H^{s+m}\left(\mathbb{R}^{n}\right)\right) \cap C^{1}\left([0, \infty) ; H^{s}\left(\mathbb{R}^{n}\right)\right)$ for each $g \in H^{s+m}\left(\mathbb{R}^{n}\right), s \geq 0$. The solution satisfies

$$
\|u(\cdot, t)\|_{H^{s+m}\left(\mathbb{R}^{n}\right)} \leq e^{\alpha t}\|g\|_{H^{s+m}\left(\mathbb{R}^{n}\right)}
$$

Proof: see Wahlén, Theorem 4.25.

2nd order elliptic equations with variable coefficients

(2)

$$
\left\{\begin{aligned}
L u & =f \text { in } U, \\
u & =0 \text { on } \partial U
\end{aligned}\right.
$$

(2)

$$
\left\{\begin{aligned}
L u & =f \text { in } U, \\
u & =0 \text { on } \partial U
\end{aligned}\right.
$$

Divergence form:
(3)

$$
L u=-\sum_{i j}\left(a^{i j}(x) u_{x_{i}}\right)_{x_{j}}+\sum_{i} b^{i}(x) u_{x_{i}}+c(x) u
$$

(2)

$$
\left\{\begin{aligned}
L u & =f \text { in } U, \\
u & =0 \text { on } \partial U
\end{aligned}\right.
$$

Divergence form:
(3)

$$
L u=-\sum_{i j}\left(a^{i j}(x) u_{x_{i}}\right)_{x_{j}}+\sum_{i} b^{i}(x) u_{x_{i}}+c(x) u
$$

Non-divergence form:
(4)

$$
L u=-\sum_{i j} a^{i j}(x) u_{x_{i} x_{j}}+\sum_{i} b^{i}(x) u_{x_{i}}+c(x) u
$$

$$
\left\{\begin{align*}
L u & =f \text { in } U, \tag{2}\\
u & =0 \text { on } \partial U
\end{align*}\right.
$$

Divergence form:
(3)

$$
L u=-\sum_{i j}\left(a^{i j}(x) u_{x_{i}}\right)_{x_{j}}+\sum_{i} b^{i}(x) u_{x_{i}}+c(x) u
$$

Non-divergence form:
(4)

$$
L u=-\sum_{i j} a^{i j}(x) u_{x_{i} x_{j}}+\sum_{i} b^{i}(x) u_{x_{i}}+c(x) u
$$

Remark
If $a^{i j} \in C^{1}$ we can rewrite (3) in the form (4) with

$$
\tilde{b}^{i}=b^{i}-\sum_{j=1}^{n} a_{x_{j}}^{i j}
$$

(and vice versa).

We assume $a^{i j}=a^{i i}\left(\mathrm{OK}\right.$ if $a^{i j} \in C^{1}$ by modifying $\left.b^{i}\right)$

We assume $a^{i j}=a^{i i}$ (OK if $a^{i j} \in C^{1}$ by modifying b^{i})

Definition

L is uniformly elliptic if $\exists \theta>0$ s.t.

$$
\sum_{i, j=1}^{n} a^{i j}(x) \xi_{i} \xi_{j} \geq \theta|\xi|^{2} \quad \forall x \in U \text { and } \xi \in \mathbb{R}^{n}
$$

We assume $a^{i j}=a^{i i}\left(\mathrm{OK}\right.$ if $a^{i j} \in C^{1}$ by modifying $\left.b^{i}\right)$

Definition

L is uniformly elliptic if $\exists \theta>0$ s.t.

$$
\sum_{i . j=1}^{n} a^{i j}(x) \xi_{i} \xi_{j} \geq \theta|\xi|^{2} \quad \forall x \in U \text { and } \xi \in \mathbb{R}^{n} .
$$

Example: $L=-\Delta, a^{i j}=\delta_{i j}, \theta=1$.

Weak solutions

We consider L in divergence form, $a^{i j}, b^{i}, c \in L^{\infty}(U), f \in L^{2}(U)$.

Weak solutions

We consider L in divergence form, $a^{i j}, b^{i}, c \in L^{\infty}(U), f \in L^{2}(U)$.
Assume $u C^{2}$ solution. Multiply $L u=f$ by $v \in C_{c}^{\infty}(U)$ and integrate:

$$
B[u, v]:=\int_{U}\left(\sum_{i, j=1}^{n} a^{i j} u_{x_{i}} v_{x_{j}}+\sum_{i=1}^{n} b^{i} u_{x_{i}} v+c u v\right) d x=\int_{U} f v d x
$$

Weak solutions

We consider L in divergence form, $a^{i j}, b^{i}, c \in L^{\infty}(U), f \in L^{2}(U)$.
Assume $u C^{2}$ solution. Multiply $L u=f$ by $v \in C_{c}^{\infty}(U)$ and integrate:

$$
B[u, v]:=\int_{U}\left(\sum_{i, j=1}^{n} a^{i j} u_{x_{i}} v_{x_{j}}+\sum_{i=1}^{n} b^{i} u_{x_{i}} v+c u v\right) d x=\int_{U} f v d x
$$

Weak solutions

We consider L in divergence form, $a^{i j}, b^{i}, c \in L^{\infty}(U), f \in L^{2}(U)$.
Assume $u C^{2}$ solution. Multiply $L u=f$ by $v \in C_{c}^{\infty}(U)$ and integrate:

$$
B[u, v]:=\int_{U}\left(\sum_{i, j=1}^{n} a^{i j} u_{x_{i}} v_{x_{j}}+\sum_{i=1}^{n} b^{i} u_{x_{i}} v+c u v\right) d x=\int_{U} f v d x
$$

Continues to hold if $v \in H_{0}^{1}$ and still makes sense if $u \in H_{0}^{1}$.

Weak solutions

We consider L in divergence form, $a^{i j}, b^{i}, c \in L^{\infty}(U), f \in L^{2}(U)$.
Assume $u C^{2}$ solution. Multiply $L u=f$ by $v \in C_{c}^{\infty}(U)$ and integrate:

$$
B[u, v]:=\int_{U}\left(\sum_{i, j=1}^{n} a^{i j} u_{x_{i}} v_{x_{j}}+\sum_{i=1}^{n} b^{i} u_{x_{i}} v+c u v\right) d x=\int_{U} f v d x
$$

Continues to hold if $v \in H_{0}^{1}$ and still makes sense if $u \in H_{0}^{1}$.
Definition
$u \in H_{0}^{1}(U)$ is a weak solution of (2) if

$$
B[u, v]=(f, v)_{L^{2}(U)} \quad \forall v \in H_{0}^{1}(U)
$$

Weak solutions

We consider L in divergence form, $a^{i j}, b^{i}, c \in L^{\infty}(U), f \in L^{2}(U)$.
Assume $u C^{2}$ solution. Multiply $L u=f$ by $v \in C_{c}^{\infty}(U)$ and integrate:

$$
B[u, v]:=\int_{U}\left(\sum_{i, j=1}^{n} a^{i j} u_{x_{i}} v_{x_{j}}+\sum_{i=1}^{n} b^{i} u_{x_{i}} v+c u v\right) d x=\int_{U} f v d x
$$

Continues to hold if $v \in H_{0}^{1}$ and still makes sense if $u \in H_{0}^{1}$.
Definition
$u \in H_{0}^{1}(U)$ is a weak solution of (2) if

$$
B[u, v]=(f, v)_{L^{2}(U)} \quad \forall v \in H_{0}^{1}(U)
$$

Remark: Evans also discusses solutions for $f \in H^{-1}(U)$.

A bit of functional analysis

Evans D.2-D.3, 6.2.1
H real Hilbert space.

A bit of functional analysis

Evans D.2-D.3, 6.2.1
H real Hilbert space.
Definition
A bounded linear functional on H is a linear operator $u^{*}: H \rightarrow \mathbb{R}$
s.t. $\exists C \geq 0$ with

$$
\left|u^{*}(v)\right| \leq C\|v\| \quad \forall v \in H
$$

We also write $\left\langle u^{*}, v\right\rangle:=u^{*}(v)$.
The dual space H^{*} is the space of bdd linear functionals on H.

A bit of functional analysis

Evans D.2-D.3, 6.2.1
H real Hilbert space.

Definition

A bounded linear functional on H is a linear operator $u^{*}: H \rightarrow \mathbb{R}$
s.t. $\exists C \geq 0$ with

$$
\left|u^{*}(v)\right| \leq C\|v\| \quad \forall v \in H
$$

We also write $\left\langle u^{*}, v\right\rangle:=u^{*}(v)$.
The dual space H^{*} is the space of bdd linear functionals on H.
Example:
Let $u \in H$. Then $u^{*}: v \mapsto(u, v)_{H}$ is a bdd linear functional with

$$
\left|u^{*}(v)\right| \leq\|u\|\|v\|
$$

Theorem (Riesz' representation theorem)

H^{*} can be identified with H in a canonical way: $\forall u^{*} \in H^{*} \exists$ unique $u \in H$ s.t.

$$
\left\langle u^{*}, v\right\rangle=(u, v)_{H} \quad \forall v \in H .
$$

The mapping $u^{*} \mapsto u$ is a linear isomorphism of H^{*} onto H.

Theorem (Riesz' representation theorem)

H^{*} can be identified with H in a canonical way: $\forall u^{*} \in H^{*} \exists$ unique $u \in H$ s.t.

$$
\left\langle u^{*}, v\right\rangle=(u, v)_{H} \quad \forall v \in H .
$$

The mapping $u^{*} \mapsto u$ is a linear isomorphism of H^{*} onto H.
Proof: Functional analysis course.

Theorem (Lax-Milgram)

Assume B : $H \times H \rightarrow \mathbb{R}$ is a bilinear mapping s.t. $\exists \alpha, \beta>0$ with

1. $|B[u, v]| \leq \alpha\|u\|\|v\| \forall u, v \in H$ (boundedness)
2. $\beta\|u\|^{2} \leq B[u, u]$ (coercivity)
and let $f \in H^{*}$.

Theorem (Lax-Milgram)

Assume $B: H \times H \rightarrow \mathbb{R}$ is a bilinear mapping s.t. $\exists \alpha, \beta>0$ with

1. $|B[u, v]| \leq \alpha\|u\|\|v\| \forall u, v \in H$ (boundedness)
2. $\beta\|u\|^{2} \leq B[u, u]$ (coercivity)
and let $f \in H^{*}$.
Then \exists unique $u \in H$ s.t.

$$
B[u, v]=\langle f, v\rangle \quad \forall v \in H
$$

Theorem (Lax-Milgram)

Assume $B: H \times H \rightarrow \mathbb{R}$ is a bilinear mapping s.t. $\exists \alpha, \beta>0$ with

1. $|B[u, v]| \leq \alpha\|u\|\|v\| \forall u, v \in H$ (boundedness)
2. $\beta\|u\|^{2} \leq B[u, u]$ (coercivity)
and let $f \in H^{*}$.
Then \exists unique $u \in H$ s.t.

$$
B[u, v]=\langle f, v\rangle \quad \forall v \in H .
$$

Remark

- $(\cdot, \cdot)_{H}$ is a bilinear form satisfying the assumptions, so Riesz' representation thm is a special case.

Theorem (Lax-Milgram)

Assume $B: H \times H \rightarrow \mathbb{R}$ is a bilinear mapping s.t. $\exists \alpha, \beta>0$ with

1. $|B[u, v]| \leq \alpha\|u\|\|v\| \forall u, v \in H$ (boundedness)
2. $\beta\|u\|^{2} \leq B[u, u]$ (coercivity)
and let $f \in H^{*}$.
Then \exists unique $u \in H$ s.t.

$$
B[u, v]=\langle f, v\rangle \quad \forall v \in H .
$$

Remark

- $(\cdot, \cdot)_{H}$ is a bilinear form satisfying the assumptions, so Riesz' representation thm is a special case.
- If B is symmetric, $B[u, v]=B[v, u]$, then Lax-Milgram follows from Riesz', by using this as an inner product on H.

Proof.

1. $\forall u \in H, v \mapsto B[u, v]$ is a bdd, lin. functional. on H.

Proof.

1. $\forall u \in H, v \mapsto B[u, v]$ is a bdd, lin. functional. on H. Riesz $\Rightarrow \exists w \in H$ s.t. $B[u, v]=(w, v)_{H} \forall v \in H$.

Proof.

1. $\forall u \in H, v \mapsto B[u, v]$ is a bdd, lin. functional. on H. Riesz $\Rightarrow \exists w \in H$ s.t. $B[u, v]=(w, v)_{H} \forall v \in H$. Write $w=A u, A: H \rightarrow H$ linear operator.

Proof.

1. $\forall u \in H, v \mapsto B[u, v]$ is a bdd, lin. functional. on H. Riesz $\Rightarrow \exists w \in H$ s.t. $B[u, v]=(w, v)_{H} \forall v \in H$. Write $w=A u, A: H \rightarrow H$ linear operator.
2. A is bdd:

Proof.

1. $\forall u \in H, v \mapsto B[u, v]$ is a bdd, lin. functional. on H. Riesz $\Rightarrow \exists w \in H$ s.t. $B[u, v]=(w, v)_{H} \forall v \in H$. Write $w=A u, A: H \rightarrow H$ linear operator.
2. A is bdd:

$$
\|A u\|^{2}=(A u, A u)_{H}=B[u, A u] \leq \alpha\|u\|\|A u\|
$$

Proof.

1. $\forall u \in H, v \mapsto B[u, v]$ is a bdd, lin. functional. on H. Riesz $\Rightarrow \exists w \in H$ s.t. $B[u, v]=(w, v)_{H} \forall v \in H$.
Write $w=A u, A: H \rightarrow H$ linear operator.
2. A is bdd:

$$
\begin{aligned}
& \|A u\|^{2}=(A u, A u)_{H}=B[u, A u] \leq \alpha\|u\|\|A u\| \\
\Rightarrow & \|A u\| \leq \alpha\|u\|
\end{aligned}
$$

Proof.

1. $\forall u \in H, v \mapsto B[u, v]$ is a bdd, lin. functional. on H.

Riesz $\Rightarrow \exists w \in H$ s.t. $B[u, v]=(w, v)_{H} \forall v \in H$.
Write $w=A u, A: H \rightarrow H$ linear operator.
2. A is bdd:

$$
\begin{aligned}
& \|A u\|^{2}=(A u, A u)_{H}=B[u, A u] \leq \alpha\|u\|\|A u\| \\
\Rightarrow & \|A u\| \leq \alpha\|u\|
\end{aligned}
$$

3. A is injective. Indeed
(*)

Proof.

1. $\forall u \in H, v \mapsto B[u, v]$ is a bdd, lin. functional. on H.

Riesz $\Rightarrow \exists w \in H$ s.t. $B[u, v]=(w, v)_{H} \forall v \in H$.
Write $w=A u, A: H \rightarrow H$ linear operator.
2. A is bdd:

$$
\begin{aligned}
& \|A u\|^{2}=(A u, A u)_{H}=B[u, A u] \leq \alpha\|u\|\|A u\| \\
\Rightarrow & \|A u\| \leq \alpha\|u\|
\end{aligned}
$$

3. A is injective. Indeed

$$
\beta\|u\|^{2} \leq B[u, u]=(A u, u)_{H} \leq\|A u\|\|u\|
$$

(*)

Proof.

1. $\forall u \in H, v \mapsto B[u, v]$ is a bdd, lin. functional. on H.

Riesz $\Rightarrow \exists w \in H$ s.t. $B[u, v]=(w, v)_{H} \forall v \in H$.
Write $w=A u, A: H \rightarrow H$ linear operator.
2. A is bdd:

$$
\begin{aligned}
& \|A u\|^{2}=(A u, A u)_{H}=B[u, A u] \leq \alpha\|u\|\|A u\| \\
\Rightarrow & \|A u\| \leq \alpha\|u\|
\end{aligned}
$$

3. A is injective. Indeed

$$
\begin{aligned}
& \beta\|u\|^{2} \leq B[u, u]=(A u, u)_{H} \leq\|A u\|\|u\| \\
\Rightarrow & \beta\|u\| \leq\|A u\| .
\end{aligned}
$$

Proof.

1. $\forall u \in H, v \mapsto B[u, v]$ is a bdd, lin. functional. on H.

Riesz $\Rightarrow \exists w \in H$ s.t. $B[u, v]=(w, v)_{H} \forall v \in H$.
Write $w=A u, A: H \rightarrow H$ linear operator.
2. A is bdd:

$$
\begin{aligned}
& \|A u\|^{2}=(A u, A u)_{H}=B[u, A u] \leq \alpha\|u\|\|A u\| \\
\Rightarrow & \|A u\| \leq \alpha\|u\|
\end{aligned}
$$

3. A is injective. Indeed

$$
\begin{aligned}
& \beta\|u\|^{2} \leq B[u, u]=(A u, u)_{H} \leq\|A u\|\|u\| \\
\Rightarrow & \beta\|u\| \leq\|A u\| .
\end{aligned}
$$

(*)
$A u=0 \Rightarrow u=0$, so A is injective.
4. A has closed range. Indeed
4. A has closed range. Indeed

$$
A u_{k} \rightarrow v \Rightarrow\left\|A u_{k}-A u_{j}\right\| \rightarrow 0, \quad k, j \rightarrow \infty
$$

4. A has closed range. Indeed

$$
\begin{align*}
A u_{k} \rightarrow v & \Rightarrow\left\|A u_{k}-A u_{j}\right\| \rightarrow 0, \quad k, j \rightarrow \infty \\
& \Rightarrow\left\|u_{k}-u_{j}\right\| \rightarrow 0, \quad k, j \rightarrow \infty \tag{*}
\end{align*}
$$

4. A has closed range. Indeed

$$
\begin{align*}
A u_{k} \rightarrow v & \Rightarrow\left\|A u_{k}-A u_{j}\right\| \rightarrow 0, \quad k, j \rightarrow \infty \\
& \Rightarrow\left\|u_{k}-u_{j}\right\| \rightarrow 0, \quad k, j \rightarrow \infty \tag{*}\\
& \Rightarrow u_{k} \rightarrow u \in H, \quad k \rightarrow \infty
\end{align*}
$$

(H Hilbert)
4. A has closed range. Indeed

$$
\begin{align*}
A u_{k} \rightarrow v & \Rightarrow\left\|A u_{k}-A u_{j}\right\| \rightarrow 0, \quad k, j \rightarrow \infty \\
& \Rightarrow\left\|u_{k}-u_{j}\right\| \rightarrow 0, \quad k, j \rightarrow \infty \tag{*}\\
& \Rightarrow u_{k} \rightarrow u \in H, \quad k \rightarrow \infty \\
& \Rightarrow v=A u
\end{align*}
$$

(H Hilbert)
(A continuous)
4. A has closed range. Indeed

$$
\begin{align*}
A u_{k} \rightarrow v & \Rightarrow\left\|A u_{k}-A u_{j}\right\| \rightarrow 0, \quad k, j \rightarrow \infty \\
& \Rightarrow\left\|u_{k}-u_{j}\right\| \rightarrow 0, \quad k, j \rightarrow \infty \tag{*}\\
& \Rightarrow u_{k} \rightarrow u \in H, \quad k \rightarrow \infty \\
& \Rightarrow v=A u
\end{align*}
$$

(H Hilbert)
(A continuous)
5. $R(A)=H$:
4. A has closed range. Indeed

$$
\begin{align*}
A u_{k} \rightarrow v & \Rightarrow\left\|A u_{k}-A u_{j}\right\| \rightarrow 0, \quad k, j \rightarrow \infty \\
& \Rightarrow\left\|u_{k}-u_{j}\right\| \rightarrow 0, \quad k, j \rightarrow \infty \tag{*}\\
& \Rightarrow u_{k} \rightarrow u \in H, \quad k \rightarrow \infty \\
& \Rightarrow v=A u
\end{align*}
$$

(H Hilbert)
(A continuous)
5. $R(A)=H$:

If not $\exists w \neq 0$ in H with $w \in R(A)^{\perp}(R(A)$ closed $)$
4. A has closed range. Indeed

$$
\begin{align*}
A u_{k} \rightarrow v & \Rightarrow\left\|A u_{k}-A u_{j}\right\| \rightarrow 0, \quad k, j \rightarrow \infty \\
& \Rightarrow\left\|u_{k}-u_{j}\right\| \rightarrow 0, \quad k, j \rightarrow \infty \tag{*}\\
& \Rightarrow u_{k} \rightarrow u \in H, \quad k \rightarrow \infty \\
& \Rightarrow v=A u
\end{align*}
$$

(H Hilbert)
(A continuous)
5. $R(A)=H$:

If not $\exists w \neq 0$ in H with $w \in R(A)^{\perp}(R(A)$ closed)
But then $\beta\|w\|^{2} \leq B[w, w]=(A w, w)_{H}=0$.
4. A has closed range. Indeed

$$
\begin{align*}
A u_{k} \rightarrow v & \Rightarrow\left\|A u_{k}-A u_{j}\right\| \rightarrow 0, \quad k, j \rightarrow \infty \\
& \Rightarrow\left\|u_{k}-u_{j}\right\| \rightarrow 0, \quad k, j \rightarrow \infty \tag{*}\\
& \Rightarrow u_{k} \rightarrow u \in H, \quad k \rightarrow \infty \\
& \Rightarrow v=A u
\end{align*}
$$

(H Hilbert)
(A continuous)
5. $R(A)=H$:

If not $\exists w \neq 0$ in H with $w \in R(A)^{\perp}(R(A)$ closed)
But then $\beta\|w\|^{2} \leq B[w, w]=(A w, w)_{H}=0$.
6. Riesz $\Rightarrow \exists w$ s.t. $\langle f, v\rangle=(w, v)_{H} \forall v \in H$.
4. A has closed range. Indeed

$$
\begin{align*}
A u_{k} \rightarrow v & \Rightarrow\left\|A u_{k}-A u_{j}\right\| \rightarrow 0, \quad k, j \rightarrow \infty \\
& \Rightarrow\left\|u_{k}-u_{j}\right\| \rightarrow 0, \quad k, j \rightarrow \infty \tag{*}\\
& \Rightarrow u_{k} \rightarrow u \in H, \quad k \rightarrow \infty \\
& \Rightarrow v=A u
\end{align*}
$$

(H Hilbert)
(A continuous)
5. $R(A)=H$:

If not $\exists w \neq 0$ in H with $w \in R(A)^{\perp}(R(A)$ closed)
But then $\beta\|w\|^{2} \leq B[w, w]=(A w, w)_{H}=0$.
6. Riesz $\Rightarrow \exists w$ s.t. $\langle f, v\rangle=(w, v)_{H} \forall v \in H$.

Let $u \in H$ with $A u=w$.
4. A has closed range. Indeed

$$
\begin{align*}
A u_{k} \rightarrow v & \Rightarrow\left\|A u_{k}-A u_{j}\right\| \rightarrow 0, \quad k, j \rightarrow \infty \\
& \Rightarrow\left\|u_{k}-u_{j}\right\| \rightarrow 0, \quad k, j \rightarrow \infty \tag{*}\\
& \Rightarrow u_{k} \rightarrow u \in H, \quad k \rightarrow \infty \\
& \Rightarrow v=A u
\end{align*}
$$

(H Hilbert)
(A continuous)
5. $R(A)=H$:

If not $\exists w \neq 0$ in H with $w \in R(A)^{\perp}(R(A)$ closed)
But then $\beta\|w\|^{2} \leq B[w, w]=(A w, w)_{H}=0$.
6. Riesz $\Rightarrow \exists w$ s.t. $\langle f, v\rangle=(w, v)_{H} \forall v \in H$.

Let $u \in H$ with $A u=w$. Then

$$
B[u, v]=(A u, v)_{H}=(w, v)_{H}=\langle f, v\rangle
$$

4. A has closed range. Indeed

$$
\begin{align*}
A u_{k} \rightarrow v & \Rightarrow\left\|A u_{k}-A u_{j}\right\| \rightarrow 0, \quad k, j \rightarrow \infty \\
& \Rightarrow\left\|u_{k}-u_{j}\right\| \rightarrow 0, \quad k, j \rightarrow \infty \tag{*}\\
& \Rightarrow u_{k} \rightarrow u \in H, \quad k \rightarrow \infty \\
& \Rightarrow v=A u
\end{align*}
$$

(H Hilbert)
(A continuous)
5. $R(A)=H$:

If not $\exists w \neq 0$ in H with $w \in R(A)^{\perp}(R(A)$ closed)
But then $\beta\|w\|^{2} \leq B[w, w]=(A w, w)_{H}=0$.
6. Riesz $\Rightarrow \exists w$ s.t. $\langle f, v\rangle=(w, v)_{H} \forall v \in H$.

Let $u \in H$ with $A u=w$. Then

$$
B[u, v]=(A u, v)_{H}=(w, v)_{H}=\langle f, v\rangle
$$

7. Uniqueness:

$$
f=0 \Rightarrow \beta\|u\|^{2} \leq B[u, u]=\langle 0, u\rangle=0
$$

4. A has closed range. Indeed

$$
\begin{align*}
A u_{k} \rightarrow v & \Rightarrow\left\|A u_{k}-A u_{j}\right\| \rightarrow 0, \quad k, j \rightarrow \infty \\
& \Rightarrow\left\|u_{k}-u_{j}\right\| \rightarrow 0, \quad k, j \rightarrow \infty \tag{*}\\
& \Rightarrow u_{k} \rightarrow u \in H, \quad k \rightarrow \infty \\
& \Rightarrow v=A u
\end{align*}
$$

(H Hilbert)
(A continuous)
5. $R(A)=H$:

If not $\exists w \neq 0$ in H with $w \in R(A)^{\perp}(R(A)$ closed)
But then $\beta\|w\|^{2} \leq B[w, w]=(A w, w)_{H}=0$.
6. Riesz $\Rightarrow \exists w$ s.t. $\langle f, v\rangle=(w, v)_{H} \forall v \in H$.

Let $u \in H$ with $A u=w$. Then

$$
B[u, v]=(A u, v)_{H}=(w, v)_{H}=\langle f, v\rangle
$$

7. Uniqueness:

$$
\begin{aligned}
f=0 & \Rightarrow \beta\|u\|^{2} \leq B[u, u]=\langle 0, u\rangle=0 \\
& \Rightarrow u=0
\end{aligned}
$$

Energy estimates

$$
B[u, v]=\int_{U}\left(\sum_{i, j=1}^{n} a^{i j} u_{x_{i}} v_{x_{j}}+\sum_{i=1}^{n} b^{i} u_{x_{i}} v+c u v\right) d x, \quad u, v \in H_{0}^{1}(U) .
$$

Energy estimates

$$
B[u, v]=\int_{U}\left(\sum_{i, j=1}^{n} a^{i j} u_{x_{i}} v_{x_{j}}+\sum_{i=1}^{n} b^{i} u_{x_{i}} v+c u v\right) d x, \quad u, v \in H_{0}^{1}(U) .
$$

Assumptions

- $a^{i j}, b^{i}, c \in L^{\infty}(U)$ (bounded coefficients)
- $\sum_{i, j=1}^{n} a^{i j}(x) \xi_{i} \xi_{j} \geq \theta|\xi|^{2}, a^{i j}=a^{j i}$ (ellipticity)

Energy estimates

$$
B[u, v]=\int_{U}\left(\sum_{i, j=1}^{n} a^{i j} u_{x_{i}} v_{x_{j}}+\sum_{i=1}^{n} b^{i} u_{x_{i}} v+c u v\right) d x, \quad u, v \in H_{0}^{1}(U) .
$$

Assumptions

- $a^{i j}, b^{i}, c \in L^{\infty}(U)$ (bounded coefficients)
- $\sum_{i, j=1}^{n} a^{i j}(x) \xi_{i} \xi_{j} \geq \theta|\xi|^{2}, a^{i j}=a^{j i}$ (ellipticity)

Theorem (Energy estimates)
$\exists \alpha, \beta>0$ and $\gamma \geq 0$ s.t.

1. $|B[u, v]| \leq \alpha\|u\|_{H_{0}^{1}}\|v\|_{H_{0}^{1}}$
2. $\beta\|u\|_{H_{0}^{1}}^{2} \leq B[u, u]+\gamma\|u\|_{L^{2}}^{2}$
$\forall u, v \in H_{0}^{1}(U)$.

Proof.

(1) $\quad|B[u, v]| \leq\left(\sum_{i, j=1}^{n}\left\|a^{i j}\right\|_{L^{\infty}}\|u\|_{H_{0}^{1}}\|\nu\|_{H_{0}^{1}}+\sum_{i=1}^{n}\left\|b^{i}\right\|_{L^{\infty}}\|u\|_{H_{0}^{1}}\|v\|_{H_{0}^{1}}\right.$

$$
\left.+\|c\|_{L^{\infty}}\|u\|_{H_{0}^{1}}\|v\|_{H_{0}^{1}}\right)
$$

Proof.

(1) $\quad|B[u, v]| \leq\left(\sum_{i, j=1}^{n}\left\|a^{i j}\right\|_{L^{\infty}}\|u\|_{H_{0}^{1}}\|v\|_{H_{0}^{1}}+\sum_{i=1}^{n}\left\|b^{i}\right\|_{L^{\infty}}\|u\|_{H_{0}^{1}}\|v\|_{H_{0}^{1}}\right.$

$$
\left.+\|c\|_{L^{\infty}}\|u\|_{H_{0}^{1}}\|v\|_{H_{0}^{1}}\right)
$$

$$
\leq \alpha\|u\|_{H_{0}^{1}}\|v\|_{H_{0}^{1}}
$$

Proof.

(1) $\quad|B[u, v]| \leq\left(\sum_{i, j=1}^{n}\left\|a^{i j}\right\|_{L^{\infty}}\|u\|_{H_{0}^{1}}\|v\|_{H_{0}^{1}}+\sum_{i=1}^{n}\left\|b^{i}\right\|_{L^{\infty}}\|u\|_{H_{0}^{1}}\|v\|_{H_{0}^{1}}\right.$

$$
\left.+\|c\|_{L^{\infty}}\|u\|_{H_{0}^{1}}\|v\|_{H_{0}^{1}}\right)
$$

$$
\leq \alpha\|u\|_{H_{0}^{1}}\|v\|_{H_{0}^{1}}
$$

$$
\alpha:=\sum_{i, j=1}^{n}\left\|a^{i j}\right\|_{L^{\infty}}+\sum_{i=1}^{n}\left\|b^{i}\right\|_{L^{\infty}}+\|c\|_{L^{\infty}} .
$$

(2) $\quad \theta \int_{U}|D u|^{2} d x \leq \int_{U_{i, j=1}} \sum^{n} a^{i j} u_{x_{i}} u_{x_{j}} d x$
(2) $\theta \int_{U}|D u|^{2} d x \leq \int_{U} \sum_{i, j=1}^{n} a^{i j} u_{x_{i}} u_{x_{j}} d x$

$$
=B[u, u]-\int_{U}\left(\sum_{i=1}^{n} b^{i} u_{x_{i}} u+c u^{2}\right) d x
$$

(2) $\theta \int_{U}|D u|^{2} d x \leq \int_{U} \sum_{i, j=1}^{n} a^{i j} u_{x_{i}} u_{x_{j}} d x$

$$
\begin{aligned}
& =B[u, u]-\int_{U}\left(\sum_{i=1}^{n} b^{i} u_{x_{i}} u+c u^{2}\right) d x \\
& \leq B[u, u]+\sum_{i=1}^{n}\left\|b^{i}\right\|_{L^{\infty}}\|D u\|_{L^{2}}\|u\|_{L^{2}}+\|c\|_{L^{\infty}}\|u\|_{L^{2}}^{2} .
\end{aligned}
$$

(2) $\theta \int_{U}|D u|^{2} d x \leq \int_{U} \sum_{i, j=1}^{n} a^{i j} u_{x_{i}} u_{x_{j}} d x$

$$
\begin{aligned}
& \quad=B[u, u]-\int_{U}\left(\sum_{i=1}^{n} b^{i} u_{x_{i}} u+c u^{2}\right) d x \\
& \quad \leq B[u, u]+\sum_{i=1}^{n}\left\|b^{i}\right\|_{L^{\infty}}\|D u\|_{L^{2}}\|u\|_{L^{2}}+\|c\|_{L^{\infty}}\|u\|_{L^{2}}^{2} . \\
& \|D u\|_{L^{2}}\|u\|_{L^{2}} \leq \frac{\varepsilon}{2}\|D u\|_{L^{2}}^{2}+\frac{1}{2 \varepsilon}\|u\|_{L^{2}}^{2} .
\end{aligned}
$$

(2) $\theta \int_{U}|D u|^{2} d x \leq \int_{U} \sum_{i, j=1}^{n} a^{i j} u_{x_{i}} u_{x_{j}} d x$

$$
\begin{aligned}
& \quad=B[u, u]-\int_{U}\left(\sum_{i=1}^{n} b^{i} u_{x_{i}} u+c u^{2}\right) d x \\
& \quad \leq B[u, u]+\sum_{i=1}^{n}\left\|b^{i}\right\|_{L^{\infty}}\|D u\|_{L^{2}}\|u\|_{L^{2}}+\|c\|_{L^{\infty}}\|u\|_{L^{2}}^{2} . \\
& \|D u\|_{L^{2}}\|u\|_{L^{2}} \leq \frac{\varepsilon}{2}\|D u\|_{L^{2}}^{2}+\frac{1}{2 \varepsilon}\|u\|_{L^{2}}^{2} .
\end{aligned}
$$

Choose $\varepsilon>0$ s.t. $\varepsilon \sum\left\|b^{i}\right\|_{L^{\infty}}<\theta$.
(2) $\theta \int_{U}|D u|^{2} d x \leq \int_{U} \sum_{i, j=1}^{n} a^{i j} u_{x_{i}} u_{x_{j}} d x$

$$
\begin{aligned}
& \quad=B[u, u]-\int_{U}\left(\sum_{i=1}^{n} b^{i} u_{x_{i}} u+c u^{2}\right) d x \\
& \quad \leq B[u, u]+\sum_{i=1}^{n}\left\|b^{i}\right\|_{L^{\infty}}\|D u\|_{L^{2}}\|u\|_{L^{2}}+\|c\|_{L^{\infty}}\|u\|_{L^{2}}^{2} . \\
& \|D u\|_{L^{2}}\|u\|_{L^{2}} \leq \frac{\varepsilon}{2}\|D u\|_{L^{2}}^{2}+\frac{1}{2 \varepsilon}\|u\|_{L^{2}}^{2} .
\end{aligned}
$$

Choose $\varepsilon>0$ s.t. $\varepsilon \sum\left\|b^{i}\right\|_{L^{\infty}}<\theta$.

$$
\theta\|D u\|_{L^{2}}^{2} \leq B[u, u]+\frac{\theta}{2}\|D u\|_{L^{2}}^{2}+\gamma\|u\|_{L^{2}}^{2}
$$

(2) $\theta \int_{U}|D u|^{2} d x \leq \int_{U} \sum_{i, j=1}^{n} a^{i j} u_{x_{i}} u_{x_{j}} d x$

$$
\begin{aligned}
& \quad=B[u, u]-\int_{U}\left(\sum_{i=1}^{n} b^{i} u_{x_{i}} u+c u^{2}\right) d x \\
& \quad \leq B[u, u]+\sum_{i=1}^{n}\left\|b^{i}\right\|_{L^{\infty}}\|D u\|_{L^{2}}\|u\|_{L^{2}}+\|c\|_{L^{\infty}}\|u\|_{L^{2}}^{2} . \\
& \|D u\|_{L^{2}}\|u\|_{L^{2}} \leq \frac{\varepsilon}{2}\|D u\|_{L^{2}}^{2}+\frac{1}{2 \varepsilon}\|u\|_{L^{2}}^{2} .
\end{aligned}
$$

Choose $\varepsilon>0$ s.t. $\varepsilon \sum\left\|b^{i}\right\|_{L^{\infty}}<\theta$.

$$
\frac{\theta}{2}\|D u\|_{L^{2}}^{2} \leq B[u, u]+\gamma\|u\|_{L^{2}}^{2}
$$

(2) $\theta \int_{U}|D u|^{2} d x \leq \int_{U} \sum_{i, j=1}^{n} a^{i j} u_{x_{i}} u_{x_{j}} d x$

$$
\begin{aligned}
& \quad=B[u, u]-\int_{U}\left(\sum_{i=1}^{n} b^{i} u_{x_{i}} u+c u^{2}\right) d x \\
& \quad \leq B[u, u]+\sum_{i=1}^{n}\left\|b^{i}\right\|_{L^{\infty}}\|D u\|_{L^{2}}\|u\|_{L^{2}}+\|c\|_{L^{\infty}}\|u\|_{L^{2}}^{2} . \\
& \|D u\|_{L^{2}}\|u\|_{L^{2}} \leq \frac{\varepsilon}{2}\|D u\|_{L^{2}}^{2}+\frac{1}{2 \varepsilon}\|u\|_{L^{2}}^{2} .
\end{aligned}
$$

Choose $\varepsilon>0$ s.t. $\varepsilon \sum\left\|b^{i}\right\|_{L^{\infty}}<\theta$.

$$
\frac{\theta}{2}\|D u\|_{L^{2}}^{2} \leq B[u, u]+\gamma\|u\|_{L^{2}}^{2}
$$

Poincaré's ineq $\Rightarrow\|u\|_{H_{0}^{1}(U)} \leq C\|D u\|_{L^{2}(U)}, u \in H_{0}^{1}(U)$.
(2) $\theta \int_{U}|D u|^{2} d x \leq \int_{U} \sum_{i, j=1}^{n} a^{i j} u_{x_{i}} u_{x_{j}} d x$

$$
\begin{aligned}
& \quad=B[u, u]-\int_{U}\left(\sum_{i=1}^{n} b^{i} u_{x_{i}} u+c u^{2}\right) d x \\
& \quad \leq B[u, u]+\sum_{i=1}^{n}\left\|b^{i}\right\|_{L^{\infty}}\|D u\|_{L^{2}}\|u\|_{L^{2}}+\|c\|_{L^{\infty}}\|u\|_{L^{2}}^{2} . \\
& \|D u\|_{L^{2}}\|u\|_{L^{2}} \leq \frac{\varepsilon}{2}\|D u\|_{L^{2}}^{2}+\frac{1}{2 \varepsilon}\|u\|_{L^{2}}^{2} .
\end{aligned}
$$

Choose $\varepsilon>0$ s.t. $\varepsilon \sum\left\|b^{i}\right\|_{L^{\infty}}<\theta$.

$$
\frac{\theta}{2}\|D u\|_{L^{2}}^{2} \leq B[u, u]+\gamma\|u\|_{L^{2}}^{2}
$$

Poincaré's ineq $\Rightarrow\|u\|_{H_{0}^{1}(U)} \leq C\|D u\|_{L^{2}(U)}, u \in H_{0}^{1}(U)$.

$$
\Rightarrow \beta\|u\|_{H_{0}^{1}}^{2} \leq B[u, u]+\gamma\|u\|_{L^{2}}^{2} .
$$

Existence

Theorem (Existence)
$\exists \gamma \geq 0$ s.t. $\forall \mu \geq \gamma$ and $f \in L^{2}(U) \exists$ unique weak sol. $u \in H_{0}^{1}(U)$ of

$$
\left\{\begin{aligned}
L u+\mu u & =f \text { in } U, \\
u & =0 \text { on } \partial U .
\end{aligned}\right.
$$

Existence

Theorem (Existence)
$\exists \gamma \geq 0$ s.t. $\forall \mu \geq \gamma$ and $f \in L^{2}(U) \exists$ unique weak sol. $u \in H_{0}^{1}(U)$ of

$$
\left\{\begin{aligned}
L u+\mu u & =f \text { in } U, \\
u & =0 \text { on } \partial U .
\end{aligned}\right.
$$

Proof.

Let γ be as in the previous thm. and

$$
B_{\mu}[u, v]:=B[u, v]+\mu(u, v)_{L^{2}}
$$

(bilinear form for $L+\mu$).

Existence

Theorem (Existence)
$\exists \gamma \geq 0$ s.t. $\forall \mu \geq \gamma$ and $f \in L^{2}(U) \exists$ unique weak sol. $u \in H_{0}^{1}(U)$ of

$$
\left\{\begin{aligned}
L u+\mu u & =f \text { in } U, \\
u & =0 \text { on } \partial U .
\end{aligned}\right.
$$

Proof.

Let γ be as in the previous thm. and

$$
B_{\mu}[u, v]:=B[u, v]+\mu(u, v)_{L^{2}}
$$

(bilinear form for $L+\mu$).
Lax-Milgram $\Rightarrow \exists!u \in H_{0}^{1}$ s.t. $B_{\mu}[u, v]=(f, v)_{L^{2}}$.

Remark

If $b^{i}=0 \forall i$ and $c \geq 0$, then the energy estimate holds with $\gamma=0$, so we get existence for the original problem

$$
\left\{\begin{aligned}
L u & =f \text { in } U \\
u & =0 \text { on } \partial U .
\end{aligned}\right.
$$

Can also be seen directly using Riesz' repr. thm. (exercise) More general results: Evans, 6.2.3

Remark

If $b^{i}=0 \forall i$ and $c \geq 0$, then the energy estimate holds with $\gamma=0$, so we get existence for the original problem

$$
\left\{\begin{aligned}
L u & =f \text { in } U \\
u & =0 \text { on } \partial U .
\end{aligned}\right.
$$

Can also be seen directly using Riesz' repr. thm. (exercise) More general results: Evans, 6.2.3

Remark

We could also consider

$$
B[u, v]=\langle f, v\rangle
$$

with $f \in\left(H_{0}^{1}(U)\right)^{*}$.
Evans, 5.9.1:
$\left(H_{0}^{1}(U)\right)^{*}=H^{-1}(U)=\left\{f:=f^{0}-\sum_{i=1}^{n} f_{x_{i}}^{i}, \quad f^{i} \in L^{2}(U)\right\}$.

Non-homogeneous BCs

$$
\left\{\begin{aligned}
L u & =f \text { in } U, \\
u & =g \text { on } \partial U
\end{aligned}\right.
$$

Non-homogeneous BCs

$$
\left\{\begin{aligned}
L u & =f \text { in } U \\
u & =g \text { on } \partial U
\end{aligned}\right.
$$

Suppose $\exists w: U \rightarrow \mathbb{R}$ s.t. $w=g$ on ∂U.
Then $\tilde{u}:=u-w$ satisfies

$$
\left\{\begin{aligned}
L \tilde{u} & =\tilde{f} \text { in } U \\
\tilde{u} & =0 \text { on } \partial U
\end{aligned}\right.
$$

with $\tilde{f}=f-L w$.

Non-homogeneous BCs

$$
\left\{\begin{aligned}
L u & =f \text { in } U, \\
u & =g \text { on } \partial U
\end{aligned}\right.
$$

Suppose $\exists w: U \rightarrow \mathbb{R}$ s.t. $w=g$ on ∂U.
Then $\tilde{u}:=u-w$ satisfies

$$
\left\{\begin{aligned}
L \tilde{u} & =\tilde{f} \text { in } U \\
\tilde{u} & =0 \text { on } \partial U
\end{aligned}\right.
$$

with $\tilde{f}=f-L w$.
Theorem
Let U be bdd with $\partial U C^{1} . \exists$ bdd, surjective, linear operator $T: H^{1}(U) \rightarrow L^{2}(\partial U)$, s.t. $T u=\left.u\right|_{\partial \Omega}$ if $u \in C(\bar{U})$.

Non-homogeneous BCs

$$
\left\{\begin{aligned}
L u & =f \text { in } U, \\
u & =g \text { on } \partial U
\end{aligned}\right.
$$

Suppose $\exists w: U \rightarrow \mathbb{R}$ s.t. $w=g$ on ∂U.
Then $\tilde{u}:=u-w$ satisfies

$$
\left\{\begin{aligned}
L \tilde{u} & =\tilde{f} \text { in } U \\
\tilde{u} & =0 \text { on } \partial U
\end{aligned}\right.
$$

with $\tilde{f}=f-L w$.
Theorem
Let U be bdd with $\partial U C^{1} . \exists$ bdd, surjective, linear operator $T: H^{1}(U) \rightarrow L^{2}(\partial U)$, s.t. $T u=\left.u\right|_{\partial \Omega}$ if $u \in C(\bar{U})$.
Theorem
Let U be bdd with $\partial U C^{1} . H_{0}^{1}(U)=\left\{u \in H^{1}(U): T u=0\right\}$.

Theorem

Let L be as in the previous existence result, $f \in L^{2}(U)$, $g \in L^{2}(\partial U) . \exists$ unique weak sol. $u \in H^{1}(U)$ of the BVP

$$
\left\{\begin{aligned}
L u+\mu u & =f \text { in } U, \\
u & =g \text { on } \partial U
\end{aligned}\right.
$$

for all $\mu \geq \gamma$.

Theorem

Let L be as in the previous existence result, $f \in L^{2}(U)$, $g \in L^{2}(\partial U) . \exists$ unique weak sol. $u \in H^{1}(U)$ of the BVP

$$
\left\{\begin{aligned}
L u+\mu u & =f \text { in } U, \\
u & =g \text { on } \partial U
\end{aligned}\right.
$$

for all $\mu \geq \gamma$.
Here weak sol. means $B[u, v]=(f, v)_{L^{2}} \forall v \in H_{0}^{1}(U)$ and $T u=g$.

Theorem

Let L be as in the previous existence result, $f \in L^{2}(U)$, $g \in L^{2}(\partial U) . \exists$ unique weak sol. $u \in H^{1}(U)$ of the BVP

$$
\left\{\begin{aligned}
L u+\mu u & =f \text { in } U, \\
u & =g \text { on } \partial U
\end{aligned}\right.
$$

for all $\mu \geq \gamma$.
Here weak sol. means $B[u, v]=(f, v)_{L^{2}} \forall v \in H_{0}^{1}(U)$ and $T u=g$.
Remark: Requires solvability for $\tilde{f} \in H^{-1}(U)$, since $L w \in H^{-1}(U)$ if $w \in H_{0}^{1}(U)$.

