PDE Lecture

Sobolev spaces

March 31

Definition and basic properties

Weak derivatives

$U \subset \mathbb{R}^{n}$ open, non-empty. Recall from last time:
Definition
If $u \in L_{\text {loc }}^{1}(U)$, we say that $v \in L_{\text {loc }}^{1}(U)$ is the α th weak partial derivative of $u, v=D^{\alpha} u$, if

$$
\int_{U} u D^{\alpha} \varphi d x=(-1)^{|\alpha|} \int_{U} v \varphi d x \quad \forall \varphi \in C_{c}^{\infty}(U)
$$

Weak derivatives

$U \subset \mathbb{R}^{n}$ open, non-empty. Recall from last time:
Definition
If $u \in L_{\text {loc }}^{1}(U)$, we say that $v \in L_{\text {loc }}^{1}(U)$ is the α th weak partial derivative of $u, v=D^{\alpha} u$, if

$$
\int_{U} u D^{\alpha} \varphi d x=(-1)^{|\alpha|} \int_{U} v \varphi d x \quad \forall \varphi \in C_{c}^{\infty}(U)
$$

Definition

Let $k \in \mathbb{N}$ and $1 \leq p \leq \infty$. The Sobolev space $W^{k, p}(U)$ is defined by

$$
W^{k, p}(U)=\left\{u \in L^{p}(U): D^{\alpha} u \in L^{p}(U) \forall \alpha \text { s.t. }|\alpha| \leq k\right\} .
$$

Norm:

$$
\|u\|_{W^{k, p}(U)}= \begin{cases}\left(\sum_{|\alpha| \leq k}\left\|D^{\alpha} u\right\|_{L^{p}(U)}^{p}\right)^{\frac{1}{p}}, & 1 \leq p<\infty \\ \sum_{|\alpha| \leq k}\left\|D^{\alpha} u\right\|_{L^{\infty}(U)}, & p=\infty\end{cases}
$$

Norm:

$$
\|u\|_{W^{k, p}(U)}= \begin{cases}\left(\sum_{|\alpha| \leq k}\left\|D^{\alpha} u\right\|_{L^{p}(U)}^{p}\right)^{\frac{1}{p}}, & 1 \leq p<\infty \\ \sum_{|\alpha| \leq k}\left\|D^{\alpha} u\right\|_{L^{\infty}(U)}, & p=\infty\end{cases}
$$

Equivalent norm for $p<\infty$:

$$
\sum_{|\alpha| \leq k}\left\|D^{\alpha} u\right\|_{L^{p}(U)}
$$

Norm:

$$
\|u\|_{W^{k, p}(U)}= \begin{cases}\left(\sum_{|\alpha| \leq k}\left\|D^{\alpha} u\right\|_{L^{p}(U)}^{p}\right)^{\frac{1}{p}}, & 1 \leq p<\infty \\ \sum_{|\alpha| \leq k}\left\|D^{\alpha} u\right\|_{L^{\infty}(U)}, & p=\infty\end{cases}
$$

Equivalent norm for $p<\infty$:

$$
\sum_{|\alpha| \leq k}\left\|D^{\alpha} u\right\|_{L^{p}(U)}
$$

Q: Why not use this?

Norm:

$$
\|u\|_{W^{k, p}(U)}= \begin{cases}\left(\sum_{|\alpha| \leq k}\left\|D^{\alpha} u\right\|_{L^{p}(U)}^{p}\right)^{\frac{1}{p}}, & 1 \leq p<\infty, \\ \sum_{|\alpha| \leq k}\left\|D^{\alpha} u\right\|_{L^{\infty}(U)}, & p=\infty .\end{cases}
$$

Equivalent norm for $p<\infty$:

$$
\sum_{|\alpha| \leq k}\left\|D^{\alpha} u\right\|_{L^{p}(U)}
$$

Q: Why not use this?
$H^{k}(U)=W^{k, 2}(U)$ has inner product

$$
(u, v)_{H^{k}(U)}=\sum_{|\alpha| \leq k}\left(D^{\alpha} u, D^{\alpha} v\right)_{L^{2}(U)}=\sum_{|\alpha| \leq k} \int_{U} D^{\alpha} u D^{\alpha} v d x
$$

and

$$
(u, u)_{H^{k}}=\|u\|_{W^{k, 2}}^{2}
$$

Theorem
$W^{k, p}(U)$ is a Banach space for each $k \in \mathbb{N}$ and $1 \leq p \leq \infty$. In particular, $H^{k}(U)$ is a Hilbert space.

Theorem
$W^{k, p}(U)$ is a Banach space for each $k \in \mathbb{N}$ and $1 \leq p \leq \infty$. In particular, $H^{k}(U)$ is a Hilbert space.

Proof.

- Suppose $\left\{u_{m}\right\}$ is Cauchy $W^{k, p}$.

Theorem
$W^{k, p}(U)$ is a Banach space for each $k \in \mathbb{N}$ and $1 \leq p \leq \infty$. In particular, $H^{k}(U)$ is a Hilbert space.

Proof.

- Suppose $\left\{u_{m}\right\}$ is Cauchy $W^{k, p}$.
- Then each $\left\{D^{\alpha} u_{m}\right\}$ is Cauchy in $L^{p}\left(\left\|D^{\alpha} u\right\|_{L^{p}} \leq\|u\|_{W^{k, p}}\right)$.

Theorem
$W^{k, p}(U)$ is a Banach space for each $k \in \mathbb{N}$ and $1 \leq p \leq \infty$. In particular, $H^{k}(U)$ is a Hilbert space.

Proof.

- Suppose $\left\{u_{m}\right\}$ is Cauchy $W^{k, p}$.
- Then each $\left\{D^{\alpha} u_{m}\right\}$ is Cauchy in $L^{p}\left(\left\|D^{\alpha} u\right\|_{L^{p}} \leq\|u\|_{W^{k, p}}\right)$.
- L^{p} complete $\Rightarrow D^{\alpha} u_{m} \rightarrow u_{\alpha}$ in L^{p}.

Theorem
$W^{k, p}(U)$ is a Banach space for each $k \in \mathbb{N}$ and $1 \leq p \leq \infty$. In particular, $H^{k}(U)$ is a Hilbert space.

Proof.

- Suppose $\left\{u_{m}\right\}$ is Cauchy $W^{k, p}$.
- Then each $\left\{D^{\alpha} u_{m}\right\}$ is Cauchy in $L^{p}\left(\left\|D^{\alpha} u\right\|_{L^{p}} \leq\|u\|_{W^{k, p}}\right)$.
- L^{p} complete $\Rightarrow D^{\alpha} u_{m} \rightarrow u_{\alpha}$ in L^{p}.
- Let $u=u^{(0)}$. Then

$$
\int_{U} u_{m} D^{\alpha} \varphi d x=(-1)^{|\alpha|} \int_{U} D^{\alpha} u_{m} \varphi d x \quad \forall \varphi \in C_{c}^{\infty}(U)
$$

implies

$$
\int_{U} u D^{\alpha} \varphi d x=(-1)^{|\alpha|} \int_{U} u_{\alpha} \varphi d x \quad \forall \varphi \in C_{c}^{\infty}(U)
$$

Theorem
$W^{k, p}(U)$ is a Banach space for each $k \in \mathbb{N}$ and $1 \leq p \leq \infty$. In particular, $H^{k}(U)$ is a Hilbert space.

Proof.

- Suppose $\left\{u_{m}\right\}$ is Cauchy $W^{k, p}$.
- Then each $\left\{D^{\alpha} u_{m}\right\}$ is Cauchy in $L^{p}\left(\left\|D^{\alpha} u\right\|_{L^{p}} \leq\|u\|_{W^{k, p}}\right)$.
- L^{p} complete $\Rightarrow D^{\alpha} u_{m} \rightarrow u_{\alpha}$ in L^{p}.
- Let $u=u^{(0)}$. Then

$$
\int_{U} u_{m} D^{\alpha} \varphi d x=(-1)^{|\alpha|} \int_{U} D^{\alpha} u_{m} \varphi d x \quad \forall \varphi \in C_{c}^{\infty}(U)
$$

implies

$$
\int_{U} u D^{\alpha} \varphi d x=(-1)^{|\alpha|} \int_{U} u_{\alpha} \varphi d x \quad \forall \varphi \in C_{c}^{\infty}(U)
$$

- Hence $u_{\alpha}=D^{\alpha} u$ and $D^{\alpha} u_{m} \rightarrow D^{\alpha} u$ in L^{p} for all $|\alpha| \leq k$.

Additional spaces

We write $u \in W_{\text {loc }}^{k, p}(U)$ if $u: U \rightarrow \mathbb{R}$ is measurable and

$$
u \in W^{k, p}(V) \quad \forall V \subset \subset U
$$

Additional spaces

We write $u \in W_{\text {loc }}^{k, p}(U)$ if $u: U \rightarrow \mathbb{R}$ is measurable and

$$
u \in W^{k, p}(V) \quad \forall V \subset \subset U
$$

(V open and bdd, $\bar{V} \subset U$)

Additional spaces

We write $u \in W_{\text {loc }}^{k, p}(U)$ if $u: U \rightarrow \mathbb{R}$ is measurable and

$$
u \in W^{k, p}(V) \quad \forall V \subset \subset U
$$

(V open and bdd, $\bar{V} \subset U$)
Definition
$W_{0}^{k, p}(U)={\overline{C_{c}^{\infty}(U)}}^{W^{k, p}(U)}$ (closure of $C_{c}^{\infty}(U)$ in $\left.W^{k, p}(U)\right)$

Additional spaces

We write $u \in W_{\text {loc }}^{k, p}(U)$ if $u: U \rightarrow \mathbb{R}$ is measurable and

$$
u \in W^{k, p}(V) \quad \forall V \subset \subset U
$$

(V open and bdd, $\bar{V} \subset U$)
Definition
$W_{0}^{k, p}(U)={\overline{C_{c}^{\infty}(U)}}^{W^{k, p}(U)}$ (closure of $C_{c}^{\infty}(U)$ in $W^{k, p}(U)$)
$u \in W_{0}^{k, p}(U) \Leftrightarrow \exists u_{m} \in C_{c}^{\infty}(U)$ s.t. $u_{m} \rightarrow u$ in $W^{k, p}(U)$.

Additional spaces

We write $u \in W_{\text {loc }}^{k, p}(U)$ if $u: U \rightarrow \mathbb{R}$ is measurable and

$$
u \in W^{k, p}(V) \quad \forall V \subset \subset U
$$

(V open and bdd, $\bar{V} \subset U$)
Definition
$W_{0}^{k, p}(U)={\overline{C_{c}^{\infty}(U)}}^{W^{k, p}(U)}$ (closure of $C_{c}^{\infty}(U)$ in $W^{k, p}(U)$)
$u \in W_{0}^{k, p}(U) \Leftrightarrow \exists u_{m} \in C_{c}^{\infty}(U)$ s.t. $u_{m} \rightarrow u$ in $W^{k, p}(U)$.
Informally: ' $D^{\alpha} u=0$ on ∂U for all $|\alpha| \leq k-1$ '

Additional spaces

We write $u \in W_{\text {loc }}^{k, p}(U)$ if $u: U \rightarrow \mathbb{R}$ is measurable and

$$
u \in W^{k, p}(V) \quad \forall V \subset \subset U
$$

(V open and bdd, $\bar{V} \subset U$)
Definition
$W_{0}^{k, p}(U)={\overline{C_{c}^{\infty}(U)}}^{W^{k, p}(U)}$ (closure of $C_{c}^{\infty}(U)$ in $W^{k, p}(U)$)
$u \in W_{0}^{k, p}(U) \Leftrightarrow \exists u_{m} \in C_{c}^{\infty}(U)$ s.t. $u_{m} \rightarrow u$ in $W^{k, p}(U)$.
Informally: ' $D^{\alpha} u=0$ on ∂U for all $|\alpha| \leq k-1$ '
Q: What happens in the special case $p=\infty$?

Additional spaces

We write $u \in W_{\text {loc }}^{k, p}(U)$ if $u: U \rightarrow \mathbb{R}$ is measurable and

$$
u \in W^{k, p}(V) \quad \forall V \subset \subset U
$$

(V open and bdd, $\bar{V} \subset U$)
Definition
$W_{0}^{k, p}(U)={\overline{C_{c}^{\infty}(U)}}^{W^{k, p}(U)}$ (closure of $C_{c}^{\infty}(U)$ in $W^{k, p}(U)$)
$u \in W_{0}^{k, p}(U) \Leftrightarrow \exists u_{m} \in C_{c}^{\infty}(U)$ s.t. $u_{m} \rightarrow u$ in $W^{k, p}(U)$.
Informally: ' $D^{\alpha} u=0$ on ∂U for all $|\alpha| \leq k-1$ '
Q: What happens in the special case $p=\infty$?
Q: What is $W_{0}^{0, p}(U), 1 \leq p<\infty$?

Example
$U=B^{0}(0,1)$

$$
u(x)=\frac{1}{|x|^{\alpha}}, \quad x \in U \backslash\{0\}
$$

Example

$U=B^{0}(0,1)$

$$
u(x)=\frac{1}{|x|^{\alpha}}, \quad x \in U \backslash\{0\} .
$$

Weak derivative

$$
u_{x_{i}}(x)=-\alpha \frac{x_{i}}{|x|^{\alpha+2}} .
$$

in U if $\alpha+1<n$:

$$
|D u|=\frac{|\alpha|}{|x|^{\alpha+1}} \in L^{1}(U) \Leftrightarrow \alpha+1<n
$$

(see Evans, Example 3, p. 260 for details)

Example

$U=B^{0}(0,1)$

$$
u(x)=\frac{1}{|x|^{\alpha}}, \quad x \in U \backslash\{0\} .
$$

Weak derivative

$$
u_{x_{i}}(x)=-\alpha \frac{x_{i}}{|x|^{\alpha+2}} .
$$

in U if $\alpha+1<n$:

$$
|D u|=\frac{|\alpha|}{|x|^{\alpha+1}} \in L^{1}(U) \Leftrightarrow \alpha+1<n
$$

(see Evans, Example 3, p. 260 for details)
Generally:

$$
|D u| \in L^{p}(U) \Leftrightarrow(\alpha+1) p<n
$$

Example

$U=B^{0}(0,1)$

$$
u(x)=\frac{1}{|x|^{\alpha}}, \quad x \in U \backslash\{0\}
$$

Weak derivative

$$
u_{x_{i}}(x)=-\alpha \frac{x_{i}}{|x|^{\alpha+2}}
$$

in U if $\alpha+1<n$:

$$
|D u|=\frac{|\alpha|}{|x|^{\alpha+1}} \in L^{1}(U) \Leftrightarrow \alpha+1<n
$$

(see Evans, Example 3, p. 260 for details)
Generally:

$$
|D u| \in L^{p}(U) \Leftrightarrow(\alpha+1) p<n
$$

Hence, $u \in W^{1, p}$ if and only if $\alpha<\frac{n-p}{p}$.
Note: u is unbounded if $\alpha>0$! This requires $p<n$.

Approximation

Let

$$
U_{\varepsilon}=\{x \in U: \operatorname{dist}(x, \partial U)>\varepsilon\}
$$

and

$$
\eta_{\varepsilon}(x)=\varepsilon^{-n} \eta\left(\varepsilon^{-1} x\right), \quad \varepsilon>0
$$

with $\eta \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$, supp $\eta \subseteq B(0,1), \int_{\mathbb{R}^{n}} \eta(x) d x=1$ (Appendix C.5).

Let

$$
U_{\varepsilon}=\{x \in U: \operatorname{dist}(x, \partial U)>\varepsilon\}
$$

and

$$
\eta_{\varepsilon}(x)=\varepsilon^{-n} \eta\left(\varepsilon^{-1} x\right), \quad \varepsilon>0
$$

with $\eta \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right), \operatorname{supp} \eta \subseteq B(0,1), \int_{\mathbb{R}^{n}} \eta(x) d x=1$ (Appendix C.5).

For $x \in U_{\varepsilon}$,

$$
u^{\varepsilon}(x)=\eta_{\varepsilon} * u=\int_{U} \eta_{\varepsilon}(x-y) u(y) d y=\int_{B(0, \varepsilon)} \eta_{\varepsilon}(y) u(x-y) d y .
$$

The first integral is well-defined for $x \in \mathbb{R}^{n}$.

Theorem

Assume $u \in W^{k, p}(U), 1 \leq p<\infty$ and set

$$
u^{\varepsilon}=\eta_{\varepsilon} * u \quad \text { in } U_{\varepsilon} .
$$

Then

1. $u^{\varepsilon} \in C^{\infty}\left(U_{\varepsilon}\right)$ for each $\varepsilon>0$,
2. $u^{\varepsilon} \rightarrow u$ in $W_{l o c}^{k, p}(U)$ as $\varepsilon \rightarrow 0$.

Theorem

Assume $u \in W^{k, p}(U), 1 \leq p<\infty$ and set

$$
u^{\varepsilon}=\eta_{\varepsilon} * u \quad \text { in } U_{\varepsilon} .
$$

Then

1. $u^{\varepsilon} \in C^{\infty}\left(U_{\varepsilon}\right)$ for each $\varepsilon>0$,
2. $u^{\varepsilon} \rightarrow u$ in $W_{l o c}^{k, p}(U)$ as $\varepsilon \rightarrow 0$.

Proof.
1: differentiate under the integral sign in

$$
u^{\varepsilon}(x)=\int_{U} \eta_{\varepsilon}(x-y) u(y) d y
$$

Theorem

Assume $u \in W^{k, p}(U), 1 \leq p<\infty$ and set

$$
u^{\varepsilon}=\eta_{\varepsilon} * u \quad \text { in } U_{\varepsilon} .
$$

Then

1. $u^{\varepsilon} \in C^{\infty}\left(U_{\varepsilon}\right)$ for each $\varepsilon>0$,
2. $u^{\varepsilon} \rightarrow u$ in $W_{l o c}^{k, p}(U)$ as $\varepsilon \rightarrow 0$.

Proof.
1: differentiate under the integral sign in

$$
u^{\varepsilon}(x)=\int_{U} \eta_{\varepsilon}(x-y) u(y) d y .
$$

In fact, extends to $C^{\infty}\left(\mathbb{R}^{n}\right)$ function, vanishing if $\operatorname{dist}(x, U) \geq \varepsilon$.

2: For $x \in U_{\varepsilon}$:

$$
D^{\alpha} u^{\varepsilon}(x)=\int_{U} D_{x}^{\alpha} \eta_{\varepsilon}(x-y) u(y) d y=(-1)^{|\alpha|} \int_{U} D_{y}^{\alpha} \eta_{\varepsilon}(x-y) u(y) d y
$$

2: For $x \in U_{\varepsilon}$:

$$
\begin{aligned}
D^{\alpha} u^{\varepsilon}(x) & =\int_{U} D_{x}^{\alpha} \eta_{\varepsilon}(x-y) u(y) d y=(-1)^{|\alpha|} \int_{U} D_{y}^{\alpha} \eta_{\varepsilon}(x-y) u(y) d y \\
& =\int_{U} \eta_{\varepsilon}(x-y) D^{\alpha} u(y) d y \\
& =\left(\eta_{\varepsilon} * D^{\alpha} u\right)(x)
\end{aligned}
$$

since $\eta_{\varepsilon}(x-\cdot) \in C_{c}^{\infty}(U)$.

2: For $x \in U_{\varepsilon}$:

$$
\begin{aligned}
D^{\alpha} u^{\varepsilon}(x) & =\int_{U} D_{x}^{\alpha} \eta_{\varepsilon}(x-y) u(y) d y=(-1)^{|\alpha|} \int_{U} D_{y}^{\alpha} \eta_{\varepsilon}(x-y) u(y) d y \\
& =\int_{U} \eta_{\varepsilon}(x-y) D^{\alpha} u(y) d y \\
& =\left(\eta_{\varepsilon} * D^{\alpha} u\right)(x)
\end{aligned}
$$

since $\eta_{\varepsilon}(x-\cdot) \in C_{c}^{\infty}(U)$.
If $V \subset \subset U$, then

$$
\eta_{\varepsilon} * D^{\alpha} u \rightarrow D^{\alpha} u
$$

in $L^{p}(V)$ for $|\alpha| \leq k$ (see Appendix C.5).

Global approximation

Theorem
Assume U is bounded and ∂U is C^{1}. Suppose $u \in W^{k, p}(U)$, $1 \leq p<\infty$. Then $\exists u_{m} \in C^{\infty}(\bar{U})$ such that

$$
u_{m} \rightarrow u \quad \text { in } W^{k, p}(U)
$$

Proof, see Evans, Theorem 3, p. 266.

What about $U=\mathbb{R}^{n}$?

What about $U=\mathbb{R}^{n}$?
Theorem
If $1 \leq p<\infty$, then $W^{k, p}\left(\mathbb{R}^{n}\right)=W_{0}^{k, p}\left(\mathbb{R}^{n}\right)$, that is $C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ is dense in $W^{k, p}\left(\mathbb{R}^{n}\right)$

What about $U=\mathbb{R}^{n}$?
Theorem
If $1 \leq p<\infty$, then $W^{k, p}\left(\mathbb{R}^{n}\right)=W_{0}^{k, p}\left(\mathbb{R}^{n}\right)$, that is $C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ is dense in $W^{k, p}\left(\mathbb{R}^{n}\right)$

Proof.

First approximate by functions with compact support:

$$
u_{R}(x)=\varphi\left(R^{-1} x\right) u(x)
$$

where $\varphi \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right), \varphi(x)=1,|x| \leq 1$ and $\varphi(x)=0,|x| \geq 2$.

What about $U=\mathbb{R}^{n}$?
Theorem
If $1 \leq p<\infty$, then $W^{k, p}\left(\mathbb{R}^{n}\right)=W_{0}^{k, p}\left(\mathbb{R}^{n}\right)$, that is $C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ is dense in $W^{k, p}\left(\mathbb{R}^{n}\right)$

Proof.

First approximate by functions with compact support:

$$
u_{R}(x)=\varphi\left(R^{-1} x\right) u(x)
$$

where $\varphi \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right), \varphi(x)=1,|x| \leq 1$ and $\varphi(x)=0,|x| \geq 2$.
$u_{R} \in W^{k, p}\left(\mathbb{R}^{n}\right), \operatorname{supp} u_{R} \subseteq B(0,2 R)$ and

$$
u_{R} \rightarrow u \quad \text { in } W^{k, p}\left(\mathbb{R}^{n}\right) \quad \text { as } R \rightarrow \infty
$$

What about $U=\mathbb{R}^{n}$?
Theorem
If $1 \leq p<\infty$, then $W^{k, p}\left(\mathbb{R}^{n}\right)=W_{0}^{k, p}\left(\mathbb{R}^{n}\right)$, that is $C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ is dense in $W^{k, p}\left(\mathbb{R}^{n}\right)$

Proof.

First approximate by functions with compact support:

$$
u_{R}(x)=\varphi\left(R^{-1} x\right) u(x)
$$

where $\varphi \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right), \varphi(x)=1,|x| \leq 1$ and $\varphi(x)=0,|x| \geq 2$.
$u_{R} \in W^{k, p}\left(\mathbb{R}^{n}\right), \operatorname{supp} u_{R} \subseteq B(0,2 R)$ and

$$
u_{R} \rightarrow u \quad \text { in } W^{k, p}\left(\mathbb{R}^{n}\right) \quad \text { as } R \rightarrow \infty
$$

Then approximate u_{R} by

$$
u_{R, \varepsilon}=\eta_{\varepsilon} * u_{R}
$$

Extensions

Theorem
Assume U bounded, $\partial U C^{1}$. Let V be bounded and open, s.t. $U \subset \subset V$. Then \exists bounded linear operator

$$
E: W^{1, p}(U) \rightarrow W^{1, p}\left(\mathbb{R}^{n}\right)
$$

such that for each $u \in W^{1, p}(U)$:

1. $E u=u$ a.e. in U,
2. Eu has support in V.

Theorem

Assume U bounded, $\partial U C^{1}$. Let V be bounded and open, s.t. $U \subset \subset V$. Then \exists bounded linear operator

$$
E: W^{1, p}(U) \rightarrow W^{1, p}\left(\mathbb{R}^{n}\right)
$$

such that for each $u \in W^{1, p}(U)$:

1. $E u=u$ a.e. in U,
2. Eu has support in V.

Sketch of proof.

1. Reduce to the case when $U=\mathbb{R}_{+}^{n}$ and u has compact support in $B(0, r) \cap U$ using partition of unity and change of variables.

Theorem

Assume U bounded, $\partial U C^{1}$. Let V be bounded and open, s.t. $U \subset \subset V$. Then \exists bounded linear operator

$$
E: W^{1, p}(U) \rightarrow W^{1, p}\left(\mathbb{R}^{n}\right)
$$

such that for each $u \in W^{1, p}(U)$:

1. $E u=u$ a.e. in U,
2. Eu has support in V.

Sketch of proof.

1. Reduce to the case when $U=\mathbb{R}_{+}^{n}$ and u has compact support in $B(0, r) \cap U$ using partition of unity and change of variables.
2. Extend u to $\bar{u} \in W^{1, p}\left(\mathbb{R}^{n}\right)$ with support in $B(0, r)$ by setting

$$
\bar{u}(x)= \begin{cases}u\left(x^{\prime}, x_{n}\right), & x_{n}>0, \\ u\left(x^{\prime},-x_{n}\right), & x_{n}<0 .\end{cases}
$$

Theorem

Assume U bounded, $\partial U C^{1}$. Let V be bounded and open, s.t. $U \subset \subset V$. Then \exists bounded linear operator

$$
E: W^{1, p}(U) \rightarrow W^{1, p}\left(\mathbb{R}^{n}\right)
$$

such that for each $u \in W^{1, p}(U)$:

1. $E u=u$ a.e. in U,
2. Eu has support in V.

Sketch of proof.

1. Reduce to the case when $U=\mathbb{R}_{+}^{n}$ and u has compact support in $B(0, r) \cap U$ using partition of unity and change of variables.
2. Extend u to $\bar{u} \in W^{1, p}\left(\mathbb{R}^{n}\right)$ with support in $B(0, r)$ by setting

$$
\bar{u}(x)= \begin{cases}u\left(x^{\prime}, x_{n}\right), & x_{n}>0, \\ u\left(x^{\prime},-x_{n}\right), & x_{n}<0 .\end{cases}
$$

Remark: For $k \geq 2$ one can use 'higher order' reflection (Evans).

Sobolev inequalities

Gagliardo-Nirenberg-Sobolev inequality

Definition
For $1 \leq p<n$, the Sobolev conjugate of p is

$$
p^{*}:=\frac{n p}{n-p} .
$$

Gagliardo-Nirenberg-Sobolev inequality

Definition
For $1 \leq p<n$, the Sobolev conjugate of p is

$$
p^{*}:=\frac{n p}{n-p}
$$

Theorem
Assume $1 \leq p<n$. There exists a constant C, depending only on p and n, such that

$$
\|u\|_{L^{* *}\left(\mathbb{R}^{n}\right)} \leq C\|D u\|_{L^{p}\left(\mathbb{R}^{n}\right)}
$$

for all $u \in C_{c}^{1}\left(\mathbb{R}^{n}\right)$

Gagliardo-Nirenberg-Sobolev inequality

Definition
For $1 \leq p<n$, the Sobolev conjugate of p is

$$
p^{*}:=\frac{n p}{n-p}
$$

Theorem
Assume $1 \leq p<n$. There exists a constant C, depending only on p and n, such that

$$
\|u\|_{L^{* *}\left(\mathbb{R}^{n}\right)} \leq C\|D u\|_{L^{p}\left(\mathbb{R}^{n}\right)}
$$

for all $u \in C_{c}^{1}\left(\mathbb{R}^{n}\right)$
Remark: p^{*} is the only value of q such that an inequality of the form $\|u\|_{L^{q}\left(\mathbb{R}^{n}\right)} \leq C\|D u\|_{L^{p}\left(\mathbb{R}^{n}\right)}$ can hold. This can be seen by trying $u_{\lambda}(x)=u(\lambda x)$ (Evans).

Proof

$$
\frac{p=1}{p^{*}=n /(n-1) .}
$$

Consider the case $n=2$ for simplicity. Then $p^{*}=2$
Full proof, extended Hölder inequality (Evans)

Proof

$$
\frac{p=1}{p^{*}=n /(n-1) .}
$$

Consider the case $n=2$ for simplicity. Then $p^{*}=2$
Full proof, extended Hölder inequality (Evans)

$$
u(x)=\int_{-\infty}^{x_{1}} u_{x_{1}}\left(y_{1}, x_{2}\right) d y_{1}=\int_{-\infty}^{x_{2}} u_{x_{2}}\left(x_{1}, y_{2}\right) d y_{2}
$$

Proof

$$
\frac{p=1}{p^{*}=n /(n-1) .}
$$

Consider the case $n=2$ for simplicity. Then $p^{*}=2$
Full proof, extended Hölder inequality (Evans)

$$
\begin{gathered}
u(x)=\int_{-\infty}^{x_{1}} u_{x_{1}}\left(y_{1}, x_{2}\right) d y_{1}=\int_{-\infty}^{x_{2}} u_{x_{2}}\left(x_{1}, y_{2}\right) d y_{2} \\
|u(x)| \leq \int_{-\infty}^{\infty}\left|D u\left(y_{1}, x_{2}\right)\right| d y_{1}, \quad|u(x)| \leq \int_{-\infty}^{\infty}\left|D u\left(x_{1}, y_{2}\right)\right| d y_{2} .
\end{gathered}
$$

Proof

$$
\frac{p=1}{p^{*}=n /(n-1) .}
$$

Consider the case $n=2$ for simplicity. Then $p^{*}=2$
Full proof, extended Hölder inequality (Evans)

$$
\begin{gathered}
u(x)=\int_{-\infty}^{x_{1}} u_{x_{1}}\left(y_{1}, x_{2}\right) d y_{1}=\int_{-\infty}^{x_{2}} u_{x_{2}}\left(x_{1}, y_{2}\right) d y_{2} \\
|u(x)| \leq \int_{-\infty}^{\infty}\left|D u\left(y_{1}, x_{2}\right)\right| d y_{1}, \quad|u(x)| \leq \int_{-\infty}^{\infty}\left|D u\left(x_{1}, y_{2}\right)\right| d y_{2} . \\
|u(x)|^{2} \leq\left(\int_{-\infty}^{\infty}\left|D u\left(y_{1}, x_{2}\right)\right| d y_{1}\right)\left(\int_{-\infty}^{\infty}\left|D u\left(x_{1}, y_{2}\right)\right| d y_{2}\right) .
\end{gathered}
$$

$$
|u(x)|^{2} \leq\left(\int_{-\infty}^{\infty}\left|D u\left(y_{1}, x_{2}\right)\right| d y_{1}\right)\left(\int_{-\infty}^{\infty}\left|D u\left(x_{1}, y_{2}\right)\right| d y_{2}\right) .
$$

$$
|u(x)|^{2} \leq\left(\int_{-\infty}^{\infty}\left|D u\left(y_{1}, x_{2}\right)\right| d y_{1}\right)\left(\int_{-\infty}^{\infty}\left|D u\left(x_{1}, y_{2}\right)\right| d y_{2}\right)
$$

Integrate in x

$$
\|u\|_{L^{2}}^{2}=\int_{\mathbb{R}^{2}}|u(x)|^{2} d x \leq\left(\int_{\mathbb{R}^{2}}|D u| d x\right)^{2}=\|D u\|_{L^{1}}^{2}
$$

$$
|u(x)|^{2} \leq\left(\int_{-\infty}^{\infty}\left|D u\left(y_{1}, x_{2}\right)\right| d y_{1}\right)\left(\int_{-\infty}^{\infty}\left|D u\left(x_{1}, y_{2}\right)\right| d y_{2}\right) .
$$

Integrate in x

$$
\|u\|_{L^{2}}^{2}=\int_{\mathbb{R}^{2}}|u(x)|^{2} d x \leq\left(\int_{\mathbb{R}^{2}}|D u| d x\right)^{2}=\|D u\|_{L^{1}}^{2}
$$

$1<p<n$

Then

$$
\begin{aligned}
\left(\int_{\mathbb{R}^{n}}|u|^{\frac{\gamma n}{n-1}} d x\right)^{\frac{n-1}{n}} & \leq\left.\int_{\mathbb{R}^{n}}|D| u\right|^{\gamma} \mid d x \\
& =\gamma \int_{\mathbb{R}^{n}}|u|^{\gamma-1}|D u| d x \\
& \leq \gamma\left(\int_{\mathbb{R}^{n}}|u|^{\frac{(\gamma-1) p}{p-1}} d x\right)^{\frac{p-1}{p}}\left(\int_{\mathbb{R}^{n}}|D u|^{p} d x\right)^{\frac{1}{p}}
\end{aligned}
$$

$$
\begin{aligned}
\left(\int_{\mathbb{R}^{n}}|u|^{\frac{m}{n-1}} d x\right)^{\frac{n-1}{n}} & \leq\left.\int_{\mathbb{R}^{n}}|D| u\right|^{\gamma} \mid d x \\
& =\gamma \int_{\mathbb{R}^{n}}| |^{\gamma-1}|D u| d x \\
& \leq \gamma\left(\int_{\mathbb{R}^{n}}|u|^{\frac{(x-1)}{p-1}} d x\right)^{\frac{p-1}{p}}\left(\int_{\mathbb{R}^{n}}|D u|^{p} d x\right)^{\frac{1}{p}}
\end{aligned}
$$

$$
\begin{aligned}
\left(\int_{\mathbb{R}^{n}}|u|^{\frac{\gamma n}{n-1}} d x\right)^{\frac{n-1}{n}} & \leq\left.\int_{\mathbb{R}^{n}}|D| u\right|^{\gamma} \mid d x \\
& =\gamma \int_{\mathbb{R}^{n}}|u|^{\gamma-1}|D u| d x \\
& \leq \gamma\left(\int_{\mathbb{R}^{n}}|u|^{\frac{(\gamma-1) p}{p-1}} d x\right)^{\frac{p-1}{p}}\left(\int_{\mathbb{R}^{n}}|D u|^{p} d x\right)^{\frac{1}{p}}
\end{aligned}
$$

Set

$$
\gamma:=\frac{p(n-1)}{n-p}>1
$$

so that

$$
\frac{\gamma n}{n-1}=\frac{(\gamma-1) p}{p-1}=\frac{n p}{n-p}=p^{*}
$$

$$
\begin{aligned}
\left(\int_{\mathbb{R}^{n}}|u|^{\frac{\gamma n}{n-1}} d x\right)^{\frac{n-1}{n}} & \leq\left.\int_{\mathbb{R}^{n}}|D| u\right|^{\gamma} \mid d x \\
& =\gamma \int_{\mathbb{R}^{n}}|u|^{\gamma-1}|D u| d x \\
& \leq \gamma\left(\int_{\mathbb{R}^{n}}|u|^{\frac{(\gamma-1) p}{p-1}} d x\right)^{\frac{p-1}{p}}\left(\int_{\mathbb{R}^{n}}|D u|^{p} d x\right)^{\frac{1}{p}}
\end{aligned}
$$

Set

$$
\gamma:=\frac{p(n-1)}{n-p}>1
$$

so that

$$
\frac{\gamma n}{n-1}=\frac{(\gamma-1) p}{p-1}=\frac{n p}{n-p}=p^{*} .
$$

Then

$$
\left(\int_{\mathbb{R}^{n}}|u|^{p^{*}} d x\right)^{\frac{1}{p^{*}}} \leq C\left(\int_{\mathbb{R}^{n}}|D u|^{p} d x\right)^{\frac{1}{p}}
$$

Theorem
Let $U \subset \mathbb{R}^{n}$, bdd, open, $\partial U C^{1}$. Assume $1 \leq p<n$ and $u \in W^{1, p}(U)$. Then $u \in L^{p^{*}}(U)$ with

$$
\|u\|_{L^{*}(U)} \leq C\|u\|_{W^{1, p}(U)},
$$

where C is independent of u.

Theorem
Let $U \subset \mathbb{R}^{n}$, bdd, open, $\partial U C^{1}$. Assume $1 \leq p<n$ and $u \in W^{1, p}(U)$. Then $u \in L^{p^{*}}(U)$ with

$$
\|u\|_{L^{*}(U)} \leq C\|u\|_{W^{1, p}(U)},
$$

where C is independent of u.

Proof.

- Let $\bar{u} \in W_{c}^{1, p}\left(\mathbb{R}^{n}\right)$ be an extension of u.

Theorem
Let $U \subset \mathbb{R}^{n}$, bdd, open, $\partial U C^{1}$. Assume $1 \leq p<n$ and $u \in W^{1, p}(U)$. Then $u \in L^{p^{*}}(U)$ with

$$
\|u\|_{L^{*}(U)} \leq C\|u\|_{W^{1, p}(U)},
$$

where C is independent of u.

Proof.

- Let $\bar{u} \in W_{c}^{1, p}\left(\mathbb{R}^{n}\right)$ be an extension of u.
- Let $u_{m} \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ with $u_{m} \rightarrow \bar{u}$ in $W^{1, p}\left(\mathbb{R}^{n}\right)$.

Theorem
Let $U \subset \mathbb{R}^{n}$, bdd, open, $\partial U C^{1}$. Assume $1 \leq p<n$ and $u \in W^{1, p}(U)$. Then $u \in L^{p^{*}}(U)$ with

$$
\|u\|_{L^{p^{*}}(U)} \leq C\|u\|_{W^{1, p}(U)}
$$

where C is independent of u.

Proof.

- Let $\bar{u} \in W_{c}^{1, p}\left(\mathbb{R}^{n}\right)$ be an extension of u.
- Let $u_{m} \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ with $u_{m} \rightarrow \bar{u}$ in $W^{1, p}\left(\mathbb{R}^{n}\right)$.
- Previous thm $\Rightarrow u_{m}$ Cauchy in $L^{p^{*}}$ with

$$
\left\|u_{m}\right\|_{L^{\nu}\left(\mathbb{R}^{n}\right)} \leq C^{\prime}\left\|D \bar{u}_{m}\right\|_{L^{P\left(\mathbb{R}^{n}\right)}} \leq C^{\prime}\left\|\bar{u}_{m}\right\|_{W^{1, p}\left(\mathbb{R}^{n}\right)} \leq C\left\|u_{m}\right\|_{W^{1, p}(U)} .
$$

Theorem
Let $U \subset \mathbb{R}^{n}$, bdd, open, $\partial U C^{1}$. Assume $1 \leq p<n$ and $u \in W^{1, p}(U)$. Then $u \in L^{p^{*}}(U)$ with

$$
\|u\|_{L^{p^{*}}(U)} \leq C\|u\|_{W^{1, p}(U)}
$$

where C is independent of u.

Proof.

- Let $\bar{u} \in W_{c}^{1, p}\left(\mathbb{R}^{n}\right)$ be an extension of u.
- Let $u_{m} \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ with $u_{m} \rightarrow \bar{u}$ in $W^{1, p}\left(\mathbb{R}^{n}\right)$.
- Previous thm $\Rightarrow u_{m}$ Cauchy in $L^{p^{*}}$ with

$$
\left\|u_{m}\right\|_{L^{*}\left(\mathbb{R}^{n}\right)} \leq C^{\prime}\left\|D \bar{u}_{m}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leq C^{\prime}\left\|\bar{u}_{m}\right\|_{W^{1, p}\left(\mathbb{R}^{n}\right)} \leq C\left\|u_{m}\right\|_{W^{1, p}(U)} .
$$

- Passing to the limit, $\bar{u} \in L^{p^{*}}$ with

$$
\|\bar{u}\|_{L^{*}\left(\mathbb{R}^{n}\right)} \leq C\|u\|_{W^{1 / p}(U)},
$$

thus $\|u\|_{L^{*}(U)} \leq C\|u\|_{W^{1, p}(U)}$.

Poincaré's inequality

Theorem
Assume $U \subset \mathbb{R}^{n}$ open, bounded. Suppose $u \in W_{0}^{1, p}(U)$, $1 \leq p<n$. Then

$$
\|u\|_{L^{q}(U)} \leq C\|D u\|_{L^{p}(U)}
$$

for each $q \in\left[1, p^{*}\right]$, with C independent of u.

Poincaré's inequality

Theorem
Assume $U \subset \mathbb{R}^{n}$ open, bounded. Suppose $u \in W_{0}^{1, p}(U)$, $1 \leq p<n$. Then

$$
\|u\|_{L^{q}(U)} \leq C\|D u\|_{L^{p}(U)}
$$

for each $q \in\left[1, p^{*}\right]$, with C independent of u.
Proof.

- $\exists u_{m} \in C_{c}^{\infty}(U)$, with $u_{m} \rightarrow u$ in $W^{1, p}(U)$.

Poincaré's inequality

Theorem
Assume $U \subset \mathbb{R}^{n}$ open, bounded. Suppose $u \in W_{0}^{1, p}(U)$,
$1 \leq p<n$. Then

$$
\|u\|_{L^{q}(U)} \leq C\|D u\|_{L^{p}(U)}
$$

for each $q \in\left[1, p^{*}\right]$, with C independent of u.
Proof.

- $\exists u_{m} \in C_{c}^{\infty}(U)$, with $u_{m} \rightarrow u$ in $W^{1, p}(U)$.
- Extend each u_{m} by 0 to \mathbb{R}^{n} and apply the GNS inequality.

$$
\left\|u_{m}\right\|_{L^{*}(U)} \leq C_{1}\left\|D u_{m}\right\|_{L^{p}(U)} .
$$

Poincaré's inequality

Theorem
Assume $U \subset \mathbb{R}^{n}$ open, bounded. Suppose $u \in W_{0}^{1, p}(U)$,
$1 \leq p<n$. Then

$$
\|u\|_{L^{q}(U)} \leq C\|D u\|_{L^{p}(U)}
$$

for each $q \in\left[1, p^{*}\right]$, with C independent of u.
Proof.

- $\exists u_{m} \in C_{c}^{\infty}(U)$, with $u_{m} \rightarrow u$ in $W^{1, p}(U)$.
- Extend each u_{m} by 0 to \mathbb{R}^{n} and apply the GNS inequality.

$$
\left\|u_{m}\right\|_{L^{*}(U)} \leq C_{1}\left\|D u_{m}\right\|_{L^{p}(U)} .
$$

- Let $m \rightarrow \infty$:

$$
\|u\|_{L^{*}(U)} \leq C_{1}\|D u\|_{L^{p}(U)}
$$

Poincaré's inequality

Theorem
Assume $U \subset \mathbb{R}^{n}$ open, bounded. Suppose $u \in W_{0}^{1, p}(U)$,
$1 \leq p<n$. Then

$$
\|u\|_{L^{q}(U)} \leq C\|D u\|_{L^{p}(U)}
$$

for each $q \in\left[1, p^{*}\right]$, with C independent of u.
Proof.

- $\exists u_{m} \in C_{c}^{\infty}(U)$, with $u_{m} \rightarrow u$ in $W^{1, p}(U)$.
- Extend each u_{m} by 0 to \mathbb{R}^{n} and apply the GNS inequality.

$$
\left\|u_{m}\right\|_{L^{*}(U)} \leq C_{1}\left\|D u_{m}\right\|_{L^{p}(U)} .
$$

- Let $m \rightarrow \infty$:

$$
\begin{gathered}
\|u\|_{L^{*^{*}}(U)} \leq C_{1}\|D u\|_{L^{p}(U)} . \\
-|U|<\infty \Rightarrow\|u\|_{L^{q}(U)} \leq C_{2}\|u\|_{L^{*}(U)}, 1 \leq q \leq p^{*} . C=C_{1} C_{2} .
\end{gathered}
$$

In particular, for $q=p$, we get

$$
\|u\|_{L^{p}(U)} \leq C\|D u\|_{L^{p}(U)}
$$

for $u \in W_{0}^{1, p}(U)$ (note that $p<p^{*}=p n /(n-p)$).
Sometimes called Poincaré's inequality.

In particular, for $q=p$, we get

$$
\|u\|_{L^{p}(U)} \leq C\|D u\|_{L^{p}(U)}
$$

for $u \in W_{0}^{1, p}(U)$ (note that $p<p^{*}=p n /(n-p)$).
Sometimes called Poincaré's inequality.
It also holds if $p \geq n$, since then $u \in W_{0}^{1, \tilde{p}}$ for any $\tilde{p}<n$ and

$$
\|u\|_{L^{*}}(U), C\|D u\|_{L^{\tilde{p}}(U)} \leq C^{\prime}\|D u\|_{L^{p}(U)}
$$

and $p \leq \tilde{p}^{*}=\tilde{p} n /(n-\tilde{p})$ if \tilde{p} is suff. close to n, making

$$
\|u\|_{L^{p}(U)} \leq C^{\prime \prime}\|u\|_{L^{p^{*}}(U)}
$$

In particular, for $q=p$, we get

$$
\|u\|_{L^{p}(U)} \leq C\|D u\|_{L^{p}(U)}
$$

for $u \in W_{0}^{1, p}(U)$ (note that $p<p^{*}=p n /(n-p)$).
Sometimes called Poincaré's inequality.
It also holds if $p \geq n$, since then $u \in W_{0}^{1, \tilde{p}}$ for any $\tilde{p}<n$ and

$$
\|u\|_{L^{*}}(U), C\|D u\|_{L^{\tilde{p}}(U)} \leq C^{\prime}\|D u\|_{L^{p}(U)}
$$

and $p \leq \tilde{p}^{*}=\tilde{p} n /(n-\tilde{p})$ if \tilde{p} is suff. close to n, making

$$
\|u\|_{L^{p}(U)} \leq C^{\prime \prime}\|u\|_{L^{p^{*}}(U)}
$$

Poincaré's inequality implies that the norm $\|D u\|_{L^{p}(U)}$ is equivalent to $\|u\|_{W^{1, p}(U)}$ on $W_{0}^{1, p}(U)$ if U is bounded.

