PDE Lecture

Sobolev spaces

March 31

Definition and basic properties

Weak derivatives

 $U \subset \mathbb{R}^n$ open, non-empty. Recall from last time:

Definition

If $u \in L^1_{\text{loc}}(U)$, we say that $v \in L^1_{\text{loc}}(U)$ is the α th weak partial derivative of $u, v = D^{\alpha}u$, if

$$\int_{U} u D^{\alpha} \varphi \, dx = (-1)^{|\alpha|} \int_{U} v \, \varphi \, dx \qquad \forall \varphi \in C_{c}^{\infty}(U).$$

Weak derivatives

 $U \subset \mathbb{R}^n$ open, non-empty. Recall from last time:

Definition

If $u \in L^1_{loc}(U)$, we say that $v \in L^1_{loc}(U)$ is the α th weak partial derivative of $u, v = D^{\alpha}u$, if

$$\int_{U} u D^{\alpha} \varphi \, dx = (-1)^{|\alpha|} \int_{U} v \, \varphi \, dx \qquad \forall \varphi \in C_{c}^{\infty}(U).$$

Definition

Let $k\in\mathbb{N}$ and $1\leq p\leq\infty.$ The <u>Sobolev space</u> $W^{k,p}(U)$ is defined by

$$W^{k,p}(U) = \{ u \in L^p(U) : D^{\alpha}u \in L^p(U) \ \forall \alpha \text{ s.t. } |\alpha| \le k \}.$$

$$\|u\|_{W^{k,p}(U)} = \begin{cases} \left(\sum_{|\alpha| \le k} \|D^{\alpha}u\|_{L^p(U)}^p\right)^{\frac{1}{p}}, & 1 \le p < \infty, \\ \sum_{|\alpha| < k} \|D^{\alpha}u\|_{L^{\infty}(U)}, & p = \infty. \end{cases}$$

$$\|u\|_{W^{k,p}(U)} = \begin{cases} \left(\sum_{|\alpha| \le k} \|D^{\alpha}u\|_{L^p(U)}^p\right)^{\frac{1}{p}}, & 1 \le p < \infty, \\ \sum_{|\alpha| \le k} \|D^{\alpha}u\|_{L^{\infty}(U)}, & p = \infty. \end{cases}$$

Equivalent norm for $p < \infty$:

$$\sum_{|\alpha| \le k} \|D^{\alpha}u\|_{L^p(U)}$$

$$\|u\|_{W^{k,p}(U)} = \begin{cases} \left(\sum_{|\alpha| \le k} \|D^{\alpha}u\|_{L^p(U)}^p\right)^{\frac{1}{p}}, & 1 \le p < \infty, \\ \sum_{|\alpha| \le k} \|D^{\alpha}u\|_{L^{\infty}(U)}, & p = \infty. \end{cases}$$

Equivalent norm for $p < \infty$:

$$\sum_{|\alpha| \le k} \|D^{\alpha}u\|_{L^p(U)}$$

Q: Why not use this?

$$\|u\|_{W^{k,p}(U)} = \begin{cases} \left(\sum_{|\alpha| \le k} \|D^{\alpha}u\|_{L^p(U)}^p\right)^{\frac{1}{p}}, & 1 \le p < \infty, \\ \sum_{|\alpha| \le k} \|D^{\alpha}u\|_{L^{\infty}(U)}, & p = \infty. \end{cases}$$

Equivalent norm for $p < \infty$:

$$\sum_{|\alpha| \le k} ||D^{\alpha}u||_{L^p(U)}$$

Q: Why not use this?

 $H^k(U) = W^{k,2}(U)$ has inner product

$$(u,v)_{H^k(U)} = \sum_{|\alpha| \le k} (D^{\alpha}u, D^{\alpha}v)_{L^2(U)} = \sum_{|\alpha| \le k} \int_U D^{\alpha}u D^{\alpha}v dx$$

and

$$(u,u)_{H^k} = ||u||_{W^{k,2}}^2$$

 $W^{k,p}(U)$ is a Banach space for each $k \in \mathbb{N}$ and $1 \le p \le \infty$. In particular, $H^k(U)$ is a Hilbert space.

 $W^{k,p}(U)$ is a Banach space for each $k \in \mathbb{N}$ and $1 \le p \le \infty$. In particular, $H^k(U)$ is a Hilbert space.

Proof.

▶ Suppose $\{u_m\}$ is Cauchy $W^{k,p}$.

 $W^{k,p}(U)$ is a Banach space for each $k \in \mathbb{N}$ and $1 \le p \le \infty$. In particular, $H^k(U)$ is a Hilbert space.

Proof.

- ▶ Suppose $\{u_m\}$ is Cauchy $W^{k,p}$.
- ▶ Then each $\{D^{\alpha}u_m\}$ is Cauchy in L^p ($\|D^{\alpha}u\|_{L^p} \leq \|u\|_{W^{k,p}}$).

 $W^{k,p}(U)$ is a Banach space for each $k \in \mathbb{N}$ and $1 \le p \le \infty$. In particular, $H^k(U)$ is a Hilbert space.

Proof.

- ▶ Suppose $\{u_m\}$ is Cauchy $W^{k,p}$.
- ▶ Then each $\{D^{\alpha}u_m\}$ is Cauchy in $L^p(\|D^{\alpha}u\|_{L^p} \leq \|u\|_{W^{k,p}})$.
- ▶ L^p complete $\Rightarrow D^{\alpha}u_m \rightarrow u_{\alpha}$ in L^p .

 $W^{k,p}(U)$ is a Banach space for each $k \in \mathbb{N}$ and $1 \le p \le \infty$. In particular, $H^k(U)$ is a Hilbert space.

Proof.

- ▶ Suppose $\{u_m\}$ is Cauchy $W^{k,p}$.
- ▶ Then each $\{D^{\alpha}u_m\}$ is Cauchy in L^p ($\|D^{\alpha}u\|_{L^p} \leq \|u\|_{W^{k,p}}$).
- ▶ L^p complete $\Rightarrow D^{\alpha}u_m \rightarrow u_{\alpha}$ in L^p .
- Let $u = u^{(0)}$. Then

$$\int_{U} u_{m} D^{\alpha} \varphi \, dx = (-1)^{|\alpha|} \int_{U} D^{\alpha} u_{m} \varphi \, dx \qquad \forall \varphi \in C_{c}^{\infty}(U).$$

implies

$$\int_{U} u D^{\alpha} \varphi \, dx = (-1)^{|\alpha|} \int_{U} u_{\alpha} \varphi \, dx \qquad \forall \varphi \in C_{c}^{\infty}(U).$$

 $W^{k,p}(U)$ is a Banach space for each $k \in \mathbb{N}$ and $1 \le p \le \infty$. In particular, $H^k(U)$ is a Hilbert space.

Proof.

- ▶ Suppose $\{u_m\}$ is Cauchy $W^{k,p}$.
- ▶ Then each $\{D^{\alpha}u_m\}$ is Cauchy in L^p ($\|D^{\alpha}u\|_{L^p} \leq \|u\|_{W^{k,p}}$).
- ▶ L^p complete $\Rightarrow D^{\alpha}u_m \rightarrow u_{\alpha}$ in L^p .
- ▶ Let $u = u^{(0)}$. Then

$$\int_{U} u_{m} D^{\alpha} \varphi \, dx = (-1)^{|\alpha|} \int_{U} D^{\alpha} u_{m} \varphi \, dx \qquad \forall \varphi \in C_{c}^{\infty}(U).$$

implies

$$\int_{U} u D^{\alpha} \varphi \, dx = (-1)^{|\alpha|} \int_{U} u_{\alpha} \varphi \, dx \qquad \forall \varphi \in C_{c}^{\infty}(U).$$

▶ Hence $u_{\alpha} = D^{\alpha}u$ and $D^{\alpha}u_m \to D^{\alpha}u$ in L^p for all $|\alpha| \le k$.

We write $u \in W^{k,p}_{\mathsf{loc}}(U)$ if $u \colon U \to \mathbb{R}$ is measurable and

$$u \in W^{k,p}(V) \quad \forall V \subset \subset U$$

We write $u \in W^{k,p}_{\mathsf{loc}}(U)$ if $u \colon U \to \mathbb{R}$ is measurable and

$$u \in W^{k,p}(V) \quad \forall V \subset \subset U$$

(V open and bdd, $\overline{V} \subset U$)

We write $u \in W^{k,p}_{loc}(U)$ if $u \colon U \to \mathbb{R}$ is measurable and

$$u \in W^{k,p}(V) \quad \forall V \subset \subset U$$

(V open and bdd, $\overline{V} \subset U$)

Definition

$$W_0^{k,p}(U) = \overline{C_c^{\infty}(U)}^{W^{k,p}(U)}$$
 (closure of $C_c^{\infty}(U)$ in $W^{k,p}(U)$)

We write $u \in W^{k,p}_{loc}(U)$ if $u \colon U \to \mathbb{R}$ is measurable and

$$u \in W^{k,p}(V) \quad \forall V \subset\subset U$$

(V open and bdd, $\overline{V} \subset U$)

Definition

$$W_0^{k,p}(U) = \overline{C_c^{\infty}(U)}^{W^{k,p}(U)}$$
 (closure of $C_c^{\infty}(U)$ in $W^{k,p}(U)$) $u \in W_0^{k,p}(U) \Leftrightarrow \exists u_m \in C_c^{\infty}(U) \text{ s.t. } u_m \to u \text{ in } W^{k,p}(U).$

We write $u \in W^{k,p}_{loc}(U)$ if $u \colon U \to \mathbb{R}$ is measurable and

$$u \in W^{k,p}(V) \quad \forall V \subset\subset U$$

(V open and bdd, $\overline{V} \subset U$)

Definition

$$W_0^{k,p}(U) = \overline{C_c^{\infty}(U)}^{W^{k,p}(U)}$$
 (closure of $C_c^{\infty}(U)$ in $W^{k,p}(U)$) $u \in W_0^{k,p}(U) \Leftrightarrow \exists u_m \in C_c^{\infty}(U) \text{ s.t. } u_m \to u \text{ in } W^{k,p}(U).$

Informally: ' $D^{\alpha}u = 0$ on ∂U for all $|\alpha| \le k-1$ '

We write $u \in W^{k,p}_{loc}(U)$ if $u \colon U \to \mathbb{R}$ is measurable and

$$u \in W^{k,p}(V) \quad \forall V \subset\subset U$$

(V open and bdd, $\overline{V} \subset U$)

Definition

$$W_0^{k,p}(U) = \overline{C_c^{\infty}(U)}^{W^{k,p}(U)}$$
 (closure of $C_c^{\infty}(U)$ in $W^{k,p}(U)$) $u \in W_0^{k,p}(U) \Leftrightarrow \exists u_m \in C_c^{\infty}(U) \text{ s.t. } u_m \to u \text{ in } W^{k,p}(U).$ Informally: ' $D^{\alpha}u = 0$ on ∂U for all $|\alpha| \leq k-1$ '

Q: What happens in the special case $p = \infty$?

We write $u \in W^{k,p}_{loc}(U)$ if $u \colon U \to \mathbb{R}$ is measurable and

$$u \in W^{k,p}(V) \quad \forall V \subset\subset U$$

(V open and bdd, $\overline{V} \subset U$)

Definition

$$W_0^{k,p}(U) = \overline{C_c^{\infty}(U)}^{W^{k,p}(U)}$$
 (closure of $C_c^{\infty}(U)$ in $W^{k,p}(U)$) $u \in W_0^{k,p}(U) \Leftrightarrow \exists u_m \in C_c^{\infty}(U) \text{ s.t. } u_m \to u \text{ in } W^{k,p}(U).$ Informally: ' $D^{\alpha}u = 0$ on ∂U for all $|\alpha| < k-1$ '

Q: What happens in the special case $p = \infty$?

Q: What is $W_0^{0,p}(U)$, $1 \le p < \infty$?

$$U = B^0(0,1)$$

$$u(x) = \frac{1}{|x|^{\alpha}}, \quad x \in U \setminus \{0\}.$$

$$U = B^0(0,1)$$

$$u(x) = \frac{1}{|x|^{\alpha}}, \quad x \in U \setminus \{0\}.$$

Weak derivative

$$u_{x_i}(x) = -\alpha \frac{x_i}{|x|\alpha+2}.$$

in *U* if $\alpha + 1 < n$:

$$|Du| = \frac{|\alpha|}{|x|^{\alpha+1}} \in L^1(U) \Leftrightarrow \alpha + 1 < n$$

(see Evans, Example 3, p. 260 for details)

$$U = B^0(0,1)$$

$$u(x) = \frac{1}{|x|^{\alpha}}, \quad x \in U \setminus \{0\}.$$

Weak derivative

$$u_{x_i}(x) = -\alpha \frac{x_i}{|x|^{\alpha+2}}.$$

in *U* if $\alpha + 1 < n$:

$$|Du| = \frac{|\alpha|}{|x|^{\alpha+1}} \in L^1(U) \Leftrightarrow \alpha + 1 < n$$

(see Evans, Example 3, p. 260 for details)

Generally:

$$|Du| \in L^p(U) \Leftrightarrow (\alpha + 1)p < n$$

$$U = B^0(0,1)$$

$$u(x) = \frac{1}{|x|^{\alpha}}, \quad x \in U \setminus \{0\}.$$

Weak derivative

$$u_{x_i}(x) = -\alpha \frac{x_i}{|x|\alpha+2}.$$

in *U* if $\alpha + 1 < n$:

$$|Du| = \frac{|\alpha|}{|x|^{\alpha+1}} \in L^1(U) \Leftrightarrow \alpha + 1 < n$$

(see Evans, Example 3, p. 260 for details)

Generally:

$$|Du| \in L^p(U) \Leftrightarrow (\alpha + 1)p < n$$

Hence, $u \in W^{1,p}$ if and only if $\alpha < \frac{n-p}{p}$.

Note: u is unbounded if $\alpha > 0$! This requires p < n.

Approximation

Let

$$U_{\varepsilon} = \{ x \in U : \operatorname{dist}(x, \partial U) > \varepsilon \}$$

and

$$\eta_{\varepsilon}(x) = \varepsilon^{-n} \eta(\varepsilon^{-1} x), \quad \varepsilon > 0$$

with $\eta \in C_c^{\infty}(\mathbb{R}^n)$, supp $\eta \subseteq B(0,1)$, $\int_{\mathbb{R}^n} \eta(x) dx = 1$ (Appendix C.5).

Let

$$U_{\varepsilon} = \{ x \in U : \operatorname{dist}(x, \partial U) > \varepsilon \}$$

and

$$\eta_{\varepsilon}(x) = \varepsilon^{-n} \eta(\varepsilon^{-1} x), \quad \varepsilon > 0$$

with $\eta \in C_c^{\infty}(\mathbb{R}^n)$, supp $\eta \subseteq B(0,1)$, $\int_{\mathbb{R}^n} \eta(x) dx = 1$ (Appendix C.5).

For $x \in U_{\varepsilon}$,

$$u^{\varepsilon}(x) = \eta_{\varepsilon} * u = \int_{U} \eta_{\varepsilon}(x - y)u(y) dy = \int_{B(0,\varepsilon)} \eta_{\varepsilon}(y)u(x - y) dy.$$

The first integral is well-defined for $x \in \mathbb{R}^n$.

Assume $u \in W^{k,p}(U)$, $1 \le p < \infty$ and set

$$u^{\varepsilon} = \eta_{\varepsilon} * u \quad \text{in } U_{\varepsilon}.$$

Then

- 1. $u^{\varepsilon} \in C^{\infty}(U_{\varepsilon})$ for each $\varepsilon > 0$,
- 2. $u^{\varepsilon} \to u$ in $W_{loc}^{k,p}(U)$ as $\varepsilon \to 0$.

Assume $u \in W^{k,p}(U)$, $1 \le p < \infty$ and set

$$u^{\varepsilon} = \eta_{\varepsilon} * u \quad \text{in } U_{\varepsilon}.$$

Then

- 1. $u^{\varepsilon} \in C^{\infty}(U_{\varepsilon})$ for each $\varepsilon > 0$,
- 2. $u^{\varepsilon} \to u$ in $W_{loc}^{k,p}(U)$ as $\varepsilon \to 0$.

Proof.

1: differentiate under the integral sign in

$$u^{\varepsilon}(x) = \int_{U} \eta_{\varepsilon}(x - y)u(y) dy.$$

Assume $u \in W^{k,p}(U)$, $1 \le p < \infty$ and set

$$u^{\varepsilon} = \eta_{\varepsilon} * u \quad \text{in } U_{\varepsilon}.$$

Then

- 1. $u^{\varepsilon} \in C^{\infty}(U_{\varepsilon})$ for each $\varepsilon > 0$,
- 2. $u^{\varepsilon} \to u$ in $W_{loc}^{k,p}(U)$ as $\varepsilon \to 0$.

Proof.

1: differentiate under the integral sign in

$$u^{\varepsilon}(x) = \int_{U} \eta_{\varepsilon}(x - y)u(y) dy.$$

In fact, extends to $C^{\infty}(\mathbb{R}^n)$ function, vanishing if $\operatorname{dist}(x,U) \geq \varepsilon$.

2: For $x \in U_{\varepsilon}$:

$$D^{\alpha}u^{\varepsilon}(x) = \int_{U} D_{x}^{\alpha} \eta_{\varepsilon}(x - y)u(y) dy = (-1)^{|\alpha|} \int_{U} D_{y}^{\alpha} \eta_{\varepsilon}(x - y)u(y) dy$$

2: For $x \in U_{\varepsilon}$:

$$D^{\alpha}u^{\varepsilon}(x) = \int_{U} D_{x}^{\alpha} \eta_{\varepsilon}(x - y)u(y) dy = (-1)^{|\alpha|} \int_{U} D_{y}^{\alpha} \eta_{\varepsilon}(x - y)u(y) dy$$
$$= \int_{U} \eta_{\varepsilon}(x - y)D^{\alpha}u(y) dy$$
$$= (\eta_{\varepsilon} * D^{\alpha}u)(x)$$

since
$$\eta_{\varepsilon}(x-\cdot)\in C_c^{\infty}(U)$$
.

2: For $x \in U_{\varepsilon}$:

$$D^{\alpha}u^{\varepsilon}(x) = \int_{U} D_{x}^{\alpha} \eta_{\varepsilon}(x - y)u(y) dy = (-1)^{|\alpha|} \int_{U} D_{y}^{\alpha} \eta_{\varepsilon}(x - y)u(y) dy$$
$$= \int_{U} \eta_{\varepsilon}(x - y)D^{\alpha}u(y) dy$$
$$= (\eta_{\varepsilon} * D^{\alpha}u)(x)$$

since $\eta_{\varepsilon}(x-\cdot) \in C_c^{\infty}(U)$.

If $V \subset\subset U$, then

$$\eta_{\varepsilon} * D^{\alpha} u \to D^{\alpha} u$$

in $L^p(V)$ for $|\alpha| \le k$ (see Appendix C.5).

Global approximation

Theorem

Assume U is bounded and ∂U is C^1 . Suppose $u \in W^{k,p}(U)$, $1 \le p < \infty$. Then $\exists u_m \in C^{\infty}(\overline{U})$ such that

$$u_m \to u$$
 in $W^{k,p}(U)$.

Proof, see Evans, Theorem 3, p. 266.

What about $U = \mathbb{R}^n$?

Theorem

If $1 \le p < \infty$, then $W^{k,p}(\mathbb{R}^n) = W^{k,p}_0(\mathbb{R}^n)$, that is $C^\infty_c(\mathbb{R}^n)$ is dense in $W^{k,p}(\mathbb{R}^n)$

Theorem

If $1 \le p < \infty$, then $W^{k,p}(\mathbb{R}^n) = W^{k,p}_0(\mathbb{R}^n)$, that is $C^\infty_c(\mathbb{R}^n)$ is dense in $W^{k,p}(\mathbb{R}^n)$

Proof.

First approximate by functions with compact support:

$$u_R(x) = \varphi(R^{-1}x)u(x),$$

where $\phi \in C_c^{\infty}(\mathbb{R}^n)$, $\phi(x) = 1$, $|x| \le 1$ and $\phi(x) = 0$, $|x| \ge 2$.

Theorem

If $1 \le p < \infty$, then $W^{k,p}(\mathbb{R}^n) = W^{k,p}_0(\mathbb{R}^n)$, that is $C^\infty_c(\mathbb{R}^n)$ is dense in $W^{k,p}(\mathbb{R}^n)$

Proof.

First approximate by functions with compact support:

$$u_R(x) = \varphi(R^{-1}x)u(x),$$

where
$$\varphi \in C_c^{\infty}(\mathbb{R}^n)$$
, $\varphi(x) = 1$, $|x| \le 1$ and $\varphi(x) = 0$, $|x| \ge 2$.

$$u_R \in W^{k,p}(\mathbb{R}^n)$$
, supp $u_R \subseteq B(0,2R)$ and

$$u_R \to u$$
 in $W^{k,p}(\mathbb{R}^n)$ as $R \to \infty$.

Theorem

If $1 \le p < \infty$, then $W^{k,p}(\mathbb{R}^n) = W^{k,p}_0(\mathbb{R}^n)$, that is $C^\infty_c(\mathbb{R}^n)$ is dense in $W^{k,p}(\mathbb{R}^n)$

Proof.

First approximate by functions with compact support:

$$u_R(x) = \varphi(R^{-1}x)u(x),$$

where $\varphi \in C_c^{\infty}(\mathbb{R}^n)$, $\varphi(x) = 1$, $|x| \le 1$ and $\varphi(x) = 0$, $|x| \ge 2$.

 $u_R \in W^{k,p}(\mathbb{R}^n)$, $\operatorname{supp} u_R \subseteq B(0,2R)$ and

$$u_R \to u$$
 in $W^{k,p}(\mathbb{R}^n)$ as $R \to \infty$.

Then approximate u_R by

$$u_{R,\varepsilon} = \eta_{\varepsilon} * u_{R}.$$

Extensions

Assume U bounded, ∂U C^1 . Let V be bounded and open, s.t. $U \subset\subset V$. Then \exists bounded linear operator

$$E \colon W^{1,p}(U) \to W^{1,p}(\mathbb{R}^n)$$

such that for each $u \in W^{1,p}(U)$:

- 1. Eu = u a.e. in U,
- 2. Eu has support in V.

Assume U bounded, ∂U C^1 . Let V be bounded and open, s.t. $U \subset\subset V$. Then \exists bounded linear operator

$$E \colon W^{1,p}(U) \to W^{1,p}(\mathbb{R}^n)$$

such that for each $u \in W^{1,p}(U)$:

- 1. Eu = u a.e. in U,
- 2. Eu has support in V.

Sketch of proof.

1. Reduce to the case when $U = \mathbb{R}^n_+$ and u has compact support in $B(0,r) \cap U$ using partition of unity and change of variables.

Assume U bounded, ∂U C^1 . Let V be bounded and open, s.t. $U \subset\subset V$. Then \exists bounded linear operator

$$E \colon W^{1,p}(U) \to W^{1,p}(\mathbb{R}^n)$$

such that for each $u \in W^{1,p}(U)$:

- 1. Eu = u a.e. in U,
- 2. Eu has support in V.

Sketch of proof.

- 1. Reduce to the case when $U = \mathbb{R}^n_+$ and u has compact support in $B(0,r) \cap U$ using partition of unity and change of variables.
- 2. Extend u to $\bar{u} \in W^{1,p}(\mathbb{R}^n)$ with support in B(0,r) by setting

$$\bar{u}(x) = \begin{cases} u(x', x_n), & x_n > 0, \\ u(x', -x_n), & x_n < 0. \end{cases}$$

Assume U bounded, ∂U C^1 . Let V be bounded and open, s.t. $U \subset\subset V$. Then \exists bounded linear operator

$$E \colon W^{1,p}(U) \to W^{1,p}(\mathbb{R}^n)$$

such that for each $u \in W^{1,p}(U)$:

- 1. Eu = u a.e. in U,
- 2. Eu has support in V.

Sketch of proof.

- 1. Reduce to the case when $U = \mathbb{R}^n_+$ and u has compact support in $B(0,r) \cap U$ using partition of unity and change of variables.
- 2. Extend u to $\bar{u} \in W^{1,p}(\mathbb{R}^n)$ with support in B(0,r) by setting

$$\bar{u}(x) = \begin{cases} u(x', x_n), & x_n > 0, \\ u(x', -x_n), & x_n < 0. \end{cases}$$

Remark: For $k \ge 2$ one can use 'higher order' reflection (Evans).

Sobolev inequalities

Gagliardo-Nirenberg-Sobolev inequality

Definition

For $1 \le p < n$, the Sobolev conjugate of p is

$$p^* := \frac{np}{n-p}.$$

Gagliardo-Nirenberg-Sobolev inequality

Definition

For $1 \le p < n$, the Sobolev conjugate of p is

$$p^* := \frac{np}{n-p}.$$

Theorem

Assume $1 \le p < n$. There exists a constant C, depending only on p and n, such that

$$||u||_{L^{p*}(\mathbb{R}^n)} \le C||Du||_{L^p(\mathbb{R}^n)}$$

for all $u \in C^1_c(\mathbb{R}^n)$

Gagliardo-Nirenberg-Sobolev inequality

Definition

For $1 \le p < n$, the Sobolev conjugate of p is

$$p^* := \frac{np}{n-p}.$$

Theorem

Assume $1 \le p < n$. There exists a constant C, depending only on p and n, such that

$$||u||_{L^{p*}(\mathbb{R}^n)} \le C||Du||_{L^p(\mathbb{R}^n)}$$

for all $u \in C^1_c(\mathbb{R}^n)$

Remark: p^* is the only value of q such that an inequality of the form $\|u\|_{L^q(\mathbb{R}^n)} \le C\|Du\|_{L^p(\mathbb{R}^n)}$ can hold. This can be seen by trying $u_\lambda(x) = u(\lambda x)$ (Evans).

$$\frac{p=1}{p^*=n/(n-1)}.$$

Consider the case n = 2 for simplicity. Then $p^* = 2$ Full proof, extended Hölder inequality (Evans)

$$\frac{p=1}{p^*=n/(n-1)}.$$

Consider the case n=2 for simplicity. Then $p^*=2$ Full proof, extended Hölder inequality (Evans)

$$u(x) = \int_{-\infty}^{x_1} u_{x_1}(y_1, x_2) \, dy_1 = \int_{-\infty}^{x_2} u_{x_2}(x_1, y_2) \, dy_2$$

$$\frac{p=1}{p^*=n/(n-1)}.$$

Consider the case n=2 for simplicity. Then $p^*=2$ Full proof, extended Hölder inequality (Evans)

$$u(x) = \int_{-\infty}^{x_1} u_{x_1}(y_1, x_2) \, dy_1 = \int_{-\infty}^{x_2} u_{x_2}(x_1, y_2) \, dy_2$$

$$|u(x)| \le \int_{-\infty}^{\infty} |Du(y_1, x_2)| \, dy_1, \qquad |u(x)| \le \int_{-\infty}^{\infty} |Du(x_1, y_2)| \, dy_2.$$

$$\frac{p=1}{p^*=n/(n-1)}.$$

Consider the case n=2 for simplicity. Then $p^*=2$ Full proof, extended Hölder inequality (Evans)

$$u(x) = \int_{-\infty}^{x_1} u_{x_1}(y_1, x_2) \, dy_1 = \int_{-\infty}^{x_2} u_{x_2}(x_1, y_2) \, dy_2$$

$$|u(x)| \le \int_{-\infty}^{\infty} |Du(y_1, x_2)| \, dy_1, \qquad |u(x)| \le \int_{-\infty}^{\infty} |Du(x_1, y_2)| \, dy_2.$$

$$|u(x)|^2 \le \left(\int_{-\infty}^{\infty} |Du(y_1, x_2)| \, dy_1\right) \left(\int_{-\infty}^{\infty} |Du(x_1, y_2)| \, dy_2\right).$$

$$|u(x)|^2 \le \left(\int_{-\infty}^{\infty} |Du(y_1, x_2)| \, dy_1\right) \left(\int_{-\infty}^{\infty} |Du(x_1, y_2)| \, dy_2\right).$$

$$|u(x)|^2 \le \left(\int_{-\infty}^{\infty} |Du(y_1, x_2)| \, dy_1\right) \left(\int_{-\infty}^{\infty} |Du(x_1, y_2)| \, dy_2\right).$$

Integrate in x

$$||u||_{L^2}^2 = \int_{\mathbb{R}^2} |u(x)|^2 dx \le \left(\int_{\mathbb{R}^2} |Du| dx\right)^2 = ||Du||_{L^1}^2.$$

$$|u(x)|^2 \le \left(\int_{-\infty}^{\infty} |Du(y_1, x_2)| \, dy_1\right) \left(\int_{-\infty}^{\infty} |Du(x_1, y_2)| \, dy_2\right).$$

Integrate in x

$$||u||_{L^2}^2 = \int_{\mathbb{R}^2} |u(x)|^2 dx \le \left(\int_{\mathbb{R}^2} |Du| dx\right)^2 = ||Du||_{L^1}^2.$$

1

Apply previous estimate to $v := |u|^{\gamma}$, for some $\gamma > 1$.

Then

$$\left(\int_{\mathbb{R}^n} |u|^{\frac{\gamma n}{n-1}} dx\right)^{\frac{n-1}{n}} \le \int_{\mathbb{R}^n} |D|u|^{\gamma} |dx$$

$$= \gamma \int_{\mathbb{R}^n} |u|^{\gamma-1} |Du| dx$$

$$\le \gamma \left(\int_{\mathbb{R}^n} |u|^{\frac{(\gamma-1)p}{p-1}} dx\right)^{\frac{p-1}{p}} \left(\int_{\mathbb{R}^n} |Du|^p dx\right)^{\frac{1}{p}}$$

$$\left(\int_{\mathbb{R}^n} |u|^{\frac{\gamma n}{n-1}} dx\right)^{\frac{n-1}{n}} \le \int_{\mathbb{R}^n} |D|u|^{\gamma} |dx$$

$$= \gamma \int_{\mathbb{R}^n} |u|^{\gamma - 1} |Du| dx$$

$$\le \gamma \left(\int_{\mathbb{R}^n} |u|^{\frac{(\gamma - 1)p}{p - 1}} dx\right)^{\frac{p - 1}{p}} \left(\int_{\mathbb{R}^n} |Du|^p dx\right)^{\frac{1}{p}}$$

$$\left(\int_{\mathbb{R}^n}|u|^{\frac{\gamma n}{n-1}}dx\right)^{\frac{n-1}{n}}\leq \int_{\mathbb{R}^n}|D|u|^{\gamma}|dx$$

$$=\gamma\int_{\mathbb{R}^n}|u|^{\gamma-1}|Du|dx$$

$$\leq \gamma\left(\int_{\mathbb{R}^n}|u|^{\frac{(\gamma-1)p}{p-1}}dx\right)^{\frac{p-1}{p}}\left(\int_{\mathbb{R}^n}|Du|^pdx\right)^{\frac{1}{p}}$$
 Set
$$\gamma:=\frac{p(n-1)}{n-p}>1$$
 so that
$$\frac{\gamma n}{n-1}=\frac{(\gamma-1)p}{p-1}=\frac{np}{n-p}=p^*.$$

Set

$$\left(\int_{\mathbb{R}^n} |u|^{\frac{\gamma_n}{n-1}} dx\right)^{\frac{n-1}{n}} \le \int_{\mathbb{R}^n} |D|u|^{\gamma} |dx$$

$$= \gamma \int_{\mathbb{R}^n} |u|^{\gamma-1} |Du| dx$$

$$\le \gamma \left(\int_{\mathbb{R}^n} |u|^{\frac{(\gamma-1)p}{p-1}} dx\right)^{\frac{p-1}{p}} \left(\int_{\mathbb{R}^n} |Du|^p dx\right)^{\frac{1}{p}}$$

Set

$$\gamma := \frac{p(n-1)}{n-p} > 1$$

so that

$$\frac{\gamma n}{n-1} = \frac{(\gamma - 1)p}{p-1} = \frac{np}{n-p} = p^*.$$

Then

$$\left(\int_{\mathbb{R}^n} |u|^{p^*} dx\right)^{\frac{1}{p^*}} \leq C \left(\int_{\mathbb{R}^n} |Du|^p dx\right)^{\frac{1}{p}}.$$

Let $U \subset \mathbb{R}^n$, bdd, open, ∂U C^1 . Assume $1 \leq p < n$ and $u \in W^{1,p}(U)$. Then $u \in L^{p^*}(U)$ with

$$||u||_{L^{p^*}(U)} \le C||u||_{W^{1,p}(U)},$$

where C is independent of u.

Let $U \subset \mathbb{R}^n$, bdd, open, ∂U C^1 . Assume $1 \leq p < n$ and $u \in W^{1,p}(U)$. Then $u \in L^{p^*}(U)$ with

$$||u||_{L^{p^*}(U)} \le C||u||_{W^{1,p}(U)},$$

where C is independent of u.

Proof.

▶ Let $\overline{u} \in W_c^{1,p}(\mathbb{R}^n)$ be an extension of u.

Let $U \subset \mathbb{R}^n$, bdd, open, ∂U C^1 . Assume $1 \le p < n$ and $u \in W^{1,p}(U)$. Then $u \in L^{p^*}(U)$ with

$$||u||_{L^{p^*}(U)} \le C||u||_{W^{1,p}(U)},$$

where C is independent of u.

Proof.

- Let $\overline{u} \in W_c^{1,p}(\mathbb{R}^n)$ be an extension of u.
- ▶ Let $u_m \in C_c^{\infty}(\mathbb{R}^n)$ with $u_m \to \overline{u}$ in $W^{1,p}(\mathbb{R}^n)$.

Let $U \subset \mathbb{R}^n$, bdd, open, ∂U C^1 . Assume $1 \leq p < n$ and $u \in W^{1,p}(U)$. Then $u \in L^{p^*}(U)$ with

$$||u||_{L^{p^*}(U)} \le C||u||_{W^{1,p}(U)},$$

where C is independent of u.

Proof.

- Let $\overline{u} \in W_c^{1,p}(\mathbb{R}^n)$ be an extension of u.
- ▶ Let $u_m \in C_c^{\infty}(\mathbb{R}^n)$ with $u_m \to \overline{u}$ in $W^{1,p}(\mathbb{R}^n)$.
- ▶ Previous thm $\Rightarrow u_m$ Cauchy in L^{p^*} with

$$||u_m||_{L^{p_*}(\mathbb{R}^n)} \le C' ||D\overline{u}_m||_{L^p(\mathbb{R}^n)} \le C' ||\overline{u}_m||_{W^{1,p}(\mathbb{R}^n)} \le C ||u_m||_{W^{1,p}(U)}.$$

Let $U \subset \mathbb{R}^n$, bdd, open, ∂U C^1 . Assume $1 \leq p < n$ and $u \in W^{1,p}(U)$. Then $u \in L^{p^*}(U)$ with

$$||u||_{L^{p^*}(U)} \le C||u||_{W^{1,p}(U)},$$

where C is independent of u.

Proof.

- ▶ Let $\overline{u} \in W_c^{1,p}(\mathbb{R}^n)$ be an extension of u.
- ▶ Let $u_m \in C_c^{\infty}(\mathbb{R}^n)$ with $u_m \to \overline{u}$ in $W^{1,p}(\mathbb{R}^n)$.
- ▶ Previous thm $\Rightarrow u_m$ Cauchy in L^{p^*} with

$$||u_m||_{L^{p_*}(\mathbb{R}^n)} \le C' ||D\overline{u}_m||_{L^p(\mathbb{R}^n)} \le C' ||\overline{u}_m||_{W^{1,p}(\mathbb{R}^n)} \le C ||u_m||_{W^{1,p}(U)}.$$

▶ Passing to the limit, $\overline{u} \in L^{p^*}$ with

$$\|\overline{u}\|_{L^{p*}(\mathbb{R}^n)} \le C\|u\|_{W^{1,p}(U)},$$

thus $||u||_{L^{p*}(U)} \le C||u||_{W^{1,p}(U)}$.

Theorem

Assume $U \subset \mathbb{R}^n$ open, bounded. Suppose $u \in W_0^{1,p}(U)$, $1 \le p < n$. Then

$$||u||_{L^q(U)} \le C||Du||_{L^p(U)}$$

for each $q \in [1, p^*]$, with C independent of u.

Theorem

Assume $U \subset \mathbb{R}^n$ open, bounded. Suppose $u \in W_0^{1,p}(U)$, $1 \leq p < n$. Then

$$||u||_{L^q(U)} \le C||Du||_{L^p(U)}$$

for each $q \in [1,p^*]$, with C independent of u.

Proof.

 $ightharpoonup \exists u_m \in C_c^{\infty}(U), \text{ with } u_m \to u \text{ in } W^{1,p}(U).$

Theorem

Assume $U \subset \mathbb{R}^n$ open, bounded. Suppose $u \in W_0^{1,p}(U)$, $1 \leq p < n$. Then

$$||u||_{L^q(U)} \le C||Du||_{L^p(U)}$$

for each $q \in [1,p^*]$, with C independent of u.

Proof.

- $ightharpoonup \exists u_m \in C_c^{\infty}(U)$, with $u_m \to u$ in $W^{1,p}(U)$.
- ightharpoonup Extend each u_m by 0 to \mathbb{R}^n and apply the GNS inequality.

$$||u_m||_{L^{p^*}(U)} \leq C_1 ||Du_m||_{L^p(U)}.$$

Theorem

Assume $U \subset \mathbb{R}^n$ open, bounded. Suppose $u \in W_0^{1,p}(U)$, $1 \leq p < n$. Then

$$||u||_{L^q(U)} \le C||Du||_{L^p(U)}$$

for each $q \in [1,p^*]$, with C independent of u.

Proof.

- $ightharpoonup \exists u_m \in C_c^{\infty}(U)$, with $u_m \to u$ in $W^{1,p}(U)$.
- ightharpoonup Extend each u_m by 0 to \mathbb{R}^n and apply the GNS inequality.

$$||u_m||_{L^{p^*}(U)} \leq C_1 ||Du_m||_{L^p(U)}.$$

▶ Let $m \to \infty$:

$$||u||_{L^{p^*}(U)} \leq C_1 ||Du||_{L^p(U)}.$$

Theorem

Assume $U \subset \mathbb{R}^n$ open, bounded. Suppose $u \in W_0^{1,p}(U)$, $1 \leq p < n$. Then

$$||u||_{L^q(U)} \le C||Du||_{L^p(U)}$$

for each $q \in [1,p^*]$, with C independent of u.

Proof.

- $ightharpoonup \exists u_m \in C_c^{\infty}(U)$, with $u_m \to u$ in $W^{1,p}(U)$.
- ightharpoonup Extend each u_m by 0 to \mathbb{R}^n and apply the GNS inequality.

$$||u_m||_{L^{p^*}(U)} \leq C_1 ||Du_m||_{L^p(U)}.$$

▶ Let $m \to \infty$:

$$||u||_{L^{p^*}(U)} \leq C_1 ||Du||_{L^p(U)}.$$

 $|U| < \infty \Rightarrow ||u||_{L^q(U)} \le C_2 ||u||_{L^{p^*}(U)}, \ 1 \le q \le p^*. \ C = C_1 C_2.$

In particular, for q = p, we get

$$||u||_{L^p(U)} \le C||Du||_{L^p(U)}$$

for $u \in W_0^{1,p}(U)$ (note that $p < p^* = pn/(n-p)$). Sometimes called Poincaré's inequality.

In particular, for q = p, we get

$$||u||_{L^p(U)} \le C||Du||_{L^p(U)}$$

for $u \in W_0^{1,p}(U)$ (note that $p < p^* = pn/(n-p)$). Sometimes called Poincaré's inequality.

It also holds if $p \ge n$, since then $u \in W_0^{1,\tilde{p}}$ for any $\tilde{p} < n$ and

$$||u||_{L^{\tilde{p}^*}(U)} \le C||Du||_{L^{\tilde{p}}(U)} \le C'||Du||_{L^{p}(U)}$$

and $p \leq \tilde{p}^* = \tilde{p}n/(n-\tilde{p})$ if \tilde{p} is suff. close to n, making

$$||u||_{L^p(U)} \leq C'' ||u||_{L^{\tilde{p}^*}(U)}$$

In particular, for q = p, we get

$$||u||_{L^p(U)} \le C||Du||_{L^p(U)}$$

for $u \in W_0^{1,p}(U)$ (note that $p < p^* = pn/(n-p)$). Sometimes called Poincaré's inequality.

It also holds if $p \ge n$, since then $u \in W_0^{1,\tilde{p}}$ for any $\tilde{p} < n$ and

$$||u||_{L^{\tilde{p}^*}(U)} \le C||Du||_{L^{\tilde{p}}(U)} \le C'||Du||_{L^{p}(U)}$$

and $p \leq \tilde{p}^* = \tilde{p}n/(n-\tilde{p})$ if \tilde{p} is suff. close to n, making

$$||u||_{L^p(U)} \le C'' ||u||_{L^{\tilde{p}^*}(U)}$$

Poincaré's inequality implies that the norm $\|Du\|_{L^p(U)}$ is equivalent to $\|u\|_{W^{1,p}(U)}$ on $W_0^{1,p}(U)$ if U is bounded.