PDE Lecture

Sobolev spaces

March 31
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Definition and basic properties
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Weak derivatives
U C R” open, non-empty. Recall from last time:

Definition
If uec Ll (U), we say that v € L] (V) is the ath
weak partial derivative of u, v = D%u, if

/uD“qodx:(—l)l‘x'/v(pdx Yo e CZ(U).
U U

3/23



Weak derivatives
U C R” open, non-empty. Recall from last time:

Definition
If uec Ll (U), we say that v € L] (V) is the ath
weak partial derivative of u, v = D%u, if

/uD“(pdxz(—l)'“'/v(pdx Yo e CZ(U).
U U

Definition
Let k € Nand 1 < p < . The Sobolev space W*?(U) is defined
by

WP (U) = {u € [P (U): D*u € IP(U) Vo s.t. |a| < k}.
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Norm:

_ ) (D D%l )" 1< p <o,

HuHW"-f’(U)
Z|a|§k HDO‘”HL"“(U)a p =0
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Norm:

1
_ | (B ID%ully )" 1<p <
Z|a|§k HDO‘”HL"“(U)a p =0

HuHW"-f’(U)

Equivalent norm for p < co:

Z ||DaMHLP(U)

lor| <k

Q: Why not use this?
H*(U) = W*2(U) has inner product

(V) ey = Y, (D%u,D%v) =) /D“uD“vdx

|| <k o<k

and
(U, 1) g = ”“H%sz
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Theorem
WP (U) is a Banach space for eachk € N and 1 <p <oo. In
particular, H*(U) is a Hilbert space.
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Theorem
WP (U) is a Banach space for eachk € N and 1 <p <oo. In
particular, H*(U) is a Hilbert space.

Proof.

» Suppose {u,,} is Cauchy Wt».

» Then each {D%u,,} is Cauchy in L? (||D%u||rr < ||u||yxs)-
» [7 complete = D%u,, — uqy in LP.

> Letu=u®. Then

/umDa(PdX:(—1)|a|/Daum(de v‘pGCZQ(U)
U U
implies
/uD“<pdx:(—1)‘“‘/ua<pdx Vo € CZ(U).
U U

» Hence uy = D% and D%*u,, — D%u in L7 for all |ot| < k.
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Additional spaces

We write u € W(f)’é’(U) if u: U — R is measurable and

ue WkP(v) wvccu
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Additional spaces

We write u € W(f)’é’(U) if u: U — R is measurable and

ue WkP(v) wvccu

(V open and bdd, V c U)
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Additional spaces

We write u € W(f)’é’(U) if u: U — R is measurable and

ue WkP(v) wvccu

(V open and bdd, V c U)

Definition

Wy (U) = C2(U) (closure of C=(U) in W 2 (U))
u€ WeP(U) & Juy, € C2(U) 8ty — uin WEP(U).

WP (U)
Informally: ‘D*u=0o0n dU forall || <k—1’

Q: What happens in the special case p = «?
Q: What is W (U), 1 < p < e?
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Example
U=B°0,1)

u(x) = |xl|a xe U\ {0},

7/23



Example

U=B°0,1)
u(x) = @’ xe U\ {0}.
Weak derivative
X;
Mx’.()C) = —(XW
inUifa+1<n:
pu =) s at
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(see Evans, Example 3, p. 260 for details)
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Example

U=B°0,1)
u(x):W, xe U\ {0}.
Weak derivative
X
uxf(x):_aMTJrZ'
inUifoa+1<n:
|Du| = o] cll(U)sa+l<
up= [+ n

(see Evans, Example 3, p. 260 for details)

Generally:
|Dule I(U) < (a+1)p<n

Hence, u € W'? if and only if o < "’%”.

Note: u is unbounded if o > 0! This requires p < n. S



Approximation
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Let
Ueg ={x e U: dist(x,dU) > €}

and
ne(x) =e"m(e'x), €>0

with n € C2(R"), suppn € B(0,1), [g. 1 (x)dx =1 (Appendix C.5).
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Let
Ueg ={x e U: dist(x,dU) > €}

and

ne(x) =e"m(e'x), €>0

with n € C2(R"), suppn € B(0,1), [g. 1 (x)dx =1 (Appendix C.5).

For x € U,,
ut(x) = ne*uz/ ns(x—y)u(y)dyz/ Ne(y)u(x —y)dy.
U B(0,¢)

The first integral is well-defined for x € R".
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Theorem
Assume u € WkP(U), 1 < p < « and set

u® =ne*xu inUe.

Then
1. u® € C*(Ug) foreach e >0,
2. ¥ »uin Wh(U) ase — 0.
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Theorem
Assume u € WkP(U), 1 < p < o and set

u® =ne*xu inUe.
Then

1. u® € C*(Ug) foreach e >0,
2. ¥ »uin Wh(U) ase — 0.
Proof.
1: differentiate under the integral sign in

(@) = [ nele=yuly)dy.
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Theorem
Assume u € WkP(U), 1 < p < o and set

u® =ne*xu inUe.
Then

1. u® € C*(Ug) foreach e >0,
2. ¥ »uin Wh(U) ase — 0.
Proof.
1: differentiate under the integral sign in

0@ = [ nele—y)uts)dy

In fact, extends to C*(R") function, vanishing if dist(x, U) > €.
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2: Forxe Us:

D () = [ DEme(x—y)uls)dy = (~1) [ Dime(x—y)uly) dy
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2: Forxe Us:
D () = [ DEme(x—y)uls)dy = (~1) [ Dime(x—y)uly) dy

= [ melx—y)D"uly)dy
= (Ne +D*u)(x)

since ne(x—-) € C(U).
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2: Forxe Us:

D () = [ DENe(x—yuly)dy = (<1 [ Dime(x—y)uy)dy
= [ melx—y)D"uly)dy
= (e * D%0)(x)

since ne(x—-) € C(U).

If V.Ccc U, then
Ne * D%u — D%u

in LP(V) for || < k (see Appendix C.5). O
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Global approximation

Theorem
Assume U is bounded and dU is C'. Suppose u € W*?(U),

1 <p <. Then u,, € C*(U) such that

Uy —u  in WEP(U).

Proof, see Evans, Theorem 3, p. 266.
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What about U = R"?
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What about U = R"?

Theorem

If1 < p < oo, then Wk (R") = WiP (R™), that is C=(R") is dense
in Wk (RM)

Proof.
First approximate by functions with compact support:

ur(x) = Q(R™"x)u(x),

where ¢ € CZ(R"), ¢(x) =1, |x| <1 and ¢(x) =0, |x| > 2.
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What about U = R"?

Theorem
If1 < p < oo, then Wk (R") = WiP (R™), that is C=(R") is dense
in Wk (R")

Proof.
First approximate by functions with compact support:

ug(x) = (R "x)u(x),
where ¢ € CZ(R"), ¢(x) =1, |x| <1 and ¢(x) =0, |x| > 2.
ug € WkP(R"), suppug € B(0,2R) and

ug —u in WP (R")  as R — oo,

Then approximate ug by

URe = Me * UR. L]
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Theorem
Assume U bounded, dU C'. Let V be bounded and open, s.t.
U cc V. Then 3 bounded linear operator

E: W' (U) — W'P(R")

such that for each u € W'»(U):
1. Eu=ua.e.inU,
2. Eu has supportinV.
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Theorem
Assume U bounded, dU C'. Let V be bounded and open, s.t.
U cc V. Then 3 bounded linear operator

E: W' (U) — W'P(R")

such that for each u € W'»(U):
1. Eu=ua.e.inU,
2. Eu has supportinV.

Sketch of proof.

1. Reduce to the case when U = R’, and « has compact support
in B(0,r) N U using partition of unity and change of variables.

2. Extend u to i € W!»(R") with support in B(0,r) by setting
/
7(x) {u(x Xn),  xp >0,

u(x',—xn), x, <O.

Remark: For k > 2 one can use ‘higher order’ reflection (Evans).
15/23



Sobolev inequalities
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Gagliardo-Nirenberg-Sobolev inequality

Definition
For 1 < p < n, the Sobolev conjugate of p is

* np
P =

n—p

17/23



Gagliardo-Nirenberg-Sobolev inequality
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For 1 < p < n, the Sobolev conjugate of p is

o P
pri=——r.
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Theorem
Assume 1 < p < n. There exists a constant C, depending only
onp and n, such that

|l () < C||Dutl| 1 (e
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Gagliardo-Nirenberg-Sobolev inequality

Definition
For 1 < p < n, the Sobolev conjugate of p is

e np
s :
n—p

Theorem
Assume 1 < p < n. There exists a constant C, depending only
onp and n, such that

|l () < C||Dutl| 1 (e

for all u € CL(R")

Remark: p* is the only value of ¢ such that an inequality of the
form |[u| o) < C||Dul|p ) can hold. This can be seen by trying
uy (x) = u(Ax) (Evans).
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Proof
p=1
P =n/(n—1).
Consider the case n = 2 for simplicity. Then p* =2
Full proof, extended Holder inequality (Evans)
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Proof
p=1
P =n/(n—1).
Consider the case n = 2 for simplicity. Then p* =2
Full proof, extended Holder inequality (Evans)

X1 2%
u(x) :/ ”xl(yhxz)dh :/ sz(xhyz)dyz

—o0
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Proof
p=1
P =n/(n—1).
Consider the case n = 2 for simplicity. Then p* =2
Full proof, extended Holder inequality (Evans)

X1 2%
u(x) :/ Uy, (y1,X2) dyi :/ Uy, (X1,y2) dy>

—o0

W@l < [ puly)ldn, )| < [ |Duta o)l
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Proof
p=1
P =n/(n—1).
Consider the case n = 2 for simplicity. Then p* =2
Full proof, extended Holder inequality (Evans)

X1 2%
u(x) :/ Uy, (y1,X2) dyi :/ Uy, (X1,y2) dy>

—o0

W@l < [ puly)ldn, )| < [ |Duta o)l

< ([ utnlan ) ([ 1Dutsa)lare)
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< ([ utnlan ) ([ 1Dutsa)lare)

Integrate in x

2
2 2 2
lull7> = /]1%2 lu(x)|"dx < (/RZ |Du|dx> = || Dul|7:.
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< ([ utnlan ) ([ 1Dutsa)lare)

Integrate in x

2
2 2 _ 2
lull7> = /]1%2 lu(x)|"dx < (/RZ |Du|dx> = || Dul|7:.

l<p<n
Apply previous estimate to v := |u|?, for some y > 1.

Then

n—1
( yu|f-"udx> < / ID|ul"|dx
R~ R~

_ y/ |7~ | Du| dx
Rn

p—1

(r=bp P ll’
< }/</ |u| P dx> (/ |Du|pdx>
R~ R~
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n—1

</ |u|n"’1dx> ' g/ \DJul| d
Rn Rn

— [ lul""Duldx
RVL

(r=Dp
§7</ jul 71 dX)
Rn

=
~[]

1
p
( / |DulP dx>
R»
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n—1
</ |u|n’"ndx> g/ ID|ul"|dx
Rn Rn

— [ lul""Duldx
RVL

(y—1)p P;l %
<y |lu| =1 dx /|DMWM
Rn R»

p(n—1)
n—p

Set

Y= >1

so that
yn (y—=lp np .

n—1_ p—1 _nfp:p'
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n—1
</ |u|n’"ndx> g/ ID|ul"|dx
Rn Rn

— [ lul""Duldx
RVL

p—1

(r=bp r %
< }/( |u| 71 dx) (/ |Du\pdx>
Rn R»

Set |
y::p(n— )>1
n—p
so that
yn (y=Up np
— = ——-l? .
n—1 p—1 n—p
Then

1 1

(/ |u|p*dx)p <cC (/ |Du|pdx>p.
R" R”

20/23



Theorem

Let U Cc R", bdd, open, dU C'. Assume 1 <p < n and
uc Wh(U). Thenu c L (U) with

lull 0y < Cllullwro(w)

where C is independent of u.
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Theorem
Let U Cc R", bdd, open, dU C'. Assume 1 <p < n and
uc Wh(U). Thenu c L (U) with

lull 0y < Cllullwro(w)

where C is independent of u.
Proof.

> Letu e W.”(R") be an extension of u.
> Let u, € CZ(R") with u,, — u in WhP(R").
» Previous thm = u,, Cauchy in I”" with

[t || (rry < C'[| Dt | 1y < C'[Tm |l oy < Cllttm]l o 1r)-

» Passing to the limit, 7 € L7 with

]l e gy < Cllullwro (),

thus [l o) < Cllullwis)
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Poincaré’s inequality

Theorem

Assume U C R" open, bounded. Suppose u € W&’p (0),
1<p<n. Then

ulla(uy < ClIDul|p ()
for each q € [1,p*], with C independent of u.
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1<p<n. Then
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for each q € [1,p*], with C independent of u.
Proof.
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Poincaré’s inequality

Theorem

Assume U C R" open, bounded. Suppose u € Wé’p (0),
1<p<n. Then

[ullra) < CllDul[zp(v)
for each q € [1,p*], with C independent of u.
Proof.
> Ju, € C2(U), with u,, — u in WP (U).
» Extend each u,, by 0 to R" and apply the GNS inequality.

) < Cil|Dut]| (v
> Letm — oo
[ull (1) < CillDul| vy

> Ul <oo = lufl o) < G| pl1<g<p. C=CiC.
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In particular, for ¢ = p, we get
ullzp vy < ClIDul| vy

forue Wé’p(U) (note that p < p* =pn/(n—p)).
Sometimes called Poincaré’s inequality.
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In particular, for ¢ = p, we get

ull vy < ClIDull )

forue Wé’p(U) (note that p < p* =pn/(n—p)).
Sometimes called Poincaré’s inequality.

It also holds if p > n, since then u € Wé'f’ for any p < n and
ull () < CllDull oy < C'l|Dut]| 1wy
and p <p* =pn/(n—p) if p is suff. close to n, making

lull vy < Cllullp vy

Poincaré’s inequality implies that the norm ||Dul|;» ) is equiva-
lent to [|ul|y1s) ON Wy”(U) if U is bounded.
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