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Definition and basic properties
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Weak derivatives
U ⊂ Rn open, non-empty. Recall from last time:

Definition
If u ∈ L1

loc(U), we say that v ∈ L1
loc(U) is the αth

weak partial derivative of u, v = Dαu, if∫
U

uDα
ϕ dx = (−1)|α|

∫
U

vϕ dx ∀ϕ ∈ C∞
c (U).

Definition
Let k ∈ N and 1≤ p≤ ∞. The Sobolev space Wk,p(U) is defined
by

Wk,p(U) = {u ∈ Lp(U) : Dαu ∈ Lp(U) ∀α s.t. |α| ≤ k}.
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Norm:

‖u‖Wk,p(U) =


(

∑|α|≤k ‖Dαu‖p
Lp(U)

) 1
p
, 1≤ p < ∞,

∑|α|≤k ‖Dαu‖L∞(U), p = ∞.

Equivalent norm for p < ∞:

∑
|α|≤k
‖Dαu‖Lp(U)

Q: Why not use this?

Hk(U) = Wk,2(U) has inner product

(u,v)Hk(U) = ∑
|α|≤k

(Dαu,Dαv)L2(U) = ∑
|α|≤k

∫
U

DαuDαvdx

and
(u,u)Hk = ‖u‖2

Wk,2
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Theorem
Wk,p(U) is a Banach space for each k ∈ N and 1≤ p≤ ∞. In
particular, Hk(U) is a Hilbert space.

Proof.

I Suppose {um} is Cauchy Wk,p.
I Then each {Dαum} is Cauchy in Lp (‖Dαu‖Lp ≤ ‖u‖Wk,p).
I Lp complete⇒ Dαum→ uα in Lp.
I Let u = u(0). Then∫

U
um Dα

ϕ dx = (−1)|α|
∫

U
Dαum ϕ dx ∀ϕ ∈ C∞

c (U).

implies∫
U

uDα
ϕ dx = (−1)|α|

∫
U

uα ϕ dx ∀ϕ ∈ C∞
c (U).

I Hence uα = Dαu and Dαum→ Dαu in Lp for all |α| ≤ k.
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Additional spaces
We write u ∈Wk,p

loc(U) if u : U→ R is measurable and

u ∈Wk,p(V) ∀V ⊂⊂ U

(V open and bdd, V ⊂ U)

Definition
Wk,p

0 (U) = C∞
c (U)

Wk,p(U)
(closure of C∞

c (U) in Wk,p(U))

u ∈Wk,p
0 (U)⇔ ∃um ∈ C∞

c (U) s.t. um→ u in Wk,p(U).

Informally: ‘Dαu = 0 on ∂U for all |α| ≤ k−1’

Q: What happens in the special case p = ∞?

Q: What is W0,p
0 (U), 1≤ p < ∞?
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Example
U = B0(0,1)

u(x) =
1
|x|α

, x ∈ U \{0}.

Weak derivative
uxi(x) =−α

xi

|x|α+2 .

in U if α +1 < n:

|Du|= |α|
|x|α+1 ∈ L1(U)⇔ α +1 < n

(see Evans, Example 3, p. 260 for details)

Generally:
|Du| ∈ Lp(U)⇔ (α +1)p < n

Hence, u ∈W1,p if and only if α < n−p
p .

Note: u is unbounded if α > 0! This requires p < n.
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Approximation
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Let
Uε = {x ∈ U : dist(x,∂U)> ε}

and
ηε(x) = ε

−n
η(ε−1x), ε > 0

with η ∈ C∞
c (Rn), suppη ⊆ B(0,1),

∫
Rn η(x)dx = 1 (Appendix C.5).

For x ∈ Uε ,

uε(x) = ηε ∗u =
∫

U
ηε(x− y)u(y)dy =

∫
B(0,ε)

ηε(y)u(x− y)dy.

The first integral is well-defined for x ∈ Rn.
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Theorem
Assume u ∈Wk,p(U), 1≤ p < ∞ and set

uε = ηε ∗u in Uε .

Then
1. uε ∈ C∞(Uε) for each ε > 0,

2. uε → u in Wk,p
loc(U) as ε → 0.

Proof.
1: differentiate under the integral sign in

uε(x) =
∫

U
ηε(x− y)u(y)dy.

In fact, extends to C∞(Rn) function, vanishing if dist(x,U)≥ ε.
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2: For x ∈ Uε :

Dαuε(x) =
∫

U
Dα

x ηε(x− y)u(y)dy = (−1)|α|
∫

U
Dα

y ηε(x− y)u(y)dy

since ηε(x−·) ∈ C∞
c (U).

If V ⊂⊂ U, then
ηε ∗Dαu→ Dαu

in Lp(V) for |α| ≤ k (see Appendix C.5).
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Global approximation

Theorem
Assume U is bounded and ∂U is C1. Suppose u ∈Wk,p(U),
1≤ p < ∞. Then ∃um ∈ C∞(U) such that

um→ u in Wk,p(U).

Proof, see Evans, Theorem 3, p. 266.

12 / 23



What about U = Rn?

Theorem
If 1≤ p < ∞, then Wk,p(Rn) = Wk,p

0 (Rn), that is C∞
c (Rn) is dense

in Wk,p(Rn)

Proof.
First approximate by functions with compact support:

uR(x) = ϕ(R−1x)u(x),

where ϕ ∈ C∞
c (Rn), ϕ(x) = 1, |x| ≤ 1 and ϕ(x) = 0, |x| ≥ 2.

uR ∈Wk,p(Rn), suppuR ⊆ B(0,2R) and

uR→ u in Wk,p(Rn) as R→ ∞.

Then approximate uR by

uR,ε = ηε ∗uR.
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Extensions
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Theorem
Assume U bounded, ∂U C1. Let V be bounded and open, s.t.
U ⊂⊂ V. Then ∃ bounded linear operator

E : W1,p(U)→W1,p(Rn)

such that for each u ∈W1,p(U):
1. Eu = u a.e. in U,
2. Eu has support in V.

Sketch of proof.
1. Reduce to the case when U =Rn

+ and u has compact support
in B(0,r)∩U using partition of unity and change of variables.

2. Extend u to ū ∈W1,p(Rn) with support in B(0,r) by setting

ū(x) =

{
u(x′,xn), xn > 0,
u(x′,−xn), xn < 0.
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Sobolev inequalities
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Gagliardo-Nirenberg-Sobolev inequality

Definition
For 1≤ p < n, the Sobolev conjugate of p is

p∗ :=
np

n−p
.

Theorem
Assume 1≤ p < n. There exists a constant C, depending only
on p and n, such that

‖u‖Lp∗(Rn) ≤ C‖Du‖Lp(Rn)

for all u ∈ C1
c(Rn)

Remark: p∗ is the only value of q such that an inequality of the
form ‖u‖Lq(Rn)≤C‖Du‖Lp(Rn) can hold. This can be seen by trying
uλ (x) = u(λx) (Evans).
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Proof
p = 1
p∗ = n/(n−1).
Consider the case n = 2 for simplicity. Then p∗ = 2

Full proof, extended Hölder inequality (Evans)

u(x) =
∫ x1

−∞

ux1(y1,x2)dy1 =
∫ x2

−∞

ux2(x1,y2)dy2

|u(x)| ≤
∫

∞

−∞

|Du(y1,x2)|dy1, |u(x)| ≤
∫

∞

−∞

|Du(x1,y2)|dy2.

|u(x)|2 ≤
(∫

∞

−∞

|Du(y1,x2)|dy1

) (∫
∞

−∞

|Du(x1,y2)|dy2

)
.
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|u(x)|2 ≤
(∫

∞

−∞

|Du(y1,x2)|dy1

) (∫
∞

−∞

|Du(x1,y2)|dy2

)
.

Integrate in x

‖u‖2
L2 =

∫
R2
|u(x)|2 dx≤

(∫
R2
|Du|dx

)2

= ‖Du‖2
L1 .

1 < p < n
Apply previous estimate to v := |u|γ , for some γ > 1.
Then(∫

Rn
|u|

γn
n−1 dx

) n−1
n

≤
∫
Rn
|D|u|γ |dx

= γ

∫
Rn
|u|γ−1|Du|dx

≤ γ

(∫
Rn
|u|

(γ−1)p
p−1 dx

) p−1
p
(∫

Rn
|Du|p dx

) 1
p
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) 1
p

Set
γ :=

p(n−1)
n−p

> 1

so that
γn

n−1
=

(γ−1)p
p−1

=
np

n−p
= p∗.

Then (∫
Rn
|u|p∗ dx

) 1
p∗

≤ C
(∫

Rn
|Du|p dx

) 1
p

.
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Theorem
Let U ⊂ Rn, bdd, open, ∂U C1. Assume 1≤ p < n and
u ∈W1,p(U). Then u ∈ Lp∗(U) with

‖u‖Lp∗ (U) ≤ C‖u‖W1,p(U),

where C is independent of u.

Proof.

I Let u ∈W1,p
c (Rn) be an extension of u.

I Let um ∈ C∞
c (Rn) with um→ u in W1,p(Rn).

I Previous thm⇒ um Cauchy in Lp∗ with

‖um‖Lp∗(Rn) ≤ C′‖Dum‖Lp(Rn) ≤ C′‖um‖W1,p(Rn) ≤ C‖um‖W1,p(U).

I Passing to the limit, u ∈ Lp∗ with

‖u‖Lp∗(Rn) ≤ C‖u‖W1,p(U),

thus ‖u‖Lp∗(U) ≤ C‖u‖W1,p(U).
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Poincaré’s inequality

Theorem
Assume U ⊂ Rn open, bounded. Suppose u ∈W1,p

0 (U),
1≤ p < n. Then

‖u‖Lq(U) ≤ C‖Du‖Lp(U)

for each q ∈ [1,p∗], with C independent of u.

Proof.

I ∃um ∈ C∞
c (U), with um→ u in W1,p(U).

I Extend each um by 0 to Rn and apply the GNS inequality.

‖um‖Lp∗ (U) ≤ C1‖Dum‖Lp(U).

I Let m→ ∞:
‖u‖Lp∗ (U) ≤ C1‖Du‖Lp(U).

I |U|< ∞⇒ ‖u‖Lq(U) ≤ C2‖u‖Lp∗ (U), 1≤ q≤ p∗. C = C1C2.
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In particular, for q = p, we get

‖u‖Lp(U) ≤ C‖Du‖Lp(U)

for u ∈W1,p
0 (U) (note that p < p∗ = pn/(n−p)).

Sometimes called Poincaré’s inequality.

It also holds if p≥ n, since then u ∈W1,p̃
0 for any p̃ < n and

‖u‖Lp̃∗ (U) ≤ C‖Du‖Lp̃(U) ≤ C′‖Du‖Lp(U)

and p≤ p̃∗ = p̃n/(n− p̃) if p̃ is suff. close to n, making

‖u‖Lp(U) ≤ C′′‖u‖Lp̃∗ (U)

Poincaré’s inequality implies that the norm ‖Du‖Lp(U) is equiva-
lent to ‖u‖W1,p(U) on W1,p

0 (U) if U is bounded.
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