## PDE Lecture

Weak derivatives, distributions, classification of PDE

March 24

## Motivation

1D wave equation:

$$
u_{t t}=u_{x x}
$$

on $\mathbb{R}$.

## Motivation

1D wave equation:

$$
u_{t t}=u_{x x}
$$

on $\mathbb{R}$.
General solution:

$$
u(x, t)=F(x+t)+G(x-t), \quad F, G \in C^{2}(\mathbb{R})
$$

## Motivation

1D wave equation:

$$
u_{t t}=u_{x x}
$$

on $\mathbb{R}$.
General solution:

$$
u(x, t)=F(x+t)+G(x-t), \quad F, G \in C^{2}(\mathbb{R})
$$

Still well-defined if $F, G \in C(\mathbb{R})$, or even $F, G \in L_{\text {loc }}^{1}(\mathbb{R})$.

## Motivation

1D wave equation:

$$
u_{t t}=u_{x x}
$$

on $\mathbb{R}$.
General solution:

$$
u(x, t)=F(x+t)+G(x-t), \quad F, G \in C^{2}(\mathbb{R})
$$

Still well-defined if $F, G \in C(\mathbb{R})$, or even $F, G \in L_{\text {loc }}^{1}(\mathbb{R})$.
(Evans, Exercise 2.5.23)

$$
\begin{cases}u_{t t}=u_{x x}, & 0<x<\pi, t>0, \\ u(0, x)=g(x), & 0<x<\pi, \\ u_{t}(0, x)=0, & 0<x<\pi, \\ u(t, 0)=u(t, \pi)=0, & t>0 .\end{cases}
$$

$$
\begin{cases}u_{t t}=u_{x x}, & 0<x<\pi, t>0 \\ u(0, x)=g(x), & 0<x<\pi \\ u_{t}(0, x)=0, & 0<x<\pi \\ u(t, 0)=u(t, \pi)=0, & t>0\end{cases}
$$

Sine series solution

$$
u(x, t)=\sum_{k=1}^{\infty} a_{k} \cos (k t) \sin (k x)
$$

where

$$
g(x)=\sum_{k=1}^{\infty} a_{k} \sin (k x)
$$

$$
\begin{cases}u_{t t}=u_{x x}, & 0<x<\pi, t>0 \\ u(0, x)=g(x), & 0<x<\pi \\ u_{t}(0, x)=0, & 0<x<\pi \\ u(t, 0)=u(t, \pi)=0, & t>0\end{cases}
$$

Sine series solution

$$
u(x, t)=\sum_{k=1}^{\infty} a_{k} \cos (k t) \sin (k x)
$$

where

$$
g(x)=\sum_{k=1}^{\infty} a_{k} \sin (k x)
$$

Defines a $C^{2}$ solution if $g \in C^{3}, g(0)=g^{\prime \prime}(0)=g(\pi)=g^{\prime \prime}(\pi)=0$.

$$
\begin{cases}u_{t t}=u_{x x}, & 0<x<\pi, t>0, \\ u(0, x)=g(x), & 0<x<\pi, \\ u_{t}(0, x)=0, & 0<x<\pi \\ u(t, 0)=u(t, \pi)=0, & t>0\end{cases}
$$

Sine series solution

$$
u(x, t)=\sum_{k=1}^{\infty} a_{k} \cos (k t) \sin (k x)
$$

where

$$
g(x)=\sum_{k=1}^{\infty} a_{k} \sin (k x)
$$

Defines a $C^{2}$ solution if $g \in C^{3}, g(0)=g^{\prime \prime}(0)=g(\pi)=g^{\prime \prime}(\pi)=0$. Still converges unif. to a cont. function if $\sum_{k}\left|a_{k}\right|<\infty$ (e.g. g piecewise $C^{1}$, Wahlén: Example 1.6 and Exercise 7)

## In what sense are these solutions?

## Weak derivatives

## (Evans, 5.2)

Integration by parts:

$$
\int_{U} u D^{\alpha} \varphi d x=(-1)^{|\alpha|} \int_{U} D^{\alpha} u \varphi d x, \quad u, \varphi \in C_{c}^{\infty}(U)
$$

where $U \subset \mathbb{R}^{n}$ open.
(Evans, 5.2)
Integration by parts:

$$
\int_{U} u D^{\alpha} \varphi d x=(-1)^{|\alpha|} \int_{U} D^{\alpha} u \varphi d x, \quad u, \varphi \in C_{c}^{\infty}(U)
$$

where $U \subset \mathbb{R}^{n}$ open.

## Definition

If $u \in L_{\text {loc }}^{1}(U)$, we say that $v \in L_{\text {loc }}^{1}(U)$ is the $\alpha$ th weak partial derivative of $u, v=D^{\alpha} u$, if

$$
\int_{U} u D^{\alpha} \varphi d x=(-1)^{|\alpha|} \int_{U} v \varphi d x, \quad \forall \varphi \in C_{c}^{\infty}(U)
$$

(Evans, 5.2)
Integration by parts:

$$
\int_{U} u D^{\alpha} \varphi d x=(-1)^{|\alpha|} \int_{U} D^{\alpha} u \varphi d x, \quad u, \varphi \in C_{c}^{\infty}(U)
$$

where $U \subset \mathbb{R}^{n}$ open.

## Definition

If $u \in L_{\text {loc }}^{1}(U)$, we say that $v \in L_{\text {loc }}^{1}(U)$ is the $\alpha$ th weak partial derivative of $u, v=D^{\alpha} u$, if

$$
\int_{U} u D^{\alpha} \varphi d x=(-1)^{|\alpha|} \int_{U} v \varphi d x, \quad \forall \varphi \in C_{c}^{\infty}(U)
$$

Remark
$v$ is unique if it exists: $\int_{U} v \varphi d x=0, \forall \varphi \in C_{c}^{\infty}(U) \Rightarrow v=0$ a.e.
(Lemma on p. 257 of Evans, Theorem 3.3 in Wahlén)

Example

$$
g(x)= \begin{cases}x, & 0 \leq x<\pi / 2 \\ \pi-x, & \pi / 2 \leq x \leq \pi\end{cases}
$$

Example

$$
\begin{gathered}
g(x)= \begin{cases}x, & 0 \leq x<\pi / 2 \\
\pi-x, & \pi / 2 \leq x \leq \pi\end{cases} \\
g^{\prime}(x)=?
\end{gathered}
$$

Example

$$
\begin{aligned}
& g(x)= \begin{cases}x, & 0 \leq x<\pi / 2 \\
\pi-x, & \pi / 2 \leq x \leq \pi\end{cases} \\
& g^{\prime}(x)= \begin{cases}1, & 0 \leq x<\pi / 2 \\
-1, & \pi / 2 \leq x \leq \pi\end{cases}
\end{aligned}
$$

## Example

$$
\begin{aligned}
& g(x)= \begin{cases}x, & 0 \leq x<\pi / 2 \\
\pi-x, & \pi / 2 \leq x \leq \pi\end{cases} \\
& g^{\prime}(x)= \begin{cases}1, & 0 \leq x<\pi / 2 \\
-1, & \pi / 2 \leq x \leq \pi\end{cases}
\end{aligned}
$$

Proof:

$$
\int_{0}^{\pi} g(x) \varphi^{\prime}(x) d x=\int_{0}^{\pi / 2} g(x) \varphi^{\prime}(x) d x+\int_{\pi / 2}^{\pi} g(x) \varphi^{\prime}(x) d x
$$

## Example

$$
\begin{aligned}
& g(x)= \begin{cases}x, & 0 \leq x<\pi / 2 \\
\pi-x, & \pi / 2 \leq x \leq \pi\end{cases} \\
& g^{\prime}(x)= \begin{cases}1, & 0 \leq x<\pi / 2 \\
-1, & \pi / 2 \leq x \leq \pi\end{cases}
\end{aligned}
$$

Proof:

$$
\begin{aligned}
\int_{0}^{\pi} g(x) \varphi^{\prime}(x) d x= & \int_{0}^{\pi / 2} g(x) \varphi^{\prime}(x) d x+\int_{\pi / 2}^{\pi} g(x) \varphi^{\prime}(x) d x \\
= & -\int_{0}^{\pi / 2} g^{\prime}(x) \varphi(x) d x-\int_{\pi / 2}^{\pi} g^{\prime}(x) \varphi(x) d x \\
& +[g(x) \varphi(x)]_{0}^{\pi / 2}+[g(x) \varphi(x)]_{\pi / 2}^{\pi}
\end{aligned}
$$

## Example

$$
\begin{aligned}
& g(x)= \begin{cases}x, & 0 \leq x<\pi / 2 \\
\pi-x, & \pi / 2 \leq x \leq \pi\end{cases} \\
& g^{\prime}(x)= \begin{cases}1, & 0 \leq x<\pi / 2 \\
-1, & \pi / 2 \leq x \leq \pi\end{cases}
\end{aligned}
$$

Proof:

$$
\begin{aligned}
\int_{0}^{\pi} g(x) \varphi^{\prime}(x) d x= & \int_{0}^{\pi / 2} g(x) \varphi^{\prime}(x) d x+\int_{\pi / 2}^{\pi} g(x) \varphi^{\prime}(x) d x \\
= & -\int_{0}^{\pi / 2} g^{\prime}(x) \varphi(x) d x-\int_{\pi / 2}^{\pi} g^{\prime}(x) \varphi(x) d x \\
& +[g(x) \varphi(x)]_{0}^{\pi / 2}+[g(x) \varphi(x)]_{\pi / 2}^{\pi} \\
= & -\int_{0}^{\pi} g^{\prime}(x) \varphi(x) d x
\end{aligned}
$$

## Example

Is $g^{\prime}$ weakly differentiable?

$$
\int_{0}^{\pi} g^{\prime}(x) \varphi^{\prime}(x) d x=\int_{0}^{\pi / 2} \varphi^{\prime}(x) d x-\int_{\pi / 2}^{\pi} \varphi^{\prime}(x) d x=2 \varphi(\pi / 2)
$$

## Example

Is $g^{\prime}$ weakly differentiable?

$$
\int_{0}^{\pi} g^{\prime}(x) \varphi^{\prime}(x) d x=\int_{0}^{\pi / 2} \varphi^{\prime}(x) d x-\int_{\pi / 2}^{\pi} \varphi^{\prime}(x) d x=2 \varphi(\pi / 2)
$$

Can't be written as

$$
-\int_{0}^{\pi} v(x) \varphi(x) d x
$$

for some $v \in L_{\text {loc }}^{1}(0, \pi)$.

## Example

Is $g^{\prime}$ weakly differentiable?

$$
\int_{0}^{\pi} g^{\prime}(x) \varphi^{\prime}(x) d x=\int_{0}^{\pi / 2} \varphi^{\prime}(x) d x-\int_{\pi / 2}^{\pi} \varphi^{\prime}(x) d x=2 \varphi(\pi / 2) .
$$

Can't be written as

$$
-\int_{0}^{\pi} v(x) \varphi(x) d x
$$

for some $v \in L_{\text {loc }}^{1}(0, \pi)$.
Take $\varphi_{m}(x)$ with, $0 \leq \varphi_{m}(x) \leq 1, \varphi_{m}(\pi / 2)=1$ and $\varphi_{m}(x) \rightarrow 0$, $x \neq \pi / 2$ as $m \rightarrow \infty$.
See also Evans, Example 2, p. 257.

Distributions

We try to expand the definition of derivatives so that $g^{\prime}$ is also differentiable.

We try to expand the definition of derivatives so that $g^{\prime}$ is also differentiable.

Note:
$-\varphi \mapsto \int_{U} u \varphi d x$,

- $\varphi \mapsto \int_{U} u D^{\alpha} \varphi d x$ and
- $\varphi \mapsto \varphi(a), a \in U$,
are all linear functionals on $C_{c}^{\infty}(U)$. Take $U=\mathbb{R}^{n}$ for simplicity.

We try to expand the definition of derivatives so that $g^{\prime}$ is also differentiable.

Note:

- $\varphi \mapsto \int_{U} u \varphi d x$,
- $\varphi \mapsto \int_{U} u D^{\alpha} \varphi d x$ and
- $\varphi \mapsto \varphi(a), a \in U$,
are all linear functionals on $C_{c}^{\infty}(U)$. Take $U=\mathbb{R}^{n}$ for simplicity.


## Definition

A distribution $\ell$ is a linear functional on $\mathscr{D}\left(\mathbb{R}^{n}\right):=C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$, which is continuous in the following sense. If $\left\{\varphi_{k}\right\} \subset \mathscr{D}\left(\mathbb{R}^{n}\right)$ satisfies

1. $\exists K \subset \mathbb{R}^{n}$, compact, s.t. $\operatorname{supp} \varphi_{k} \subseteq K \forall k$, and
2. $\exists \varphi \in \mathscr{D}\left(\mathbb{R}^{n}\right)$ s.t. $D^{\alpha} \varphi_{k} \rightarrow D^{\alpha} \varphi$ uniformly (on $K$ ) $\forall \alpha$,
then $\ell\left(\varphi_{k}\right) \rightarrow \ell(\varphi)$ as $k \rightarrow \infty$.
The vector space of distributions is denoted $\mathscr{D}^{\prime}\left(\mathbb{R}^{n}\right)$.

## Example

Let $u \in L_{\text {loc }}^{1}\left(\mathbb{R}^{n}\right)$. Then

$$
\ell_{u}(\varphi)=\langle u, \varphi\rangle:=\int_{\mathbb{R}^{n}} u(x) \varphi(x) d x, \quad \varphi \in \mathscr{D}\left(\mathbb{R}^{n}\right)
$$

defines a distribution.

## Example

Let $u \in L_{\text {loc }}^{1}\left(\mathbb{R}^{n}\right)$. Then

$$
\ell_{u}(\varphi)=\langle u, \varphi\rangle:=\int_{\mathbb{R}^{n}} u(x) \varphi(x) d x, \quad \varphi \in \mathscr{D}\left(\mathbb{R}^{n}\right)
$$

defines a distribution.
Continuity:

$$
\left|\ell_{u}(\varphi)\right| \leq\|u\|_{L^{1}(K)}\|\varphi\|_{L^{\infty}(K)}
$$

if $\operatorname{supp} \varphi \subseteq K$.

## Example

Let $u \in L_{\text {loc }}^{1}\left(\mathbb{R}^{n}\right)$. Then

$$
\ell_{u}(\varphi)=\langle u, \varphi\rangle:=\int_{\mathbb{R}^{n}} u(x) \varphi(x) d x, \quad \varphi \in \mathscr{D}\left(\mathbb{R}^{n}\right)
$$

defines a distribution.
Continuity:

$$
\left|\ell_{u}(\varphi)\right| \leq\|u\|_{L^{1}(K)}\|\varphi\|_{L^{\infty}(K)}
$$

if $\operatorname{supp} \varphi \subseteq K$.
We identify the function $u$ with the distribution $\ell_{u}$.

## Example

Let $u \in L_{\text {loc }}^{1}\left(\mathbb{R}^{n}\right)$. Then

$$
\ell_{u}(\varphi)=\langle u, \varphi\rangle:=\int_{\mathbb{R}^{n}} u(x) \varphi(x) d x, \quad \varphi \in \mathscr{D}\left(\mathbb{R}^{n}\right)
$$

defines a distribution.
Continuity:

$$
\left|\ell_{u}(\varphi)\right| \leq\|u\|_{L^{1}(K)}\|\varphi\|_{L^{\infty}(K)}
$$

if $\operatorname{supp} \varphi \subseteq K$.
We identify the function $u$ with the distribution $\ell_{u}$.
We write $\langle u, \varphi\rangle$ for $u(\varphi)$ even when $u \in \mathscr{D}^{\prime}\left(\mathbb{R}^{n}\right)$

## Example

Let $a \in \mathbb{R}^{n}$. Define the Dirac delta distribution at $a$ by

$$
\delta_{a}(\varphi)=\left\langle\delta_{a}, \varphi\right\rangle:=\varphi(a)
$$

Continuity: $\left|\delta_{a}(\varphi)\right| \leq\|\varphi\|_{L^{\infty}}$

## Operations on distributions

For $h \in \mathbb{R}^{n}$, let

$$
\tau_{h}: \mathscr{D}\left(\mathbb{R}^{n}\right) \rightarrow \mathscr{D}\left(\mathbb{R}^{n}\right), \quad\left(\tau_{h} \varphi\right)(x)=\varphi(x-h) .
$$

## Operations on distributions

For $h \in \mathbb{R}^{n}$, let

$$
\tau_{h}: \mathscr{D}\left(\mathbb{R}^{n}\right) \rightarrow \mathscr{D}\left(\mathbb{R}^{n}\right), \quad\left(\tau_{h} \varphi\right)(x)=\varphi(x-h)
$$

If $\varphi, \psi \in \mathscr{D}\left(\mathbb{R}^{n}\right)$,

$$
\left\langle\tau_{h} \varphi, \psi\right\rangle=\int \varphi(x-h) \psi(x) d x
$$

## Operations on distributions

For $h \in \mathbb{R}^{n}$, let

$$
\tau_{h}: \mathscr{D}\left(\mathbb{R}^{n}\right) \rightarrow \mathscr{D}\left(\mathbb{R}^{n}\right), \quad\left(\tau_{h} \varphi\right)(x)=\varphi(x-h)
$$

If $\varphi, \psi \in \mathscr{D}\left(\mathbb{R}^{n}\right)$,

$$
\begin{aligned}
\left\langle\tau_{h} \varphi, \psi\right\rangle & =\int \varphi(x-h) \psi(x) d x \\
& =\int \varphi(x) \psi(x+h) d x
\end{aligned}
$$

## Operations on distributions

For $h \in \mathbb{R}^{n}$, let

$$
\tau_{h}: \mathscr{D}\left(\mathbb{R}^{n}\right) \rightarrow \mathscr{D}\left(\mathbb{R}^{n}\right), \quad\left(\tau_{h} \varphi\right)(x)=\varphi(x-h)
$$

If $\varphi, \psi \in \mathscr{D}\left(\mathbb{R}^{n}\right)$,

$$
\begin{aligned}
\left\langle\tau_{h} \varphi, \psi\right\rangle & =\int \varphi(x-h) \psi(x) d x \\
& =\int \varphi(x) \psi(x+h) d x \\
& =\left\langle\varphi, \tau_{-h} \psi\right\rangle
\end{aligned}
$$

## Operations on distributions

For $h \in \mathbb{R}^{n}$, let

$$
\tau_{h}: \mathscr{D}\left(\mathbb{R}^{n}\right) \rightarrow \mathscr{D}\left(\mathbb{R}^{n}\right), \quad\left(\tau_{h} \varphi\right)(x)=\varphi(x-h)
$$

If $\varphi, \psi \in \mathscr{D}\left(\mathbb{R}^{n}\right)$,

$$
\begin{aligned}
\left\langle\tau_{h} \varphi, \psi\right\rangle & =\int \varphi(x-h) \psi(x) d x \\
& =\int \varphi(x) \psi(x+h) d x \\
& =\left\langle\varphi, \tau_{-h} \psi\right\rangle
\end{aligned}
$$

Define

$$
\tau_{h}: \mathscr{D}^{\prime}\left(\mathbb{R}^{n}\right) \rightarrow \mathscr{D}^{\prime}\left(\mathbb{R}^{n}\right), \quad\left\langle\tau_{h} u, \varphi\right\rangle=\left\langle u, \tau_{-h} \varphi\right\rangle .
$$

Generally, assume that the linear operator

$$
L: \mathscr{D}\left(\mathbb{R}^{n}\right) \rightarrow \mathscr{D}\left(\mathbb{R}^{n}\right)
$$

has a continuous transpose

$$
L^{T}: \mathscr{D}\left(\mathbb{R}^{n}\right) \rightarrow \mathscr{D}\left(\mathbb{R}^{n}\right)
$$

such that

$$
\langle L \varphi, \psi\rangle=\left\langle\varphi, L^{T} \psi\right\rangle .
$$

Generally, assume that the linear operator

$$
L: \mathscr{D}\left(\mathbb{R}^{n}\right) \rightarrow \mathscr{D}\left(\mathbb{R}^{n}\right)
$$

has a continuous transpose

$$
L^{T}: \mathscr{D}\left(\mathbb{R}^{n}\right) \rightarrow \mathscr{D}\left(\mathbb{R}^{n}\right)
$$

such that

$$
\langle L \varphi, \psi\rangle=\left\langle\varphi, L^{T} \psi\right\rangle
$$

Define

$$
L: \mathscr{D}^{\prime}\left(\mathbb{R}^{n}\right) \rightarrow \mathscr{D}^{\prime}\left(\mathbb{R}^{n}\right), \quad\langle L u, \varphi\rangle=\left\langle u, L^{T} \varphi\right\rangle
$$

## Examples

- $\left(\tau_{h}\right)^{T}=\tau_{-h}$


## Examples

- $\left(\tau_{h}\right)^{T}=\tau_{-h}$
- $\left(\partial_{x_{j}}\right)^{T}=-\partial_{x_{j}}$


## Examples

- $\left(\tau_{h}\right)^{T}=\tau_{-h}$
- $\left(\partial_{x_{j}}\right)^{T}=-\partial_{x_{j}}$
- $\left(D^{\alpha}\right)^{T}=(-1)^{|\alpha|} D^{\alpha}$


## Examples

- $\left(\tau_{h}\right)^{T}=\tau_{-h}$
- $\left(\partial_{x_{j}}\right)^{T}=-\partial_{x_{j}}$
- $\left(D^{\alpha}\right)^{T}=(-1)^{|\alpha|} D^{\alpha}$
- $\left(M_{\psi}\right)^{T}=M_{\psi}\left(\right.$ where $\left.M_{\psi} \varphi=\psi \varphi\right)$


## Examples

- $\left(\tau_{h}\right)^{T}=\tau_{-h}$
- $\left(\partial_{x_{j}}\right)^{T}=-\partial_{x_{j}}$
- $\left(D^{\alpha}\right)^{T}=(-1)^{|\alpha|} D^{\alpha}$
- $\left(M_{\psi}\right)^{T}=M_{\psi}\left(\right.$ where $\left.M_{\psi} \varphi=\psi \varphi\right)$


## Definition

The distributional derivative of $u \in \mathscr{D}^{\prime}\left(\mathbb{R}^{n}\right)$ is defined by

$$
\left\langle D^{\alpha} u, \varphi\right\rangle:=\left\langle u,(-1)^{|\alpha|} D^{\alpha} \varphi\right\rangle .
$$

Remark: All distributions are infinitely differentiable in this sense.

## Example

Recall the function

$$
g^{\prime}(x)= \begin{cases}1, & 0 \leq x<\pi / 2 \\ -1, & \pi / 2 \leq x \leq \pi\end{cases}
$$

from before, which was not weakly differentiable:

$$
\int_{0}^{\pi} g^{\prime}(x) \varphi^{\prime}(x) d x=\int_{0}^{\pi / 2} \varphi^{\prime}(x) d x-\int_{\pi / 2}^{\pi} \varphi^{\prime}(x) d x=2 \varphi(\pi / 2) .
$$

Question: What is the weak derivative of $g^{\prime}$ ?

## Example

Recall the function

$$
g^{\prime}(x)= \begin{cases}1, & 0 \leq x<\pi / 2 \\ -1, & \pi / 2 \leq x \leq \pi\end{cases}
$$

from before, which was not weakly differentiable:

$$
\int_{0}^{\pi} g^{\prime}(x) \varphi^{\prime}(x) d x=\int_{0}^{\pi / 2} \varphi^{\prime}(x) d x-\int_{\pi / 2}^{\pi} \varphi^{\prime}(x) d x=2 \varphi(\pi / 2) .
$$

Question: What is the weak derivative of $g^{\prime}$ ?
Answer: $g^{\prime \prime}=-2 \delta_{\pi / 2}$, since

$$
\left\langle g^{\prime \prime}, \varphi\right\rangle=-\left\langle g^{\prime}, \varphi^{\prime}\right\rangle=-\int_{0}^{\pi} g^{\prime}(x) \varphi^{\prime}(x) d x=-2\left\langle\delta_{\pi / 2}, \varphi\right\rangle .
$$

## Example

Recall the function

$$
g^{\prime}(x)= \begin{cases}1, & 0 \leq x<\pi / 2 \\ -1, & \pi / 2 \leq x \leq \pi\end{cases}
$$

from before, which was not weakly differentiable:

$$
\int_{0}^{\pi} g^{\prime}(x) \varphi^{\prime}(x) d x=\int_{0}^{\pi / 2} \varphi^{\prime}(x) d x-\int_{\pi / 2}^{\pi} \varphi^{\prime}(x) d x=2 \varphi(\pi / 2) .
$$

Question: What is the weak derivative of $g^{\prime}$ ?
Answer: $g^{\prime \prime}=-2 \delta_{\pi / 2}$, since

$$
\left\langle g^{\prime \prime}, \varphi\right\rangle=-\left\langle g^{\prime}, \varphi^{\prime}\right\rangle=-\int_{0}^{\pi} g^{\prime}(x) \varphi^{\prime}(x) d x=-2\left\langle\delta_{\pi / 2}, \varphi\right\rangle .
$$

Question: Can we see this graphically?

# What is the distributional derivative of the function $u$ in Example 2 on p. 257 in Evans? 

# What is the distributional derivative of the function $u$ in Example 2 on p. 257 in Evans? 

$$
u(x)= \begin{cases}x & \text { if } 0<x \leq 1 \\ 2 & \text { if } 1<x<2\end{cases}
$$

## Convolution

Given $\varphi \in \mathscr{D}\left(\mathbb{R}^{n}\right)$,

$$
u \mapsto \varphi * u
$$

is a continuous linear operator on $\mathscr{D}\left(\mathbb{R}^{n}\right)$. Transpose?

## Convolution

Given $\varphi \in \mathscr{D}\left(\mathbb{R}^{n}\right)$,

$$
u \mapsto \varphi * u
$$

is a continuous linear operator on $\mathscr{D}\left(\mathbb{R}^{n}\right)$. Transpose?

$$
\langle\varphi * u, \psi\rangle=\int\left(\int \varphi(x-y) u(y) d y\right) \psi(x) d x
$$

## Convolution

Given $\varphi \in \mathscr{D}\left(\mathbb{R}^{n}\right)$,

$$
u \mapsto \varphi * u
$$

is a continuous linear operator on $\mathscr{D}\left(\mathbb{R}^{n}\right)$. Transpose?

$$
\begin{aligned}
\langle\varphi * u, \psi\rangle & =\int\left(\int \varphi(x-y) u(y) d y\right) \psi(x) d x \\
& =\int\left(\int \varphi(x-y) \psi(x) d x\right) \varphi(y) d y
\end{aligned}
$$

## Convolution

Given $\varphi \in \mathscr{D}\left(\mathbb{R}^{n}\right)$,

$$
u \mapsto \varphi * u
$$

is a continuous linear operator on $\mathscr{D}\left(\mathbb{R}^{n}\right)$. Transpose?

$$
\begin{aligned}
\langle\varphi * u, \psi\rangle & =\int\left(\int \varphi(x-y) u(y) d y\right) \psi(x) d x \\
& =\int\left(\int \varphi(x-y) \psi(x) d x\right) \varphi(y) d y \\
& =\langle u, \mathscr{R}(\varphi) * \psi\rangle
\end{aligned}
$$

where $\mathscr{R}(\varphi)(x)=\varphi(-x)$.

## Convolution

Given $\varphi \in \mathscr{D}\left(\mathbb{R}^{n}\right)$,

$$
u \mapsto \varphi * u
$$

is a continuous linear operator on $\mathscr{D}\left(\mathbb{R}^{n}\right)$. Transpose?

$$
\begin{aligned}
\langle\varphi * u, \psi\rangle & =\int\left(\int \varphi(x-y) u(y) d y\right) \psi(x) d x \\
& =\int\left(\int \varphi(x-y) \psi(x) d x\right) \varphi(y) d y \\
& =\langle u, \mathscr{R}(\varphi) * \psi\rangle
\end{aligned}
$$

where $\mathscr{R}(\varphi)(x)=\varphi(-x)$.
Thus we define

$$
\langle\varphi * u, \psi\rangle=\langle u, \mathscr{R}(\varphi) * \psi\rangle,
$$

when $\varphi, \psi \in \mathscr{D}\left(\mathbb{R}^{n}\right)$ and $u \in \mathscr{D}^{\prime}\left(\mathbb{R}^{n}\right)$.

There is also another way to define convolution,

$$
\begin{aligned}
& (\varphi * u)(x)=\langle u, \varphi(x-\cdot)\rangle, \\
& u \in \mathscr{D}^{\prime}\left(\mathbb{R}^{n}\right), \varphi \in \mathscr{D}\left(\mathbb{R}^{n}\right) .
\end{aligned}
$$

There is also another way to define convolution,

$$
\begin{aligned}
& (\varphi * u)(x)=\langle u, \varphi(x-\cdot)\rangle, \\
& u \in \mathscr{D}^{\prime}\left(\mathbb{R}^{n}\right), \varphi \in \mathscr{D}\left(\mathbb{R}^{n}\right) .
\end{aligned}
$$

This defines a $C^{\infty}$ function of $x$.

There is also another way to define convolution,

$$
(\varphi * u)(x)=\langle u, \varphi(x-\cdot)\rangle,
$$

$u \in \mathscr{D}^{\prime}\left(\mathbb{R}^{n}\right), \varphi \in \mathscr{D}\left(\mathbb{R}^{n}\right)$.
This defines a $C^{\infty}$ function of $x$.
Wahlén, Lemma 3.27: These definitions agree. Moroever,

$$
D^{\alpha}(\varphi * u)=\left(D^{\alpha} \varphi\right) * u=\varphi *\left(D^{\alpha} u\right)
$$

There is also another way to define convolution,

$$
(\varphi * u)(x)=\langle u, \varphi(x-\cdot)\rangle,
$$

$u \in \mathscr{D}^{\prime}\left(\mathbb{R}^{n}\right), \varphi \in \mathscr{D}\left(\mathbb{R}^{n}\right)$.
This defines a $C^{\infty}$ function of $x$.
Wahlén, Lemma 3.27: These definitions agree. Moroever,

$$
D^{\alpha}(\varphi * u)=\left(D^{\alpha} \varphi\right) * u=\varphi *\left(D^{\alpha} u\right) .
$$

## Example

$\left(\varphi * \delta_{0}\right)(x)=\left\langle\delta_{0}, \varphi(x-\cdot)\right\rangle=\varphi(x)$.

## Fourier transform and tempered distributions

$$
\int_{\mathbb{R}^{n}} \hat{u} v d x=\int_{\mathbb{R}^{n}} u \hat{v} d x \quad \forall u, v \in \mathscr{S}\left(\mathbb{R}^{n}\right)
$$

so $\mathscr{F}^{T}=\mathscr{F}$.

## Fourier transform and tempered distributions

$$
\int_{\mathbb{R}^{n}} \hat{u} v d x=\int_{\mathbb{R}^{n}} u \hat{v} d x \quad \forall u, v \in \mathscr{S}\left(\mathbb{R}^{n}\right)
$$

so $\mathscr{F}^{T}=\mathscr{F}$.
Problem: $\mathscr{F}\left(\mathscr{D}\left(\mathbb{R}^{n}\right)\right) \nsubseteq \mathscr{D}\left(\mathbb{R}^{n}\right)$.

## Fourier transform and tempered distributions

$$
\int_{\mathbb{R}^{n}} \hat{u} v d x=\int_{\mathbb{R}^{n}} u \hat{v} d x \quad \forall u, v \in \mathscr{S}\left(\mathbb{R}^{n}\right)
$$

so $\mathscr{F}^{T}=\mathscr{F}$.
Problem: $\mathscr{F}\left(\mathscr{D}\left(\mathbb{R}^{n}\right)\right) \nsubseteq \mathscr{D}\left(\mathbb{R}^{n}\right)$.
Definition
A continuous linear functional on $\mathscr{S}\left(\mathbb{R}^{n}\right)$ is called a tempered distribution.
The space of tempered distributions is denoted $\mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right)$.

## Fourier transform and tempered distributions

$$
\int_{\mathbb{R}^{n}} \hat{u} v d x=\int_{\mathbb{R}^{n}} u \hat{v} d x \quad \forall u, v \in \mathscr{S}\left(\mathbb{R}^{n}\right)
$$

so $\mathscr{F}^{T}=\mathscr{F}$.
Problem: $\mathscr{F}\left(\mathscr{D}\left(\mathbb{R}^{n}\right)\right) \nsubseteq \mathscr{D}\left(\mathbb{R}^{n}\right)$.
Definition
A continuous linear functional on $\mathscr{S}\left(\mathbb{R}^{n}\right)$ is called a tempered distribution.
The space of tempered distributions is denoted $\mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right)$.
Remark: $\mathscr{D} \subset \mathscr{S} \Rightarrow \mathscr{S}^{\prime} \subset \mathscr{D}^{\prime}$.

## Fourier transform and tempered distributions

$$
\int_{\mathbb{R}^{n}} \hat{u} v d x=\int_{\mathbb{R}^{n}} u \hat{v} d x \quad \forall u, v \in \mathscr{S}\left(\mathbb{R}^{n}\right)
$$

so $\mathscr{F}^{T}=\mathscr{F}$.
Problem: $\mathscr{F}\left(\mathscr{D}\left(\mathbb{R}^{n}\right)\right) \nsubseteq \mathscr{D}\left(\mathbb{R}^{n}\right)$.
Definition
A continuous linear functional on $\mathscr{S}\left(\mathbb{R}^{n}\right)$ is called a tempered distribution.
The space of tempered distributions is denoted $\mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right)$.
Remark: $\mathscr{D} \subset \mathscr{S} \Rightarrow \mathscr{S}^{\prime} \subset \mathscr{D}^{\prime}$.
Examples

- $\delta_{a} \in \mathscr{S}^{\prime}$


## Fourier transform and tempered distributions

$$
\int_{\mathbb{R}^{n}} \hat{u} v d x=\int_{\mathbb{R}^{n}} u \hat{v} d x \quad \forall u, v \in \mathscr{S}\left(\mathbb{R}^{n}\right)
$$

so $\mathscr{F}^{T}=\mathscr{F}$.
Problem: $\mathscr{F}\left(\mathscr{D}\left(\mathbb{R}^{n}\right)\right) \nsubseteq \mathscr{D}\left(\mathbb{R}^{n}\right)$.

## Definition

A continuous linear functional on $\mathscr{S}\left(\mathbb{R}^{n}\right)$ is called a tempered distribution.
The space of tempered distributions is denoted $\mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right)$.
Remark: $\mathscr{D} \subset \mathscr{S} \Rightarrow \mathscr{S}^{\prime} \subset \mathscr{D}^{\prime}$.
Examples

- $\delta_{a} \in \mathscr{S}^{\prime}$
- $f \in L_{\text {loc }}^{1}$ and $(1+|x|)^{-N} f \in L^{1}$ for some $N \Rightarrow f \in \mathscr{S}^{\prime}$.


## Fourier transform and tempered distributions

$$
\int_{\mathbb{R}^{n}} \hat{v} d x=\int_{\mathbb{R}^{n}} u \hat{v} d x \quad \forall u, v \in \mathscr{S}\left(\mathbb{R}^{n}\right)
$$

so $\mathscr{F}^{T}=\mathscr{F}$.
Problem: $\mathscr{F}\left(\mathscr{D}\left(\mathbb{R}^{n}\right)\right) \nsubseteq \mathscr{D}\left(\mathbb{R}^{n}\right)$.

## Definition

A continuous linear functional on $\mathscr{S}\left(\mathbb{R}^{n}\right)$ is called a tempered distribution.
The space of tempered distributions is denoted $\mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right)$.
Remark: $\mathscr{D} \subset \mathscr{S} \Rightarrow \mathscr{S}^{\prime} \subset \mathscr{D}^{\prime}$.
Examples

- $\delta_{a} \in \mathscr{S}^{\prime}$
- $f \in L_{\text {loc }}^{1}$ and $(1+|x|)^{-N} f \in L^{1}$ for some $N \Rightarrow f \in \mathscr{S}^{\prime}$.
$-e^{|x|} \notin \mathscr{S}^{\prime}$.


## Definition

$\mathscr{F}, \mathscr{F}^{-1}: \mathscr{S}^{\prime} \rightarrow \mathscr{S}^{\prime}$ are defined by

$$
\langle\mathscr{F}(u), \varphi\rangle=\langle u, \mathscr{F}(\varphi)\rangle, \quad\left\langle\mathscr{F}^{-1}(u), \varphi\right\rangle=\left\langle u, \mathscr{F}^{-1}(\varphi)\right\rangle,
$$

## Definition

$\mathscr{F}, \mathscr{F}^{-1}: \mathscr{S}^{\prime} \rightarrow \mathscr{S}^{\prime}$ are defined by

$$
\langle\mathscr{F}(u), \varphi\rangle=\langle u, \mathscr{F}(\varphi)\rangle, \quad\left\langle\mathscr{F}^{-1}(u), \varphi\right\rangle=\left\langle u, \mathscr{F}^{-1}(\varphi)\right\rangle,
$$

Example

$$
\left\langle\hat{\delta}_{0}, \varphi\right\rangle=\left\langle\delta_{0}, \hat{\varphi}\right\rangle
$$

## Definition

$\mathscr{F}, \mathscr{F}^{-1}: \mathscr{S}^{\prime} \rightarrow \mathscr{S}^{\prime}$ are defined by

$$
\langle\mathscr{F}(u), \varphi\rangle=\langle u, \mathscr{F}(\varphi)\rangle, \quad\left\langle\mathscr{F}^{-1}(u), \varphi\right\rangle=\left\langle u, \mathscr{F}^{-1}(\varphi)\right\rangle,
$$

Example

$$
\begin{aligned}
\left\langle\hat{\delta}_{0}, \varphi\right\rangle & =\left\langle\delta_{0}, \hat{\varphi}\right\rangle \\
& =\hat{\varphi}(0)
\end{aligned}
$$

## Definition

$\mathscr{F}, \mathscr{F}^{-1}: \mathscr{S}^{\prime} \rightarrow \mathscr{S}^{\prime}$ are defined by

$$
\langle\mathscr{F}(u), \varphi\rangle=\langle u, \mathscr{F}(\varphi)\rangle, \quad\left\langle\mathscr{F}^{-1}(u), \varphi\right\rangle=\left\langle u, \mathscr{F}^{-1}(\varphi)\right\rangle
$$

Example

$$
\begin{aligned}
\left\langle\hat{\delta}_{0}, \varphi\right\rangle & =\left\langle\delta_{0}, \hat{\varphi}\right\rangle \\
& =\hat{\varphi}(0) \\
& =\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} \varphi(x) d x
\end{aligned}
$$

## Definition

$\mathscr{F}, \mathscr{F}^{-1}: \mathscr{S}^{\prime} \rightarrow \mathscr{S}^{\prime}$ are defined by

$$
\langle\mathscr{F}(u), \varphi\rangle=\langle u, \mathscr{F}(\varphi)\rangle, \quad\left\langle\mathscr{F}^{-1}(u), \varphi\right\rangle=\left\langle u, \mathscr{F}^{-1}(\varphi)\right\rangle
$$

Example

$$
\begin{aligned}
\left\langle\hat{\delta}_{0}, \varphi\right\rangle & =\left\langle\delta_{0}, \hat{\varphi}\right\rangle \\
& =\hat{\varphi}(0) \\
& =\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} \varphi(x) d x \\
& =\left\langle(2 \pi)^{-n / 2}, \varphi\right\rangle .
\end{aligned}
$$

## Definition

$\mathscr{F}, \mathscr{F}^{-1}: \mathscr{S}^{\prime} \rightarrow \mathscr{S}^{\prime}$ are defined by

$$
\langle\mathscr{F}(u), \varphi\rangle=\langle u, \mathscr{F}(\varphi)\rangle, \quad\left\langle\mathscr{F}^{-1}(u), \varphi\right\rangle=\left\langle u, \mathscr{F}^{-1}(\varphi)\right\rangle
$$

## Example

$$
\begin{aligned}
\left\langle\hat{\delta}_{0}, \varphi\right\rangle & =\left\langle\delta_{0}, \hat{\varphi}\right\rangle \\
& =\hat{\varphi}(0) \\
& =\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} \varphi(x) d x \\
& =\left\langle(2 \pi)^{-n / 2}, \varphi\right\rangle .
\end{aligned}
$$

So

$$
\hat{\delta}_{0}=\frac{1}{(2 \pi)^{n / 2}} .
$$

## Theorem

$\mathscr{F} \mathscr{F}^{-1}=\mathscr{F}^{-1} \mathscr{F}=\operatorname{Id}$ on $\mathscr{S}^{\prime}$.

## Theorem

$\mathscr{F} \mathscr{F}^{-1}=\mathscr{F}^{-1} \mathscr{F}=\operatorname{Id}$ on $\mathscr{S}^{\prime}$.
Proof.
$\left\langle\mathscr{F} \mathscr{F}^{-1}(u), \varphi\right\rangle=\left\langle u, \mathscr{F}_{\mathscr{F}}{ }^{-1}(\varphi)\right\rangle=\langle u, \varphi\rangle$.

Weak and distributional solutions to PDE

## Definition

Given a linear partial differential operator with constant coefficients

$$
P(D)=\sum_{|\alpha| \leq m} a_{\alpha} D^{\alpha}, \quad a_{\alpha} \in \mathbb{C}
$$

and $f \in \mathscr{D}^{\prime}\left(\mathbb{R}^{n}\right)$, we say that $u \in \mathscr{D}^{\prime}\left(\mathbb{R}^{n}\right)$ solves the equation

$$
P(D) u=f
$$

in the sense of distributions if this holds as an equality in $\mathscr{D}^{\prime}\left(\mathbb{R}^{n}\right)$, that is,

$$
\left\langle u, P(D)^{T} \varphi\right\rangle=\langle f, \varphi\rangle, \quad \forall \varphi \in \mathscr{D}\left(\mathbb{R}^{n}\right),
$$

where

$$
P(D)^{T}=P(-D)=\sum_{|\alpha| \leq m} a_{\alpha}(-1)^{|\alpha|} D^{\alpha} .
$$

## Definition

Given a linear partial differential operator with constant coefficients

$$
P(D)=\sum_{|\alpha| \leq m} a_{\alpha} D^{\alpha}, \quad a_{\alpha} \in \mathbb{C}
$$

and $f \in \mathscr{D}^{\prime}\left(\mathbb{R}^{n}\right)$, we say that $u \in \mathscr{D}^{\prime}\left(\mathbb{R}^{n}\right)$ solves the equation

$$
P(D) u=f
$$

in the sense of distributions if this holds as an equality in $\mathscr{D}^{\prime}\left(\mathbb{R}^{n}\right)$, that is,

$$
\left\langle u, P(D)^{T} \varphi\right\rangle=\langle f, \varphi\rangle, \quad \forall \varphi \in \mathscr{D}\left(\mathbb{R}^{n}\right),
$$

where

$$
P(D)^{T}=P(-D)=\sum_{|\alpha| \leq m} a_{\alpha}(-1)^{|\alpha|} D^{\alpha} .
$$

If $f$ and $u$ are both functions, we call $u$ a weak solution.

## Example

$$
H(x)= \begin{cases}1, & x \geq 0 \\ 0, & x<0\end{cases}
$$

is a distributional solution of

$$
u^{\prime}=\delta_{0}
$$

## Example

Let $G \in L_{\text {loc }}^{1}(\mathbb{R})$. Then $u(x, t)=G(x-t)$ is a distributional solution of

$$
u_{t}+u_{x}=0
$$

since if $\varphi \in \mathscr{D}\left(\mathbb{R}^{2}\right)$, then

$$
\left\langle u_{t}+u_{x}, \varphi\right\rangle=\left\langle u,-\varphi_{t}-\varphi_{x}\right\rangle
$$

## Example

Let $G \in L_{\text {loc }}^{1}(\mathbb{R})$. Then $u(x, t)=G(x-t)$ is a distributional solution of

$$
u_{t}+u_{x}=0
$$

since if $\varphi \in \mathscr{D}\left(\mathbb{R}^{2}\right)$, then

$$
\begin{aligned}
\left\langle u_{t}+u_{x}, \varphi\right\rangle & =\left\langle u,-\varphi_{t}-\varphi_{x}\right\rangle \\
& =-\int_{\mathbb{R}^{2}} G(x-t)\left(\varphi_{t}(x, t)+\varphi_{x}(x, t)\right) d x d t
\end{aligned}
$$

## Example

Let $G \in L_{\text {loc }}^{1}(\mathbb{R})$. Then $u(x, t)=G(x-t)$ is a distributional solution of

$$
u_{t}+u_{x}=0
$$

since if $\varphi \in \mathscr{D}\left(\mathbb{R}^{2}\right)$, then

$$
\begin{aligned}
\left\langle u_{t}+u_{x}, \varphi\right\rangle & =\left\langle u,-\varphi_{t}-\varphi_{x}\right\rangle \\
& =-\int_{\mathbb{R}^{2}} G(x-t)\left(\varphi_{t}(x, t)+\varphi_{x}(x, t)\right) d x d t \\
& =\left[\begin{array}{cc}
u=x-t, & v=t \\
\psi(u, v)=\varphi(u+v, v), & \psi_{v}=\varphi_{x}+\varphi_{t}
\end{array}\right]
\end{aligned}
$$

## Example

Let $G \in L_{\text {loc }}^{1}(\mathbb{R})$. Then $u(x, t)=G(x-t)$ is a distributional solution of

$$
u_{t}+u_{x}=0
$$

since if $\varphi \in \mathscr{D}\left(\mathbb{R}^{2}\right)$, then

$$
\begin{aligned}
\left\langle u_{t}+u_{x}, \varphi\right\rangle & =\left\langle u,-\varphi_{t}-\varphi_{x}\right\rangle \\
& =-\int_{\mathbb{R}^{2}} G(x-t)\left(\varphi_{t}(x, t)+\varphi_{x}(x, t)\right) d x d t \\
& =\left[\begin{array}{cc}
u=x-t, & v=t \\
\psi(u, v)=\varphi(u+v, v), \quad \psi_{v}=\varphi_{x}+\varphi_{t}
\end{array}\right] \\
& =-\int_{\mathbb{R}} G(u) \underbrace{\left(\int_{\mathbb{R}} \psi_{v}(u, v) d v\right)}_{=0} d u
\end{aligned}
$$

## Example

Let $G \in L_{\text {loc }}^{1}(\mathbb{R})$. Then $u(x, t)=G(x-t)$ is a distributional solution of

$$
u_{t}+u_{x}=0
$$

since if $\varphi \in \mathscr{D}\left(\mathbb{R}^{2}\right)$, then

$$
\begin{aligned}
\left\langle u_{t}+u_{x}, \varphi\right\rangle & =\left\langle u,-\varphi_{t}-\varphi_{x}\right\rangle \\
& =-\int_{\mathbb{R}^{2}} G(x-t)\left(\varphi_{t}(x, t)+\varphi_{x}(x, t)\right) d x d t \\
& =\left[\begin{array}{cc}
u=x-t, & v=t \\
\psi(u, v)=\varphi(u+v, v), \quad \psi_{v}=\varphi_{x}+\varphi_{t}
\end{array}\right] \\
& =-\int_{\mathbb{R}} G(u) \underbrace{\left(\int_{\mathbb{R}} \psi_{v}(u, v) d v\right)}_{=0} d u \\
& =0
\end{aligned}
$$

## Fundamental solutions

Definition
Given a linear partial differential operator

$$
P(D)=\sum_{|\alpha| \leq m} a_{\alpha} D^{\alpha}, \quad a_{\alpha} \in \mathbb{C}
$$

we say that $\Phi \in \mathscr{D}^{\prime}\left(\mathbb{R}^{n}\right)$ is a fundamental solution for $P(D)$ if

$$
P(D) \Phi=\delta_{0} .
$$

## Fundamental solutions

Definition
Given a linear partial differential operator

$$
P(D)=\sum_{|\alpha| \leq m} a_{\alpha} D^{\alpha}, \quad a_{\alpha} \in \mathbb{C}
$$

we say that $\Phi \in \mathscr{D}^{\prime}\left(\mathbb{R}^{n}\right)$ is a fundamental solution for $P(D)$ if

$$
P(D) \Phi=\delta_{0} .
$$

Theorem
Let $\Phi$ be a fundamental solution for $P(D)$. Then $u=\Phi * f$ solves $P(D) u=f$ for all $f \in \mathscr{D}\left(\mathbb{R}^{n}\right)$.

## Fundamental solutions

Definition
Given a linear partial differential operator

$$
P(D)=\sum_{|\alpha| \leq m} a_{\alpha} D^{\alpha}, \quad a_{\alpha} \in \mathbb{C}
$$

we say that $\Phi \in \mathscr{D}^{\prime}\left(\mathbb{R}^{n}\right)$ is a fundamental solution for $P(D)$ if

$$
P(D) \Phi=\delta_{0} .
$$

Theorem
Let $\Phi$ be a fundamental solution for $P(D)$. Then $u=\Phi * f$ solves $P(D) u=f$ for all $f \in \mathscr{D}\left(\mathbb{R}^{n}\right)$.

Proof.
$P(D)(\Phi * f)=(P(D) \Phi) * f=\delta_{0} * f=f$.

## Example

$H(x)$ is a fundamental solution for $\partial_{x}$ on $\mathbb{R}$.

## Example

$H(x)$ is a fundamental solution for $\partial_{x}$ on $\mathbb{R}$.

## Example

$$
\Phi(x)= \begin{cases}-\frac{1}{2 \pi} \log |x|, & n=2 \\ \frac{1}{n(n-2) \alpha(n)} \frac{1}{|x|^{n-2}}, & n \geq 3\end{cases}
$$

is a fundamental solution for $-\Delta$ on $\mathbb{R}^{n}$.

## Example

$H(x)$ is a fundamental solution for $\partial_{x}$ on $\mathbb{R}$.

## Example

$$
\Phi(x)= \begin{cases}-\frac{1}{2 \pi} \log |x|, & n=2 \\ \frac{1}{n(n-2) \alpha(n)} \frac{1}{|x|^{n-2}}, & n \geq 3\end{cases}
$$

is a fundamental solution for $-\Delta$ on $\mathbb{R}^{n}$.

$$
\begin{aligned}
\langle-\Delta \Phi, \varphi\rangle & =\langle\Phi,-\Delta \varphi\rangle=-\int_{\mathbb{R}^{n}} \Phi(x) \Delta \varphi(x) d x \\
& =\varphi(0)=\left\langle\delta_{0}, \varphi\right\rangle
\end{aligned}
$$

(Evans, Section 2.2, Theorem 1).

## Example

$$
\Phi(x, t)= \begin{cases}\frac{1}{(4 \pi t)^{n / 2}} e^{-\frac{|x|^{2}}{4 t}}, & t>0 \\ 0, & t<0\end{cases}
$$

is a fundamental solution for the heat operator $\partial_{t}-\Delta$. See pp. 41-42 in Wahlén.

## Theorem (Malgrange-Ehrenpreis)

Every non-zero linear PDO with constant coefficients has a fundamental solution $\Phi \in \mathscr{D}^{\prime}\left(\mathbb{R}^{n}\right)$.

## Theorem (Malgrange-Ehrenpreis)

Every non-zero linear PDO with constant coefficients has a fundamental solution $\Phi \in \mathscr{D}^{\prime}\left(\mathbb{R}^{n}\right)$.
In particular $P(D) u=f$ has a solution $u \in C^{\infty}$ for every $f \in \mathscr{D}^{\prime}\left(\mathbb{R}^{n}\right)$.

## Theorem (Malgrange-Ehrenpreis)

Every non-zero linear PDO with constant coefficients has a fundamental solution $\Phi \in \mathscr{D}^{\prime}\left(\mathbb{R}^{n}\right)$.
In particular $P(D) u=f$ has a solution $u \in C^{\infty}$ for every $f \in \mathscr{D}^{\prime}\left(\mathbb{R}^{n}\right)$.

Not true for variable coefficients, H. Lewy 1957.
L. Hörmander \& N. Dencker in Lund have proved necessary and sufficient conditions for solvability of

$$
P(x, D) u=f .
$$

## Classification of PDE

2nd order linear PDE with const. coeff.

$$
P(D) u=\sum a_{i j} \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}+\sum a_{i} \frac{\partial u}{\partial x_{i}}+a_{0} u=f
$$

with $a_{i j}=a_{i j} \in \mathbb{R}, a_{i} \in \mathbb{R}$.

2nd order linear PDE with const. coeff.

$$
P(D) u=\sum a_{i j} \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}+\sum a_{i} \frac{\partial u}{\partial x_{i}}+a_{0} u=f
$$

with $a_{i j}=a_{i j} \in \mathbb{R}, a_{i} \in \mathbb{R}$.
Quadratic form

$$
q(\xi)=\sum a_{i j} \xi_{i} \xi_{j}
$$

2nd order linear PDE with const. coeff.

$$
P(D) u=\sum a_{i j} \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}+\sum a_{i} \frac{\partial u}{\partial x_{i}}+a_{0} u=f
$$

with $a_{i j}=a_{i j} \in \mathbb{R}, a_{i} \in \mathbb{R}$.
Quadratic form

$$
\begin{aligned}
q(\xi) & =\sum a_{i j} \xi_{i} \xi_{j} \\
& =\sum \sigma_{i} \eta_{i}^{2}
\end{aligned}
$$

(diagonalisation)

2nd order linear PDE with const. coeff.

$$
P(D) u=\sum a_{i j} \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}+\sum a_{i} \frac{\partial u}{\partial x_{i}}+a_{0} u=f
$$

with $a_{i j}=a_{i j} \in \mathbb{R}, a_{i} \in \mathbb{R}$.
Quadratic form

$$
\begin{aligned}
q(\xi) & =\sum a_{i j} \xi_{i} \xi_{j} \\
& =\sum \sigma_{i} \eta_{i}^{2}
\end{aligned}
$$

(diagonalisation)

## Definition

The equation is called

- elliptic if $q$ is pos. definite
- hyperbolic if one $\sigma_{i}>0$, rest $<0$ (or vice versa)
- parabolic if one $\sigma_{i}=0$, rest have same sign


## Definition

The equation is called

- elliptic if $q$ is pos. definite
- hyperbolic if one $\sigma_{i}>0$, rest $<0$ (or vice versa)
- parabolic if one $\sigma_{i}=0$, rest have same sign


## Definition

The equation is called

- elliptic if $q$ is pos. definite
- hyperbolic if one $\sigma_{i}>0$, rest $<0$ (or vice versa)
- parabolic if one $\sigma_{i}=0$, rest have same sign


## Examples

- the Laplace equation is elliptic
- the wave equation is hyperbolic
- the heat equation is parabolic


## Generalisation

Definition

$$
P(D) u=\sum_{|\alpha| \leq m} a_{\alpha} D^{\alpha}
$$

is elliptic if

$$
p_{m}(\xi):=\sum_{|\alpha|=m} a_{\alpha}(i \xi)^{\alpha} \neq 0 \quad \forall \xi \neq 0
$$

## Generalisation

## Definition

$$
P(D) u=\sum_{|\alpha| \leq m} a_{\alpha} D^{\alpha}
$$

is elliptic if

$$
p_{m}(\xi):=\sum_{|\alpha|=m} a_{\alpha}(i \xi)^{\alpha} \neq 0 \quad \forall \xi \neq 0
$$

$p_{m}(\xi)$ is called the principal symbol and

$$
p(\xi)=\sum_{|\alpha| \leq m} a_{\alpha}(i \xi)^{\alpha} \neq 0 \quad \forall \xi \neq 0
$$

the (full) symbol.

## Generalisation

## Definition

$$
P(D) u=\sum_{|\alpha| \leq m} a_{\alpha} D^{\alpha}
$$

is elliptic if

$$
p_{m}(\xi):=\sum_{|\alpha|=m} a_{\alpha}(i \xi)^{\alpha} \neq 0 \quad \forall \xi \neq 0
$$

$p_{m}(\xi)$ is called the principal symbol and

$$
p(\xi)=\sum_{|\alpha| \leq m} a_{\alpha}(i \xi)^{\alpha} \neq 0 \quad \forall \xi \neq 0
$$

the (full) symbol.
$\widehat{P(D) u}=p(\xi) \hat{u}$

One can show that if $P(D)$ is elliptic and $u \in \mathscr{D}^{\prime}$, then

$$
P(D) u \in C^{\infty} \Rightarrow u \in C^{\infty}
$$

One can show that if $P(D)$ is elliptic and $u \in \mathscr{D}^{\prime}$, then

$$
P(D) u \in C^{\infty} \Rightarrow u \in C^{\infty}
$$

See Wahlén, Thm. 4.7, for a result in this direction.

