PDE Lecture

Weak derivatives, distributions, classification of PDE

March 24

1D wave equation:

$$u_{tt} = u_{xx}$$

on \mathbb{R} .

1D wave equation:

$$u_{tt} = u_{xx}$$

on \mathbb{R} .

General solution:

$$u(x,t) = F(x+t) + G(x-t), \qquad F,G \in C^2(\mathbb{R}).$$

1D wave equation:

$$u_{tt} = u_{xx}$$

on \mathbb{R} .

General solution:

$$u(x,t) = F(x+t) + G(x-t), \qquad F, G \in C^2(\mathbb{R}).$$

Still well-defined if $F,G \in C(\mathbb{R})$, or even $F,G \in L^1_{loc}(\mathbb{R})$.

1D wave equation:

$$u_{tt} = u_{xx}$$

on \mathbb{R} .

General solution:

$$u(x,t) = F(x+t) + G(x-t), \qquad F, G \in C^2(\mathbb{R}).$$

Still well-defined if $F,G\in C(\mathbb{R})$, or even $F,G\in L^1_{loc}(\mathbb{R})$. (Evans, Exercise 2.5.23)

$$\begin{cases} u_{tt} = u_{xx}, & 0 < x < \pi, t > 0, \\ u(0, x) = g(x), & 0 < x < \pi, \\ u_t(0, x) = 0, & 0 < x < \pi, \\ u(t, 0) = u(t, \pi) = 0, & t > 0. \end{cases}$$

$$\begin{cases} u_{tt} = u_{xx}, & 0 < x < \pi, t > 0, \\ u(0, x) = g(x), & 0 < x < \pi, \\ u_t(0, x) = 0, & 0 < x < \pi, \\ u(t, 0) = u(t, \pi) = 0, & t > 0. \end{cases}$$

Sine series solution

$$u(x,t) = \sum_{k=1}^{\infty} a_k \cos(kt) \sin(kx)$$

where

$$g(x) = \sum_{k=1}^{\infty} a_k \sin(kx).$$

$$\begin{cases} u_{tt} = u_{xx}, & 0 < x < \pi, t > 0, \\ u(0, x) = g(x), & 0 < x < \pi, \\ u_t(0, x) = 0, & 0 < x < \pi, \\ u(t, 0) = u(t, \pi) = 0, & t > 0. \end{cases}$$

Sine series solution

$$u(x,t) = \sum_{k=1}^{\infty} a_k \cos(kt) \sin(kx)$$

where

$$g(x) = \sum_{k=1}^{\infty} a_k \sin(kx).$$

Defines a C^2 solution if $g \in C^3$, $g(0) = g''(0) = g(\pi) = g''(\pi) = 0$.

$$\begin{cases} u_{tt} = u_{xx}, & 0 < x < \pi, t > 0, \\ u(0, x) = g(x), & 0 < x < \pi, \\ u_t(0, x) = 0, & 0 < x < \pi, \\ u(t, 0) = u(t, \pi) = 0, & t > 0. \end{cases}$$

Sine series solution

$$u(x,t) = \sum_{k=1}^{\infty} a_k \cos(kt) \sin(kx)$$

where

$$g(x) = \sum_{k=1}^{\infty} a_k \sin(kx).$$

Defines a C^2 solution if $g \in C^3$, $g(0) = g''(0) = g(\pi) = g''(\pi) = 0$. Still converges unif. to a cont. function if $\sum_k |a_k| < \infty$ (e.g. g piecewise C^1 , Wahlén: Example 1.6 and Exercise 7) In what sense are these solutions?

Weak derivatives

(Evans, 5.2)

Integration by parts:

$$\int_{U} u D^{\alpha} \varphi \, dx = (-1)^{|\alpha|} \int_{U} D^{\alpha} u \, \varphi \, dx, \quad u, \varphi \in C_{c}^{\infty}(U),$$

where $U \subset \mathbb{R}^n$ open.

(Evans, 5.2)

Integration by parts:

$$\int_{U} u D^{\alpha} \varphi \, dx = (-1)^{|\alpha|} \int_{U} D^{\alpha} u \, \varphi \, dx, \quad u, \varphi \in C_{c}^{\infty}(U),$$

where $U \subset \mathbb{R}^n$ open.

Definition

If $u \in L^1_{loc}(U)$, we say that $v \in L^1_{loc}(U)$ is the α th weak partial derivative of $u, v = D^{\alpha}u$, if

$$\int_{U} u D^{\alpha} \varphi \, dx = (-1)^{|\alpha|} \int_{U} v \, \varphi \, dx, \qquad \forall \varphi \in C_{c}^{\infty}(U).$$

(Evans, 5.2)

Integration by parts:

$$\int_{U} u D^{\alpha} \varphi \, dx = (-1)^{|\alpha|} \int_{U} D^{\alpha} u \, \varphi \, dx, \quad u, \varphi \in C_{c}^{\infty}(U),$$

where $U \subset \mathbb{R}^n$ open.

Definition

If $u \in L^1_{\mathrm{loc}}(U)$, we say that $v \in L^1_{\mathrm{loc}}(U)$ is the α th weak partial derivative of $u, v = D^{\alpha}u$, if

$$\int_{U} u D^{\alpha} \varphi \, dx = (-1)^{|\alpha|} \int_{U} v \, \varphi \, dx, \qquad \forall \varphi \in C_{c}^{\infty}(U).$$

Remark

 ν is unique if it exists: $\int_U \nu \, \varphi \, dx = 0$, $\forall \varphi \in C_c^\infty(U) \Rightarrow \nu = 0$ a.e. (Lemma on p. 257 of Evans, Theorem 3.3 in Wahlén)

$$g(x) = \begin{cases} x, & 0 \le x < \pi/2, \\ \pi - x, & \pi/2 \le x \le \pi. \end{cases}$$

$$g(x) = \begin{cases} x, & 0 \le x < \pi/2, \\ \pi - x, & \pi/2 \le x \le \pi. \end{cases}$$
$$g'(x) = ?$$

$$g(x) = \begin{cases} x, & 0 \le x < \pi/2, \\ \pi - x, & \pi/2 \le x \le \pi. \end{cases}$$

$$g'(x) = \begin{cases} 1, & 0 \le x < \pi/2, \\ -1, & \pi/2 \le x \le \pi. \end{cases}$$

$$g(x) = \begin{cases} x, & 0 \le x < \pi/2, \\ \pi - x, & \pi/2 \le x \le \pi. \end{cases}$$

$$g'(x) = \begin{cases} 1, & 0 \le x < \pi/2, \\ -1, & \pi/2 \le x \le \pi. \end{cases}$$

Proof:

$$\int_0^{\pi} g(x) \varphi'(x) dx = \int_0^{\pi/2} g(x) \varphi'(x) dx + \int_{\pi/2}^{\pi} g(x) \varphi'(x) dx$$

$$g(x) = \begin{cases} x, & 0 \le x < \pi/2, \\ \pi - x, & \pi/2 \le x \le \pi. \end{cases}$$
$$g'(x) = \begin{cases} 1, & 0 \le x < \pi/2, \\ -1, & \pi/2 \le x \le \pi. \end{cases}$$

Proof:

$$\int_0^{\pi} g(x)\varphi'(x) dx = \int_0^{\pi/2} g(x)\varphi'(x) dx + \int_{\pi/2}^{\pi} g(x)\varphi'(x) dx$$
$$= -\int_0^{\pi/2} g'(x)\varphi(x) dx - \int_{\pi/2}^{\pi} g'(x)\varphi(x) dx$$
$$+ [g(x)\varphi(x)]_0^{\pi/2} + [g(x)\varphi(x)]_{\pi/2}^{\pi}$$

$$g(x) = \begin{cases} x, & 0 \le x < \pi/2, \\ \pi - x, & \pi/2 \le x \le \pi. \end{cases}$$
$$g'(x) = \begin{cases} 1, & 0 \le x < \pi/2, \\ -1, & \pi/2 \le x \le \pi. \end{cases}$$

Proof:

$$\int_0^{\pi} g(x)\varphi'(x) dx = \int_0^{\pi/2} g(x)\varphi'(x) dx + \int_{\pi/2}^{\pi} g(x)\varphi'(x) dx$$

$$= -\int_0^{\pi/2} g'(x)\varphi(x) dx - \int_{\pi/2}^{\pi} g'(x)\varphi(x) dx$$

$$+ [g(x)\varphi(x)]_0^{\pi/2} + [g(x)\varphi(x)]_{\pi/2}^{\pi}$$

$$= -\int_0^{\pi} g'(x)\varphi(x) dx.$$

Is g' weakly differentiable?

$$\int_0^{\pi} g'(x) \varphi'(x) dx = \int_0^{\pi/2} \varphi'(x) dx - \int_{\pi/2}^{\pi} \varphi'(x) dx = 2\varphi(\pi/2).$$

Is g' weakly differentiable?

$$\int_0^{\pi} g'(x) \varphi'(x) dx = \int_0^{\pi/2} \varphi'(x) dx - \int_{\pi/2}^{\pi} \varphi'(x) dx = 2\varphi(\pi/2).$$

Can't be written as

$$-\int_0^\pi v(x)\boldsymbol{\varphi}(x)\,dx$$

for some $v \in L^1_{loc}(0,\pi)$.

Is g' weakly differentiable?

$$\int_0^{\pi} g'(x) \varphi'(x) \, dx = \int_0^{\pi/2} \varphi'(x) \, dx - \int_{\pi/2}^{\pi} \varphi'(x) \, dx = 2 \varphi(\pi/2).$$

Can't be written as

$$-\int_0^\pi v(x)\varphi(x)\,dx$$

for some $v \in L^1_{loc}(0,\pi)$.

Take $\varphi_m(x)$ with, $0 \le \varphi_m(x) \le 1$, $\varphi_m(\pi/2) = 1$ and $\varphi_m(x) \to 0$, $x \ne \pi/2$ as $m \to \infty$.

See also Evans, Example 2, p. 257.

Distributions

We try to expand the definition of derivatives so that g' is also differentiable.

We try to expand the definition of derivatives so that g' is also differentiable.

Note:

- $ightharpoonup \phi \mapsto \int_U u \phi \, dx$,
- $ightharpoonup \phi \mapsto \int_U u D^{\alpha} \phi \, dx$ and
- $ightharpoonup \phi(a), a \in U,$

are all <u>linear functionals</u> on $C_c^{\infty}(U)$. Take $U = \mathbb{R}^n$ for simplicity.

We try to expand the definition of derivatives so that g' is also differentiable.

Note:

- $ightharpoonup \phi \mapsto \int_U u \phi \, dx,$
- $ightharpoonup \phi \mapsto \int_{U} u D^{\alpha} \phi \, dx$ and
- $ightharpoonup \phi(a), a \in U,$

are all <u>linear functionals</u> on $C_c^{\infty}(U)$. Take $U = \mathbb{R}^n$ for simplicity.

Definition

A <u>distribution</u> ℓ is a linear functional on $\mathscr{D}(\mathbb{R}^n) := C_c^{\infty}(\mathbb{R}^n)$, which is continuous in the following sense. If $\{\varphi_k\} \subset \mathscr{D}(\mathbb{R}^n)$ satisfies

- 1. $\exists K \subset \mathbb{R}^n$, compact, s.t. supp $\varphi_k \subseteq K \ \forall k$, and
- 2. $\exists \varphi \in \mathscr{D}(\mathbb{R}^n)$ s.t. $D^{\alpha} \varphi_k \to D^{\alpha} \varphi$ uniformly (on K) $\forall \alpha$,

then $\ell(\varphi_k) \to \ell(\varphi)$ as $k \to \infty$.

The vector space of distributions is denoted $\mathcal{D}'(\mathbb{R}^n)$.

Let $u \in L^1_{loc}(\mathbb{R}^n)$. Then

$$\ell_u(\varphi) = \langle u, \varphi \rangle := \int_{\mathbb{R}^n} u(x) \, \varphi(x) \, dx, \quad \varphi \in \mathscr{D}(\mathbb{R}^n)$$

defines a distribution.

Let $u \in L^1_{loc}(\mathbb{R}^n)$. Then

$$\ell_u(\boldsymbol{\varphi}) = \langle u, \boldsymbol{\varphi} \rangle := \int_{\mathbb{R}^n} u(x) \, \boldsymbol{\varphi}(x) \, dx, \quad \boldsymbol{\varphi} \in \mathscr{D}(\mathbb{R}^n)$$

defines a distribution.

Continuity:

$$|\ell_u(\varphi)| \le ||u||_{L^1(K)} ||\varphi||_{L^{\infty}(K)}$$

if supp $\varphi \subseteq K$.

Let $u \in L^1_{loc}(\mathbb{R}^n)$. Then

$$\ell_u(\boldsymbol{\varphi}) = \langle u, \boldsymbol{\varphi} \rangle := \int_{\mathbb{R}^n} u(x) \, \boldsymbol{\varphi}(x) \, dx, \quad \boldsymbol{\varphi} \in \mathscr{D}(\mathbb{R}^n)$$

defines a distribution.

Continuity:

$$|\ell_u(\varphi)| \leq ||u||_{L^1(K)} ||\varphi||_{L^{\infty}(K)}$$

if supp $\varphi \subseteq K$.

We identify the function u with the distribution ℓ_u .

Let $u \in L^1_{loc}(\mathbb{R}^n)$. Then

$$\ell_u(\boldsymbol{\varphi}) = \langle u, \boldsymbol{\varphi} \rangle \coloneqq \int_{\mathbb{R}^n} u(x) \, \boldsymbol{\varphi}(x) \, dx, \quad \boldsymbol{\varphi} \in \mathscr{D}(\mathbb{R}^n)$$

defines a distribution.

Continuity:

$$|\ell_u(\varphi)| \le ||u||_{L^1(K)} ||\varphi||_{L^{\infty}(K)}$$

if supp $\varphi \subseteq K$.

We identify the function u with the distribution ℓ_u .

We write $\langle u, \varphi \rangle$ for $u(\varphi)$ even when $u \in \mathscr{D}'(\mathbb{R}^n)$

Let $a \in \mathbb{R}^n$. Define the <u>Dirac delta distribution</u> at a by

$$\delta_a(\varphi) = \langle \delta_a, \varphi \rangle := \varphi(a).$$

Continuity: $|\delta_a(\varphi)| \leq \|\varphi\|_{L^\infty}$

For $h \in \mathbb{R}^n$, let

$$\tau_h \colon \mathscr{D}(\mathbb{R}^n) \to \mathscr{D}(\mathbb{R}^n), \quad (\tau_h \varphi)(x) = \varphi(x - h).$$

For $h \in \mathbb{R}^n$, let

$$\tau_h \colon \mathscr{D}(\mathbb{R}^n) \to \mathscr{D}(\mathbb{R}^n), \quad (\tau_h \varphi)(x) = \varphi(x - h).$$

If $\varphi, \psi \in \mathscr{D}(\mathbb{R}^n)$,

$$\langle \tau_h \varphi, \psi \rangle = \int \varphi(x-h) \psi(x) dx$$

For $h \in \mathbb{R}^n$, let

$$\tau_h \colon \mathscr{D}(\mathbb{R}^n) \to \mathscr{D}(\mathbb{R}^n), \quad (\tau_h \varphi)(x) = \varphi(x - h).$$

If $\varphi, \psi \in \mathscr{D}(\mathbb{R}^n)$,

$$\langle \tau_h \varphi, \psi \rangle = \int \varphi(x - h) \psi(x) dx$$

= $\int \varphi(x) \psi(x + h) dx$

For $h \in \mathbb{R}^n$, let

$$\tau_h \colon \mathscr{D}(\mathbb{R}^n) \to \mathscr{D}(\mathbb{R}^n), \quad (\tau_h \varphi)(x) = \varphi(x - h).$$

If $\varphi, \psi \in \mathscr{D}(\mathbb{R}^n)$,

$$\langle \tau_h \varphi, \psi \rangle = \int \varphi(x - h) \psi(x) dx$$
$$= \int \varphi(x) \psi(x + h) dx$$
$$= \langle \varphi, \tau_{-h} \psi \rangle.$$

Operations on distributions

For $h \in \mathbb{R}^n$, let

$$\tau_h \colon \mathscr{D}(\mathbb{R}^n) \to \mathscr{D}(\mathbb{R}^n), \quad (\tau_h \varphi)(x) = \varphi(x - h).$$

If $\varphi, \psi \in \mathscr{D}(\mathbb{R}^n)$,

$$\langle \tau_h \varphi, \psi \rangle = \int \varphi(x - h) \psi(x) dx$$
$$= \int \varphi(x) \psi(x + h) dx$$
$$= \langle \varphi, \tau_{-h} \psi \rangle.$$

Define

$$\tau_h \colon \mathscr{D}'(\mathbb{R}^n) \to \mathscr{D}'(\mathbb{R}^n), \quad \langle \tau_h u, \varphi \rangle = \langle u, \tau_{-h} \varphi \rangle.$$

Generally, assume that the linear operator

$$L \colon \mathscr{D}(\mathbb{R}^n) \to \mathscr{D}(\mathbb{R}^n)$$

has a continuous transpose

$$L^T: \mathscr{D}(\mathbb{R}^n) \to \mathscr{D}(\mathbb{R}^n),$$

such that

$$\langle L\varphi, \psi \rangle = \langle \varphi, L^T \psi \rangle.$$

Generally, assume that the linear operator

$$L \colon \mathscr{D}(\mathbb{R}^n) \to \mathscr{D}(\mathbb{R}^n)$$

has a continuous transpose

$$L^T: \mathscr{D}(\mathbb{R}^n) \to \mathscr{D}(\mathbb{R}^n),$$

such that

$$\langle L\varphi, \psi \rangle = \langle \varphi, L^T \psi \rangle.$$

Define

$$L: \mathscr{D}'(\mathbb{R}^n) \to \mathscr{D}'(\mathbb{R}^n), \quad \langle Lu, \varphi \rangle = \langle u, L^T \varphi \rangle.$$

$$\blacktriangleright (\tau_h)^T = \tau_{-h}$$

- $\blacktriangleright (\tau_h)^T = \tau_{-h}$
- $\blacktriangleright (\partial_{x_j})^T = -\partial_{x_j}$

$$\blacktriangleright (\partial_{x_j})^T = -\partial_{x_j}$$

$$(D^{\alpha})^T = (-1)^{|\alpha|} D^{\alpha}$$

$$ightharpoonup (au_h)^T = au_{-h}$$

$$(D^{\alpha})^T = (-1)^{|\alpha|} D^{\alpha}$$

$$lackbox{} (M_{\psi})^T = M_{\psi} ext{ (where } M_{\psi} \phi = \psi \phi ext{)}$$

- $\blacktriangleright (\partial_{x_j})^T = -\partial_{x_j}$
- $(D^{\alpha})^T = (-1)^{|\alpha|} D^{\alpha}$
- $ightharpoonup (M_{\psi})^T = M_{\psi} ext{ (where } M_{\psi} \varphi = \psi \varphi)$

Definition

The <u>distributional derivative</u> of $u \in \mathcal{D}'(\mathbb{R}^n)$ is defined by

$$\langle D^{\alpha}u, \varphi \rangle := \langle u, (-1)^{|\alpha|}D^{\alpha}\varphi \rangle.$$

Remark: All distributions are infinitely differentiable in this sense.

Recall the function

$$g'(x) = \begin{cases} 1, & 0 \le x < \pi/2, \\ -1, & \pi/2 \le x \le \pi. \end{cases}$$

from before, which was not weakly differentiable:

$$\int_0^{\pi} g'(x) \varphi'(x) dx = \int_0^{\pi/2} \varphi'(x) dx - \int_{\pi/2}^{\pi} \varphi'(x) dx = 2\varphi(\pi/2).$$

Question: What is the weak derivative of g'?

Recall the function

$$g'(x) = \begin{cases} 1, & 0 \le x < \pi/2, \\ -1, & \pi/2 \le x \le \pi. \end{cases}$$

from before, which was not weakly differentiable:

$$\int_0^{\pi} g'(x) \varphi'(x) dx = \int_0^{\pi/2} \varphi'(x) dx - \int_{\pi/2}^{\pi} \varphi'(x) dx = 2\varphi(\pi/2).$$

Question: What is the weak derivative of g'?

Answer: $g'' = -2\delta_{\pi/2}$, since

$$\langle g'', \varphi \rangle = -\langle g', \varphi' \rangle = -\int_0^{\pi} g'(x) \varphi'(x) dx = -2\langle \delta_{\pi/2}, \varphi \rangle.$$

Recall the function

$$g'(x) = \begin{cases} 1, & 0 \le x < \pi/2, \\ -1, & \pi/2 \le x \le \pi. \end{cases}$$

from before, which was not weakly differentiable:

$$\int_0^{\pi} g'(x) \varphi'(x) dx = \int_0^{\pi/2} \varphi'(x) dx - \int_{\pi/2}^{\pi} \varphi'(x) dx = 2\varphi(\pi/2).$$

Question: What is the weak derivative of g'?

Answer: $g'' = -2\delta_{\pi/2}$, since

$$\langle g'', \varphi \rangle = -\langle g', \varphi' \rangle = -\int_0^{\pi} g'(x) \varphi'(x) dx = -2 \langle \delta_{\pi/2}, \varphi \rangle.$$

Question: Can we see this graphically?

What is the distributional derivative of the function u in Example 2 on p. 257 in Evans?

What is the distributional derivative of the function u in Example 2 on p. 257 in Evans?

$$u(x) = \begin{cases} x & \text{if } 0 < x \le 1, \\ 2 & \text{if } 1 < x < 2. \end{cases}$$

Given
$$\varphi \in \mathscr{D}(\mathbb{R}^n)$$
,

$$u \mapsto \varphi * u$$

is a continuous linear operator on $\mathscr{D}(\mathbb{R}^n)$. Transpose?

Given
$$\varphi \in \mathscr{D}(\mathbb{R}^n)$$
,

$$u \mapsto \phi * u$$

is a continuous linear operator on $\mathcal{D}(\mathbb{R}^n)$. Transpose?

$$\langle \varphi * u, \psi \rangle = \int \left(\int \varphi(x - y) u(y) \, dy \right) \psi(x) \, dx$$

Given
$$\varphi \in \mathscr{D}(\mathbb{R}^n)$$
,

$$u \mapsto \phi * u$$

is a continuous linear operator on $\mathcal{D}(\mathbb{R}^n)$. Transpose?

$$\langle \varphi * u, \psi \rangle = \int \left(\int \varphi(x - y) u(y) \, dy \right) \psi(x) \, dx$$
$$= \int \left(\int \varphi(x - y) \psi(x) \, dx \right) \varphi(y) \, dy$$

Given
$$\varphi \in \mathscr{D}(\mathbb{R}^n)$$
,

$$u \mapsto \phi * u$$

is a continuous linear operator on $\mathcal{D}(\mathbb{R}^n)$. Transpose?

$$\langle \boldsymbol{\varphi} * \boldsymbol{u}, \boldsymbol{\psi} \rangle = \int \left(\int \boldsymbol{\varphi}(\boldsymbol{x} - \boldsymbol{y}) \boldsymbol{u}(\boldsymbol{y}) \, d\boldsymbol{y} \right) \boldsymbol{\psi}(\boldsymbol{x}) \, d\boldsymbol{x}$$
$$= \int \left(\int \boldsymbol{\varphi}(\boldsymbol{x} - \boldsymbol{y}) \boldsymbol{\psi}(\boldsymbol{x}) \, d\boldsymbol{x} \right) \boldsymbol{\varphi}(\boldsymbol{y}) \, d\boldsymbol{y}$$
$$= \langle \boldsymbol{u}, \mathcal{R}(\boldsymbol{\varphi}) * \boldsymbol{\psi} \rangle$$

where $\mathcal{R}(\varphi)(x) = \varphi(-x)$.

Given $\varphi \in \mathscr{D}(\mathbb{R}^n)$,

$$u \mapsto \varphi * u$$

is a continuous linear operator on $\mathcal{D}(\mathbb{R}^n)$. Transpose?

$$\langle \varphi * u, \psi \rangle = \int \left(\int \varphi(x - y) u(y) \, dy \right) \psi(x) \, dx$$
$$= \int \left(\int \varphi(x - y) \psi(x) \, dx \right) \varphi(y) \, dy$$
$$= \langle u, \mathcal{R}(\varphi) * \psi \rangle$$

where $\mathcal{R}(\varphi)(x) = \varphi(-x)$.

Thus we define

$$\langle \boldsymbol{\varphi} * \boldsymbol{u}, \boldsymbol{\psi} \rangle = \langle \boldsymbol{u}, \mathcal{R}(\boldsymbol{\varphi}) * \boldsymbol{\psi} \rangle,$$

when $\varphi, \psi \in \mathscr{D}(\mathbb{R}^n)$ and $u \in \mathscr{D}'(\mathbb{R}^n)$.

$$(\varphi * u)(x) = \langle u, \varphi(x - \cdot) \rangle,$$

$$u \in \mathscr{D}'(\mathbb{R}^n), \, \varphi \in \mathscr{D}(\mathbb{R}^n).$$

$$(\varphi * u)(x) = \langle u, \varphi(x - \cdot) \rangle,$$

$$u \in \mathscr{D}'(\mathbb{R}^n)$$
, $\varphi \in \mathscr{D}(\mathbb{R}^n)$.

This defines a C^{∞} function of x.

$$(\varphi * u)(x) = \langle u, \varphi(x - \cdot) \rangle,$$

$$u \in \mathscr{D}'(\mathbb{R}^n)$$
, $\varphi \in \mathscr{D}(\mathbb{R}^n)$.

This defines a C^{∞} function of x.

Wahlén, Lemma 3.27: These definitions agree. Moroever,

$$D^{\alpha}(\varphi * u) = (D^{\alpha}\varphi) * u = \varphi * (D^{\alpha}u).$$

$$(\boldsymbol{\varphi} * \boldsymbol{u})(\boldsymbol{x}) = \langle \boldsymbol{u}, \boldsymbol{\varphi}(\boldsymbol{x} - \cdot) \rangle,$$

$$u \in \mathscr{D}'(\mathbb{R}^n), \, \boldsymbol{\varphi} \in \mathscr{D}(\mathbb{R}^n).$$

This defines a C^{∞} function of x.

Wahlén, Lemma 3.27: These definitions agree. Moroever,

$$D^{\alpha}(\varphi * u) = (D^{\alpha}\varphi) * u = \varphi * (D^{\alpha}u).$$

$$(\varphi * \delta_0)(x) = \langle \delta_0, \varphi(x - \cdot) \rangle = \varphi(x).$$

$$\int_{\mathbb{R}^n} \hat{u}v \, dx = \int_{\mathbb{R}^n} u \hat{v} \, dx \quad \forall u, v \in \mathscr{S}(\mathbb{R}^n)$$

$$\int_{\mathbb{R}^n} \hat{u}v \, dx = \int_{\mathbb{R}^n} u\hat{v} \, dx \quad \forall u, v \in \mathscr{S}(\mathbb{R}^n)$$

so $\mathscr{F}^T = \mathscr{F}$.

Problem: $\mathscr{F}(\mathscr{D}(\mathbb{R}^n)) \not\subseteq \mathscr{D}(\mathbb{R}^n)$.

$$\int_{\mathbb{R}^n} \hat{u}v dx = \int_{\mathbb{R}^n} u\hat{v} dx \quad \forall u, v \in \mathscr{S}(\mathbb{R}^n)$$

so $\mathscr{F}^T = \mathscr{F}$.

Problem: $\mathscr{F}(\mathscr{D}(\mathbb{R}^n)) \not\subseteq \mathscr{D}(\mathbb{R}^n)$.

Definition

A continuous linear functional on $\mathscr{S}(\mathbb{R}^n)$ is called a tempered distribution.

The space of tempered distributions is denoted $\mathcal{S}'(\mathbb{R}^n)$.

$$\int_{\mathbb{R}^n} \hat{u}v dx = \int_{\mathbb{R}^n} u\hat{v} dx \quad \forall u, v \in \mathscr{S}(\mathbb{R}^n)$$

so $\mathscr{F}^T = \mathscr{F}$.

Problem: $\mathscr{F}(\mathscr{D}(\mathbb{R}^n)) \not\subseteq \mathscr{D}(\mathbb{R}^n)$.

Definition

A continuous linear functional on $\mathscr{S}(\mathbb{R}^n)$ is called a tempered distribution.

The space of tempered distributions is denoted $\mathcal{S}'(\mathbb{R}^n)$.

Remark: $\mathscr{D} \subset \mathscr{S} \Rightarrow \mathscr{S}' \subset \mathscr{D}'$.

$$\int_{\mathbb{R}^n} \hat{u}v \, dx = \int_{\mathbb{R}^n} u\hat{v} \, dx \quad \forall u, v \in \mathscr{S}(\mathbb{R}^n)$$

so $\mathscr{F}^T = \mathscr{F}$.

Problem: $\mathscr{F}(\mathscr{D}(\mathbb{R}^n)) \not\subseteq \mathscr{D}(\mathbb{R}^n)$.

Definition

A continuous linear functional on $\mathscr{S}(\mathbb{R}^n)$ is called a tempered distribution.

The space of tempered distributions is denoted $\mathscr{S}'(\mathbb{R}^n)$.

Remark: $\mathscr{D} \subset \mathscr{S} \Rightarrow \mathscr{S}' \subset \mathscr{D}'$.

$$ightharpoonup \delta_a \in \mathscr{S}'$$

$$\int_{\mathbb{R}^n} \hat{u}v dx = \int_{\mathbb{R}^n} u\hat{v} dx \quad \forall u, v \in \mathscr{S}(\mathbb{R}^n)$$

so $\mathscr{F}^T = \mathscr{F}$.

Problem: $\mathscr{F}(\mathscr{D}(\mathbb{R}^n)) \not\subseteq \mathscr{D}(\mathbb{R}^n)$.

Definition

A continuous linear functional on $\mathscr{S}(\mathbb{R}^n)$ is called a tempered distribution.

The space of tempered distributions is denoted $\mathcal{S}'(\mathbb{R}^n)$.

Remark: $\mathscr{D} \subset \mathscr{S} \Rightarrow \mathscr{S}' \subset \mathscr{D}'$.

- \bullet $\delta_a \in \mathscr{S}'$
- ▶ $f \in L^1_{loc}$ and $(1+|x|)^{-N}f \in L^1$ for some $N \Rightarrow f \in \mathscr{S}'$.

$$\int_{\mathbb{R}^n} \hat{u}v dx = \int_{\mathbb{R}^n} u\hat{v} dx \quad \forall u, v \in \mathscr{S}(\mathbb{R}^n)$$

so $\mathscr{F}^T = \mathscr{F}$.

Problem: $\mathscr{F}(\mathscr{D}(\mathbb{R}^n)) \not\subseteq \mathscr{D}(\mathbb{R}^n)$.

Definition

A continuous linear functional on $\mathscr{S}(\mathbb{R}^n)$ is called a tempered distribution.

The space of tempered distributions is denoted $\mathcal{S}'(\mathbb{R}^n)$.

Remark: $\mathscr{D} \subset \mathscr{S} \Rightarrow \mathscr{S}' \subset \mathscr{D}'$.

- lacktriangledown $\delta_a \in \mathscr{S}'$
- ▶ $f \in L^1_{loc}$ and $(1+|x|)^{-N}f \in L^1$ for some $N \Rightarrow f \in \mathscr{S}'$.
- $ightharpoonup e^{|x|} \notin \mathscr{S}'.$

 $\mathscr{F}, \mathscr{F}^{-1}: \mathscr{S}' \to \mathscr{S}'$ are defined by

$$\langle \mathscr{F}(u), \varphi \rangle = \langle u, \mathscr{F}(\varphi) \rangle, \quad \langle \mathscr{F}^{-1}(u), \varphi \rangle = \langle u, \mathscr{F}^{-1}(\varphi) \rangle,$$

$$\mathscr{F}, \mathscr{F}^{-1} \colon \mathscr{S}' \to \mathscr{S}'$$
 are defined by

$$\langle \mathscr{F}(u), \varphi \rangle = \langle u, \mathscr{F}(\varphi) \rangle, \quad \langle \mathscr{F}^{-1}(u), \varphi \rangle = \langle u, \mathscr{F}^{-1}(\varphi) \rangle,$$

$$\langle \hat{\delta}_0, \varphi \rangle = \langle \delta_0, \hat{\varphi} \rangle$$

$$\mathscr{F}, \mathscr{F}^{-1} \colon \mathscr{S}' \to \mathscr{S}'$$
 are defined by

$$\langle \mathscr{F}(u), \varphi \rangle = \langle u, \mathscr{F}(\varphi) \rangle, \quad \langle \mathscr{F}^{-1}(u), \varphi \rangle = \langle u, \mathscr{F}^{-1}(\varphi) \rangle,$$

$$\langle \hat{\delta}_0, \boldsymbol{\varphi} \rangle = \langle \delta_0, \hat{\boldsymbol{\varphi}} \rangle$$

= $\hat{\boldsymbol{\varphi}}(0)$

$$\mathscr{F}, \mathscr{F}^{-1} \colon \mathscr{S}' \to \mathscr{S}'$$
 are defined by

$$\langle \mathscr{F}(u), \varphi \rangle = \langle u, \mathscr{F}(\varphi) \rangle, \quad \langle \mathscr{F}^{-1}(u), \varphi \rangle = \langle u, \mathscr{F}^{-1}(\varphi) \rangle,$$

$$\begin{split} \langle \hat{\delta}_0, \varphi \rangle &= \langle \delta_0, \hat{\varphi} \rangle \\ &= \hat{\varphi}(0) \\ &= \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} \varphi(x) \, dx \end{split}$$

$$\mathscr{F}, \mathscr{F}^{-1} \colon \mathscr{S}' \to \mathscr{S}'$$
 are defined by

$$\langle \mathscr{F}(u), \varphi \rangle = \langle u, \mathscr{F}(\varphi) \rangle, \quad \langle \mathscr{F}^{-1}(u), \varphi \rangle = \langle u, \mathscr{F}^{-1}(\varphi) \rangle,$$

$$\begin{split} \langle \hat{\delta}_0, \varphi \rangle &= \langle \delta_0, \hat{\varphi} \rangle \\ &= \hat{\varphi}(0) \\ &= \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} \varphi(x) \, dx \\ &= \langle (2\pi)^{-n/2}, \varphi \rangle. \end{split}$$

$$\mathscr{F},\mathscr{F}^{-1}\colon \mathscr{S}'\to \mathscr{S}'$$
 are defined by

$$\langle \mathscr{F}(u), \varphi \rangle = \langle u, \mathscr{F}(\varphi) \rangle, \quad \langle \mathscr{F}^{-1}(u), \varphi \rangle = \langle u, \mathscr{F}^{-1}(\varphi) \rangle,$$

Example

$$\begin{split} \langle \hat{\delta}_0, \varphi \rangle &= \langle \delta_0, \hat{\varphi} \rangle \\ &= \hat{\varphi}(0) \\ &= \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} \varphi(x) \, dx \\ &= \langle (2\pi)^{-n/2}, \varphi \rangle. \end{split}$$

So

$$\hat{\delta}_0 = \frac{1}{(2\pi)^{n/2}}.$$

Theorem

 $\mathscr{F}\mathscr{F}^{-1}=\mathscr{F}^{-1}\mathscr{F}=\mathrm{Id}\ \textit{on}\ \mathscr{S}'.$

Theorem

$$\mathscr{F}\mathscr{F}^{-1}=\mathscr{F}^{-1}\mathscr{F}=\mathrm{Id}$$
 on \mathscr{S}' .

Proof.

$$\langle \mathscr{F}\mathscr{F}^{-1}(u), \varphi \rangle = \langle u, \mathscr{F}\mathscr{F}^{-1}(\varphi) \rangle = \langle u, \varphi \rangle.$$

Weak and distributional solutions to PDE

Definition

Given a linear partial differential operator with constant coefficients

$$P(D) = \sum_{|\alpha| \le m} a_{\alpha} D^{\alpha}, \quad a_{\alpha} \in \mathbb{C}$$

and $f \in \mathcal{D}'(\mathbb{R}^n)$, we say that $u \in \mathcal{D}'(\mathbb{R}^n)$ solves the equation

$$P(D)u = f$$

in the sense of distributions if this holds as an equality in $\mathscr{D}'(\mathbb{R}^n)$, that is,

$$\langle u, P(D)^T \varphi \rangle = \langle f, \varphi \rangle, \quad \forall \varphi \in \mathscr{D}(\mathbb{R}^n),$$

where

$$P(D)^T = P(-D) = \sum_{|\alpha| \le m} a_{\alpha} (-1)^{|\alpha|} D^{\alpha}.$$

Definition

Given a linear partial differential operator with constant coefficients

$$P(D) = \sum_{|\alpha| \le m} a_{\alpha} D^{\alpha}, \quad a_{\alpha} \in \mathbb{C}$$

and $f \in \mathcal{D}'(\mathbb{R}^n)$, we say that $u \in \mathcal{D}'(\mathbb{R}^n)$ solves the equation

$$P(D)u = f$$

in the sense of distributions if this holds as an equality in $\mathscr{D}'(\mathbb{R}^n)$, that is,

$$\langle u, P(D)^T \varphi \rangle = \langle f, \varphi \rangle, \quad \forall \varphi \in \mathscr{D}(\mathbb{R}^n),$$

where

$$P(D)^T = P(-D) = \sum_{|\alpha| \le m} a_{\alpha} (-1)^{|\alpha|} D^{\alpha}.$$

If f and u are both functions, we call u a <u>weak solution</u>.

$$H(x) = \begin{cases} 1, & x \ge 0, \\ 0, & x < 0 \end{cases}$$

is a distributional solution of

$$u'=\delta_0.$$

Let $G \in L^1_{loc}(\mathbb{R})$. Then u(x,t) = G(x-t) is a distributional solution of

$$u_t + u_x = 0$$

$$\langle u_t + u_x, \varphi \rangle = \langle u, -\varphi_t - \varphi_x \rangle$$

Let $G \in L^1_{loc}(\mathbb{R})$. Then u(x,t) = G(x-t) is a distributional solution of

$$u_t + u_x = 0$$

$$\langle u_t + u_x, \varphi \rangle = \langle u, -\varphi_t - \varphi_x \rangle$$

= $-\int_{\mathbb{R}^2} G(x - t) (\varphi_t(x, t) + \varphi_x(x, t)) dx dt$

Let $G \in L^1_{loc}(\mathbb{R})$. Then u(x,t) = G(x-t) is a distributional solution of

$$u_t + u_x = 0$$

$$\langle u_t + u_x, \varphi \rangle = \langle u, -\varphi_t - \varphi_x \rangle$$

$$= -\int_{\mathbb{R}^2} G(x - t) (\varphi_t(x, t) + \varphi_x(x, t)) dx dt$$

$$= \begin{bmatrix} u = x - t, & v = t \\ \psi(u, v) = \varphi(u + v, v), & \psi_v = \varphi_x + \varphi_t \end{bmatrix}$$

Let $G \in L^1_{loc}(\mathbb{R})$. Then u(x,t) = G(x-t) is a distributional solution of

$$u_t + u_x = 0$$

$$\langle u_t + u_x, \varphi \rangle = \langle u, -\varphi_t - \varphi_x \rangle$$

$$= -\int_{\mathbb{R}^2} G(x - t) (\varphi_t(x, t) + \varphi_x(x, t)) dx dt$$

$$= \begin{bmatrix} u = x - t, & v = t \\ \psi(u, v) = \varphi(u + v, v), & \psi_v = \varphi_x + \varphi_t \end{bmatrix}$$

$$= -\int_{\mathbb{R}} G(u) \underbrace{\left(\int_{\mathbb{R}} \psi_v(u, v) dv\right)}_{=0} du$$

Let $G \in L^1_{loc}(\mathbb{R})$. Then u(x,t) = G(x-t) is a distributional solution of

$$u_t + u_x = 0$$

$$\langle u_t + u_x, \varphi \rangle = \langle u, -\varphi_t - \varphi_x \rangle$$

$$= -\int_{\mathbb{R}^2} G(x - t) (\varphi_t(x, t) + \varphi_x(x, t)) dx dt$$

$$= \begin{bmatrix} u = x - t, & v = t \\ \psi(u, v) = \varphi(u + v, v), & \psi_v = \varphi_x + \varphi_t \end{bmatrix}$$

$$= -\int_{\mathbb{R}} G(u) \underbrace{\left(\int_{\mathbb{R}} \psi_v(u, v) dv\right)}_{=0} du$$

$$= 0.$$

Fundamental solutions

Definition

Given a linear partial differential operator

$$P(D) = \sum_{|\alpha| \le m} a_{\alpha} D^{\alpha}, \quad a_{\alpha} \in \mathbb{C}$$

we say that $\Phi \in \mathscr{D}'(\mathbb{R}^n)$ is a fundamental solution for P(D) if

$$P(D)\Phi = \delta_0.$$

Fundamental solutions

Definition

Given a linear partial differential operator

$$P(D) = \sum_{|\alpha| \le m} a_{\alpha} D^{\alpha}, \quad a_{\alpha} \in \mathbb{C}$$

we say that $\Phi \in \mathscr{D}'(\mathbb{R}^n)$ is a fundamental solution for P(D) if

$$P(D)\Phi = \delta_0.$$

Theorem

Let Φ be a fundamental solution for P(D). Then $u = \Phi * f$ solves P(D)u = f for all $f \in \mathscr{D}(\mathbb{R}^n)$.

Fundamental solutions

Definition

Given a linear partial differential operator

$$P(D) = \sum_{|\alpha| \le m} a_{\alpha} D^{\alpha}, \quad a_{\alpha} \in \mathbb{C}$$

we say that $\Phi \in \mathscr{D}'(\mathbb{R}^n)$ is a fundamental solution for P(D) if

$$P(D)\Phi = \delta_0.$$

Theorem

Let Φ be a fundamental solution for P(D). Then $u = \Phi * f$ solves P(D)u = f for all $f \in \mathcal{D}(\mathbb{R}^n)$.

Proof.

$$P(D)(\Phi * f) = (P(D)\Phi) * f = \delta_0 * f = f.$$

H(x) is a fundamental solution for ∂_x on \mathbb{R} .

H(x) is a fundamental solution for ∂_x on \mathbb{R} .

Example

$$\Phi(x) = \begin{cases} -\frac{1}{2\pi} \log|x|, & n = 2, \\ \frac{1}{n(n-2)\alpha(n)} \frac{1}{|x|^{n-2}}, & n \ge 3 \end{cases}$$

is a fundamental solution for $-\Delta$ on \mathbb{R}^n .

H(x) is a fundamental solution for ∂_x on \mathbb{R} .

Example

$$\Phi(x) = \begin{cases} -\frac{1}{2\pi} \log |x|, & n = 2, \\ \frac{1}{n(n-2)\alpha(n)} \frac{1}{|x|^{n-2}}, & n \ge 3 \end{cases}$$

is a fundamental solution for $-\Delta$ on \mathbb{R}^n .

$$\langle -\Delta\Phi, \varphi \rangle = \langle \Phi, -\Delta\varphi \rangle = -\int_{\mathbb{R}^n} \Phi(x) \Delta\varphi(x) dx$$

= $\varphi(0) = \langle \delta_0, \varphi \rangle$

(Evans, Section 2.2, Theorem 1).

$$\Phi(x,t) = \begin{cases} \frac{1}{(4\pi t)^{n/2}} e^{-\frac{|x|^2}{4t}}, & t > 0, \\ 0, & t < 0. \end{cases}$$

is a fundamental solution for the heat operator $\partial_t - \Delta$. See pp. 41–42 in Wahlén.

Theorem (Malgrange-Ehrenpreis)

Every non-zero linear PDO with constant coefficients has a fundamental solution $\Phi \in \mathscr{D}'(\mathbb{R}^n)$.

Theorem (Malgrange-Ehrenpreis)

Every non-zero linear PDO with constant coefficients has a fundamental solution $\Phi \in \mathscr{D}'(\mathbb{R}^n)$.

In particular P(D)u = f has a solution $u \in C^{\infty}$ for every $f \in \mathcal{D}'(\mathbb{R}^n)$.

Theorem (Malgrange-Ehrenpreis)

Every non-zero linear PDO with constant coefficients has a fundamental solution $\Phi \in \mathscr{D}'(\mathbb{R}^n)$.

In particular P(D)u = f has a solution $u \in C^{\infty}$ for every $f \in \mathcal{D}'(\mathbb{R}^n)$.

Not true for variable coefficients, H. Lewy 1957.

L. Hörmander & N. Dencker in Lund have proved necessary and sufficient conditions for solvability of

$$P(x,D)u = f.$$

Classification of PDE

$$P(D)u = \sum a_{ij} \frac{\partial^2 u}{\partial x_i \partial x_j} + \sum a_i \frac{\partial u}{\partial x_i} + a_0 u = f,$$

with $a_{ij} = a_{ij} \in \mathbb{R}$, $a_i \in \mathbb{R}$.

$$P(D)u = \sum a_{ij} \frac{\partial^2 u}{\partial x_i \partial x_j} + \sum a_i \frac{\partial u}{\partial x_i} + a_0 u = f,$$

with $a_{ij} = a_{ij} \in \mathbb{R}$, $a_i \in \mathbb{R}$. Quadratic form

$$q(\xi) = \sum a_{ij} \xi_i \xi_j$$

$$P(D)u = \sum a_{ij} \frac{\partial^2 u}{\partial x_i \partial x_j} + \sum a_i \frac{\partial u}{\partial x_i} + a_0 u = f,$$

with $a_{ij} = a_{ij} \in \mathbb{R}$, $a_i \in \mathbb{R}$. Quadratic form

$$q(\xi) = \sum a_{ij} \xi_i \xi_j \ = \sum \sigma_i \eta_i^2$$

(diagonalisation)

$$P(D)u = \sum a_{ij} \frac{\partial^2 u}{\partial x_i \partial x_j} + \sum a_i \frac{\partial u}{\partial x_i} + a_0 u = f,$$

with $a_{ij} = a_{ij} \in \mathbb{R}$, $a_i \in \mathbb{R}$. Quadratic form

$$q(\xi) = \sum a_{ij} \xi_i \xi_j \ = \sum \sigma_i \eta_i^2$$

(diagonalisation)

Definition

The equation is called

- elliptic if q is pos. definite
- ▶ hyperbolic if one $\sigma_i > 0$, rest < 0 (or vice versa)
- ▶ parabolic if one $\sigma_i = 0$, rest have same sign

Definition

The equation is called

- elliptic if q is pos. definite
- ▶ hyperbolic if one $\sigma_i > 0$, rest < 0 (or vice versa)
- ▶ parabolic if one $\sigma_i = 0$, rest have same sign

Definition

The equation is called

- elliptic if q is pos. definite
- ▶ hyperbolic if one $\sigma_i > 0$, rest < 0 (or vice versa)
- ▶ parabolic if one $\sigma_i = 0$, rest have same sign

Examples

- the Laplace equation is elliptic
- the wave equation is hyperbolic
- the heat equation is parabolic

Generalisation

Definition

$$P(D)u = \sum_{|\alpha| \le m} a_{\alpha} D^{\alpha}$$

is elliptic if

$$p_m(\xi) := \sum_{|\alpha|=m} a_{\alpha} (i\xi)^{\alpha} \neq 0 \quad \forall \xi \neq 0.$$

Generalisation

Definition

$$P(D)u = \sum_{|\alpha| \le m} a_{\alpha} D^{\alpha}$$

is elliptic if

$$p_m(\xi) := \sum_{|\alpha|=m} a_{\alpha} (i\xi)^{\alpha} \neq 0 \quad \forall \xi \neq 0.$$

 $p_m(\xi)$ is called the principal symbol and

$$p(\xi) = \sum_{|\alpha| \le m} a_{\alpha} (i\xi)^{\alpha} \ne 0 \quad \forall \xi \ne 0$$

the (full) symbol.

Generalisation

Definition

$$P(D)u = \sum_{|\alpha| \le m} a_{\alpha} D^{\alpha}$$

is elliptic if

$$p_m(\xi) := \sum_{|\alpha|=m} a_{\alpha} (i\xi)^{\alpha} \neq 0 \quad \forall \xi \neq 0.$$

 $p_m(\xi)$ is called the principal symbol and

$$p(\xi) = \sum_{|\alpha| < m} a_{\alpha} (i\xi)^{\alpha} \neq 0 \quad \forall \xi \neq 0$$

the (full) symbol.

$$\widehat{P(D)u} = p(\xi)\hat{u}$$

One can show that if P(D) is elliptic and $u \in \mathcal{D}'$, then

$$P(D)u \in C^{\infty} \Rightarrow u \in C^{\infty}$$

One can show that if P(D) is elliptic and $u \in \mathcal{D}'$, then

$$P(D)u \in C^{\infty} \Rightarrow u \in C^{\infty}$$

See Wahlén, Thm. 4.7, for a result in this direction.