PDE Lecture

Weak derivatives, distributions, classification of PDE

March 24
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Motivation

1D wave equation:
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on R.
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Motivation

1D wave equation:
Uy = Uxx

on R.

General solution:

u(x,t) =F(x+1)+G(x—1), F,GeC*R).

Still well-defined if F,G € C(R), or even F,G € L (R).
(Evans, Exercise 2.5.23)
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Ut = Uxx,
u(0,x) = g(x),
ut(oax) =0,

u(t,0) = u(t,m)

0,

0<x<mt>0,
O<x<m,
O<x<m,
t>0.
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Uy = Uyy, O<x<mt>0,
u(0,x) = g(x), O<x<m,
u,(0,x) =0, 0<x<m,
u(t,0) =u(t,m) =0, t>0.

Sine series solution

u(x,t) = i ag cos(kt) sin(kx)
k=1

where N
g(x) = Z ay sin(kx).
k=1
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3/35



Uy = Uyy, O<x<mt>0,
u(0,x) = g(x), O<x<m,

u (0,x) =0, 0<x<m,
u(t,0) =u(t,m) =0, t>0.

Sine series solution

u(x,t) = i ag cos(kt) sin(kx)
k=1

where N
g(x) = Z ay sin(kx).
k=1

Defines a C? solution if g € C3, g(0) = g"(0) = g(n) = g"(n) =0.
Still converges unif. to a cont. function if Y |ax| < e
(e.g. g piecewise C!, Wahlén: Example 1.6 and Exercise 7)
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In what sense are these solutions?
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Weak derivatives
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(Evans, 5.2)
Integration by parts:

/uD“(pdxz(—l)'al/Dau(pdx, u, ¢ € C;(U),
U U

where U C R" open.
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(Evans, 5.2)
Integration by parts:

/uD“(pdxz(—l)'al/Dau(pdx, u, ¢ € C;(U),
U U

where U C R" open.

Definition
If uec Ll (U), we say thatv € L] (U) is the ath
weak partial derivative of u, v = D%u, if
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(Evans, 5.2)
Integration by parts:

/uD“(pdxz(—l)'al/Dau(pdx, u, ¢ € C;(U),
U U

where U C R" open.

Definition
If uec Ll (U), we say thatv € L] (U) is the ath
weak partial derivative of u, v = D%u, if

/uD“(pdx:(—l)‘“‘/vq)dx, Vo € Co(U).
U U

Remark
v is unique if it exists: [,v@dx =0,V € C7(U) = v=0a.e.
(Lemma on p. 257 of Evans, Theorem 3.3 in Wahlén)
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Example

X, 0<x<m/2,
T—x, m/2<x<m.
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Example

X, 0<x<m/2,
gx) =
T—x, w/2<x<m.
, 1, 0<x<m/2,
gx) =
-1, m/2<x<m.

+g@e@)]§ +g(x)e)E
— ["¢wetax
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Example
Is ¢’ weakly differentiable?

/Ong'(x)‘l"(x) dx = /0 " ) - / ¢/ (x)dx = 29(1/2).

T
/2
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Example
Is ¢’ weakly differentiable?

T , , /2 , T ,
[ ¢wewa= [ gwar— [ ¢'wdr=20(/2).
0 0 /2
Can’t be written as i

- [T vwetar

for some v € L] (0, 7).
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Example
Is ¢’ weakly differentiable?

/Ongl(x)(Pl(x)dx_/On/Z(p’(x)dx—/ o' (x)dx=2¢(x/2).

V3
/2
Can’t be written as i
7/ v(x)@(x)dx
0
for some v € L] (0, 7).
Take @, (x) with, 0 < @, (x) < 1, @,(w/2) =1 and ¢,,(x) — 0,
X#m/2 as m— oo,

See also Evans, Example 2, p. 257.
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Distributions
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We try to expand the definition of derivatives so that g’ is also
differentiable.
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We try to expand the definition of derivatives so that g’ is also
differentiable.

Note:
> ¢ Jyugds,
> ¢ — [,uD%pdx and
> 90— ¢(a),acU,
are all linear functionals on C*(U). Take U = R”" for simplicity.

Definition
A distribution ¢ is a linear functional on 2(R") := CZ(R"), which
is continuous in the following sense. If {¢y} C Z(R") satisfies
1. 9K C R", compact, s.t. supp ¢ C K Vk, and
2. o € 2(R") s.t. D*¢@, — D¢ uniformly (on K) Ve,
then ¢(gr) — ¢(¢@) as k — oo.
The vector space of distributions is denoted 7'(R").
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Example
Letue Ll

0(9) = (w.9) = [ ulv)o(r)d

n

(R™). Then

defines a distribution.

€ 2(R")
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n
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if suppep C K.
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Example
Letue L]

loc

0(9) = (1.9) = [ ulv)o)dr, e (R

n

(R™). Then

defines a distribution.
Continuity:
1u(@)] < | gy 1@l =)

if suppp C K.
We identify the function « with the distribution ¢,,.
We write (u, @) for u(¢) even when u € 2'(R")
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Example
Let a € R". Define the Dirac delta distribution at a by

64(9) = (64, 9) = 9(a).

Continuity: [8,(¢)| < [|@]|z=
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Operations on distributions
For h e R", let

T Z(R") = Z(RY), (1,9)(x) = @(x—h).
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Operations on distributions
For h e R", let

T Z(R") = Z(R"), (1.9)(x) = @(x—h).

If o,y € Z(R"),

(T, W) =/<px—h y(x)dx

—/q) y(x+h)d

(@, T_py).

Define

T ' (RY) = Z'(R"), (T, @) = (1, T_yp).
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Generally, assume that the linear operator
L: 2(R") — 2(R")
has a continuous transpose
L": 9(R") = 2(R"),

such that
(Lo, y) = (p,L"y).
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Generally, assume that the linear operator
L: 2(R") — 2(R")
has a continuous transpose
L": 9(R") = 2(R"),
such that

(Lo, y) = (p.L"y).

Define
L: 7'(R") = Z'(R"), (Lu,@) = (u,L"p).
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Examples

> ()" =1
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Examples

> ()" =1
> (9y)" =0y
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Examples

> (m) =1
> (dy)" = —0y
> (097 = (~1)pe
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Examples

)—Th

x)T x]

)
D) = (1)

>
>
>
> (My)" =M,y (Where My = yo)

(1
(
(
(
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Examples

> ()" =1

> (dy)" =9y

> (D)7 = (~1)l*p®

> (My)" =M,y (Where My = yo)
Definition

The distributional derivative of u € 2'(R") is defined by

(D%u, ) = (u,(~1)*'D%p).

Remark: All distributions are infinitely differentiable in this sense.
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Example
Recall the function

) = 1, 0<x<m/2,
~1, m/2<x<m.

from before, which was not weakly differentiable:

i1 n/ i1
[ewewa= [ dwa- [ 0=/,

Question: What is the weak derivative of g’'?
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Example
Recall the function

) = 1, 0<x<m/2,
~1, m/2<x<T.

from before, which was not weakly differentiable:
i1 , , /2 , i1 ,
) gWe@ar= [T ac [ ¢war=2(x/2)

Question: What is the weak derivative of g’'?

Answer: ¢" = —268,,, since

(§9) = ~(g.9) = = [ {00/ () dv = ~2(8:2.9).
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Example
Recall the function

) = 1, 0<x<m/2,
~1, m/2<x<m.

from before, which was not weakly differentiable:
T , , /2 , n ,
) gWe@ar= [T ac [ ¢war=2(x/2)

Question: What is the weak derivative of g’'?

Answer: ¢" = —268,,, since
T
(6. 0) = (& 0) =~ [ &9 (0)dv = ~2(6:12,9).

Question: Can we see this graphically?
16/35



What is the distributional derivative of the function «
in Example 2 on p. 257 in Evans?
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What is the distributional derivative of the function «
in Example 2 on p. 257 in Evans?

i <1
u(x):{x fo<x<l,

2 ifl<x<?2.
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Convolution

Given ¢ € 2(R"),
Ur— Qxu

is a continuous linear operator on Z(R"). Transpose?
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Convolution

Given ¢ € 2(R"),
Ur— Qxu

is a continuous linear operator on Z(R"). Transpose?

(Qxu,y) = /(/(Px y)u > x)dx
:/</(p(x—y)l[/(x)dx> @(y)dy

= (w, Z(9) )
where Z(¢)(x) = o(—x).
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Convolution

Given ¢ € 2(R"),
Ur— Qxu

is a continuous linear operator on Z(R"). Transpose?

(Q*u,y) = /(/(px y)u >‘I’()d
:/</(p(x—y)l[/(x)dx> @(y)dy

= (u,Z2(¢) *y)
where Z(¢)(x) = ¢(—x).
Thus we define
(@xu,y) = (u,Z(9) x ),
when ¢,y € 2(R") and u € Z'(R").
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There is also another way to define convolution,

(@u)(x) = (u, p(x—-)),
ue 2'(R"), o € 2(R").
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There is also another way to define convolution,

(@u)(x) = (u, p(x—-)),
ue 2'(R"), o € 2(R").

This defines a C* function of x.
Wahlén, Lemma 3.27: These definitions agree. Moroever,

D*(@pxu) = (D*Q)xu= @*(D%).
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There is also another way to define convolution,

(@u)(x) = (u, p(x—-)),
ue 2'(R"), o € 2(R").

This defines a C* function of x.
Wahlén, Lemma 3.27: These definitions agree. Moroever,

D*(@pxu) = (D*Q)xu= @*(D%).

Example

(¢ * 8) (x) = (80, p(x —-)) = @ ().
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Fourier transform and tempered distributions

/ﬁvdx:/ uvdx Vu,ve 7 (R")
so 7T = 7.
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Fourier transform and tempered distributions

/ﬁvdx:/ uvdx Vu,ve 7 (R")

so 1 = 7.

Problem: .7 (2(R")) € 2(R").

Definition

A continuous linear functional on .(R") is called a

tempered distribution.
The space of tempered distributions is denoted .’ (R").
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Examples
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Fourier transform and tempered distributions

/ avdx = / uvdx Vu,ve 7 (R")
so 71 = 7.
Problem: .7 (2(R")) € 2(R").
Definition
A continuous linear functional on .(R") is called a

tempered distribution.
The space of tempered distributions is denoted .’ (R").

Remark: 9 c .5¥ = ' c 9'.
Examples

» 5,
> feLl, and (1+|x])NfeL! forsomeN = fe .7
> bl g 7.
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Definition
F,77 1. 7 — .7 are defined by

(F (), 0) =, Z(9), (F'w),0)=(uw,F ' (p)),
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Definition
F,77 1. 7 — .7 are defined by
(F(u),0)=(u,Z7(9)), (F 'u),0)=(u7 ' (9),

Example
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Definition
F,F 1 7 — 7" are defined by

(F (W), 0) = (.7 (@), (F'(u),9)=u,7 " (p)),

Example
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Definition
Z,F 1 .7 — " are defined by

(F (W), 0) = (u, 7 (@), (F~'(u),0)=u,7 " (9)),

(2m) ”/2/ ol

=((2m)"2, p).
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Definition
Z,F 1 .7 — " are defined by

(F (W), 0) = (u, 7 (@), (F~'(u),0)=u,7 " (9)),

Example
<30,<p> = <50,¢>
(2m) ”/2/ ol
= ((2m) "%, ).
So

b

é§n>
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Theorem
FFV'=F 17 =1d on.7.
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Theorem
FFV'=F 17 =1d on.7.

Proof.
(FT (), 0) = (w,7F () = (u,0). O
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Weak and distributional solutions to PDE
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Definition
Given a linear partial differential operator with constant
coefficients

P(D)= Y auD* ag€C

lat|<m

and f € 2'(R"), we say that u € 2'(R") solves the equation
P(D)u=f

in the sense of distributions if this holds as an equality in
2'(R"), that is,

(u,P(D) @) = (f,0), Voec2(R"),

where
P(D)" = = Y aq(-1)%D%

|a|<m
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Definition
Given a linear partial differential operator with constant
coefficients

P(D)= Y auD* ag€C

lat|<m

and f € 2'(R"), we say that u € 2'(R") solves the equation
P(D)u=f

in the sense of distributions if this holds as an equality in
2'(R"), that is,

(u,P(D) @) = (f,0), Voec2(R"),

where
P(D)" = = Y aq(-1)%D%

|a|<m

If f and u are both functions, we call u a weak solution.
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Example

1, x>0,
H(x) =
0, x<0
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Example
Let G € L, (R). Then u(x,r) = G(x—1) is a distributional solution
of

us+u, =0

since if ¢ € 2(R?), then

(U +ue, @) = (U, — @, — @x)
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Example

Let G e L}

oc(R). Then u(x,t) = G(x—1) is a distributional solution
of

us+u, =0
since if ¢ € 2(R?), then

<ut + Uy, q)> = <M7 — ¢ — q’x)
_ _/]Rz Glx— 1)(@u(x,1) + @c(x, 1)) dxdr
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Example

Let G e L}

oc(R). Then u(x,t) = G(x—1) is a distributional solution
of

ur+u, =0
since if Qc @(Rz), then
<ut+1/lx7 (P> = <u7 _(Pt _ (Px>
= —/]R2 G(x—1)(@i(x,1) + @y(x,1)) dxdt

u=x—t v=t

|:W(u7v) == (P(M—FV,V), ]l/v — (px+ (pt
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Example

Let G e L}

oc(R). Then u(x,t) = G(x —1t) is a distributional solution
of

us+u, =0
since if ¢ € 2(R?), then
<l/t[+l/lx, (P> = <M7 _(pt - (Px>
- /]R Gl —1)(@.0) + @ulx.)) dds

_[ u=x—t, v=t ]
W) =ewtv,y), W=+

= /G (/l[/vuvdv>du

~0
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Example

Let G e L}

oc(R). Then u(x,t) = G(x —1t) is a distributional solution
of

”t—i—ux = O
since if ¢ € 2(R?), then

(U +ue, @) = (U, — @, — @x)
_ /]Rz G(x—1)(@,(x,1) + @c(x,2)) dxdt

_[ o v=t ]
- Ltv) (P(M—l—v V) v, = O+ ¢

- /G (/‘l’vu\/dv>du

~0
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Fundamental solutions

Definition
Given a linear partial differential operator

P(D)= Y auD% ag€cC

|| <m
we say that ® € 2'(R") is a fundamental solution for P(D) if

P(D)® = &,.
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Fundamental solutions

Definition
Given a linear partial differential operator

P(D)= Y auD% ag€cC

|| <m
we say that ® € 2'(R") is a fundamental solution for P(D) if
P(D)® = &.

Theorem
Let ® be a fundamental solution for P(D). Then u = ®xf solves

P(D)u=f forallf € 2(R").
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Fundamental solutions

Definition
Given a linear partial differential operator

P(D)= Y auD% ag€cC

|| <m

we say that ® € 2'(R") is a fundamental solution for P(D) if
P(D)® = &.

Theorem

Let ® be a fundamental solution for P(D). Then u = ®xf solves
P(D)u=f forallf € 2(R").

Proof.
P(D)(®xf) = (P(D)®)xf =S xf = O

27/35



Example
H(x) is a fundamental solution for d, on R.
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Example
H(x) is a fundamental solution for d, on R.

Example

1
—5-log|x|, n=2,
D(x) = { ” 1

a2 123

AV

is a fundamental solution for —A on R”".
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Example
H(x) is a fundamental solution for d, on R.

Example

1
— 5z log|x], n=2,
d(x) = { 27:1 1 3
(

2 e 1

is a fundamental solution for —A on R”".

(—AD, @) = (P, —Agp) = /<I> JAQ(x)dx

¢(0) = (%, @)

(Evans, Section 2.2, Theorem 1).
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Example

1 k2
e 4 t>0
D(x,t) = { (4m)? ’ ’

0, 1 <0.

is a fundamental solution for the heat operator d, — A.
See pp. 41-42 in Wahlén.
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Theorem (Malgrange-Ehrenpreis)

Every non-zero linear PDO with constant coefficients has a
fundamental solution ® € 2'(R").
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Theorem (Malgrange-Ehrenpreis)

Every non-zero linear PDO with constant coefficients has a
fundamental solution ® € 2'(R").

In particular P(D)u =f has a solution u € C~ for every f € 2'(R").
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Theorem (Malgrange-Ehrenpreis)

Every non-zero linear PDO with constant coefficients has a
fundamental solution ® € 2'(R").

In particular P(D)u =f has a solution u € C~ for every f € 2'(R").

Not true for variable coefficients, H. Lewy 1957.

L. Hérmander & N. Dencker in Lund have proved necessary and
sufficient conditions for solvability of

P(x,D)u=f.

30/35



Classification of PDE
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2nd order linear PDE with const. coeff.
d%u du
P(D)l/t = Zaum +Zal’87x[. + apu —f,

with ajj = a;j € R, a; € R.
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2nd order linear PDE with const. coeff.
d%u du
P(D)l/t = Zaum +Za[87x[. + apu —f,

with ajj = a;j € R, a; € R.
Quadratic form

q(&) = Y a;&é;
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2nd order linear PDE with const. coeff.
d%u du
P(D)l/t = Zaum +Za[87x[. + apu —f,

with ajj = a;j € R, a; € R.
Quadratic form

q(§) =Y ay&§
= Zcfm?

(diagonalisation)
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2nd order linear PDE with const. coeff.
d%u du
P(D)l/t = Zaum +Zal’87x[. + apu —f,

with ajj = a;j € R, a; € R.
Quadratic form

q(§) =Y ay&§
= Zcmf

(diagonalisation)

Definition

The equation is called
> elliptic if ¢ is pos. definite
» hyperbolic if one o; > 0, rest < 0 (or vice versa)
» parabolic if one o; = 0, rest have same sign
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Definition

The equation is called
> elliptic if ¢ is pos. definite
» hyperbolic if one o; > 0, rest < 0 (or vice versa)
» parabolic if one o; = 0, rest have same sign
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Definition

The equation is called
> elliptic if ¢ is pos. definite
» hyperbolic if one o; > 0, rest < 0 (or vice versa)
» parabolic if one o; = 0, rest have same sign

Examples

> the Laplace equation is elliptic
» the wave equation is hyperbolic
> the heat equation is parabolic
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Generalisation

Definition

is elliptic if

pm(€) =Y aq(i&)*#0 VE#0.

|ot|=m
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Generalisation

Definition

is elliptic if

pm(€) =Y aq(i&)*#0 VE#0.

|ot|=m

pm(&) is called the principal symbol and

p(&)=") aa(i&)*#0 VE#0

o[ <m

the (full) symbol.
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Generalisation

Definition

is elliptic if

pm(€) =Y aq(i&)*#0 VE#0.

|at|=m

pm(&) is called the principal symbol and

p&) =Y aa(i&)*#0 VEF0

o[ <m

the (full) symbol.
P(D)u=p(&)i
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One can show that if P(D) is elliptic and u € Z’, then

PDucC”=uecC”
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One can show that if P(D) is elliptic and u € Z’, then
PDucC”=uecC”

See Wahlén, Thm. 4.7, for a result in this direction.
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