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1. We make the Ansatz u(x,y) = ϕ(x)ψ(y) and look for a solution which satisfies the boundary
conditions u(0,y) = u(1,y) = 0. Substituting u into Laplace’s equation gives

ϕ
′′(x)ψ(y)+ϕ(x)ψ ′′(y) = 0

and hence
ϕ ′′(x)
ϕ(x)

=−ψ ′′(y)
ψ(y)

=−λ ,

for some constant λ ∈ R (assuming ϕ(x)ψ(y) 6= 0). Hence, −ϕ ′′ = λϕ and ψ ′′ = λψ The
boundary conditions on the lateral sides give ϕ(0) = ϕ(1) = 0, whence λ = (kπ)2 for some
k = 1,2,3, . . . and ϕ(x) = Asin(kπx) for some A ∈ R. This in turn gives

ψ(y) = Bcosh(kπy)+C sinh(kπy)

for some constants B and C. Now we look for a solution satisfying the boundary conditions
uy(x,0) = 0 and u(x,1) = x2− x by making the Ansatz

u(x,y) =
∞

∑
k=1

(Bk cosh(kπy)+Ck sinh(kπy))sin(kπx)

(A can be swallowed into B and C). Evaluating at y = 0 gives

uy(x,0) =
∞

∑
k=1

kπCk sin(kπx) = 0,

so that Ck = 0 for each k. Evaluating at y = 1 gives

u(x,1) =
∞

∑
k=1

Bk cosh(kπ)sin(kπx) = x2− x.

In order to find Bk, we expand the function x2− x in a sine series. We have that

x2− x =
∞

∑
k=1

ck sin(kπx),

where

ck = 2
∫ 1

0
(x2− x)sin(kπx)dx =

2
kπ

∫ 1

0
(2x−1)cos(kπx)dx

=− 4
k2π2

∫ 1

0
sin(kπx)dx =

{
− 8

k3π3 , k odd,
0, k even.
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It follows that

u(x,y) =−
∞

∑
j=0

8
(2 j+1)3π3

sin((2 j+1)πx)cosh((2 j+1)πy)
cosh((2 j+1)π)

.

The calculations above were formal, but using Weierstrass M-test, one sees that the series
converges uniformly on the whole square and that one can differentiate it once termwise
on the square [0,1]× [0,1] and infinitely many times on the square [0,1]× [0,1) (note that
cosh((2 j+1)πy)/cosh((2 j+1)π)→ 0 exponentially fast for y ∈ [0,1)). Thus the series de-
fines a function u∈C∞([0,1]× [0,1))∩C1([0,1]× [0,1]) which solves Laplace’s equation and
the boundary conditions. Note that we cannot hope to do much better since if u were C2 on the
whole closed square, we would get the contradiction uxx(0,1) = 2 = −uyy(0,1) = 0, where
the boundary conditions and Laplace’s equation have been used.

2. We first write Laplace’s equation in polar coordinates:

∂ 2u
∂ r2 +

1
r

∂u
∂ r

+
1
r2

∂ 2u
∂θ 2 = 0.

Making the Ansatz u(r,θ) = ϕ(r)ψ(θ) leads to the equations

ψ
′′(θ) =−λψ(θ)

and
r2

ϕ
′′+ rϕ

′ = λϕ.

Assuming that u is 2π-periodic in θ gives λ = k2, k ∈Z, and ψk(θ) = eikθ (this is a convenient
way of making sure that each solution is only counted once). Inserting λ = k2 in the equation
for ϕ gives

r2
ϕ
′′+ rϕ

′ = k2
ϕ.

This is an Euler equation with linearly independent solutions r|k|, r−|k| if k 6= 0 and 1, logr if
k = 0. Hence, if we require u to be bounded at the origin, we obtain the solutions uk(r,θ) =
r|k|eikθ , k ∈ Z. We now try to find a solution of Laplace’s equation satisying the boundary
condition u(1,θ) = g(θ) by making the Ansatz

u(r,θ) =
∞

∑
k=−∞

ckr|k|eikθ .

This gives

g(θ) = u(1,θ) =
∞

∑
k=−∞

ckeikθ ,

so that
ck =

1
2π

∫
π

−π

g(θ)e−ikθ dθ .

Hence,

u(r,θ) =
∞

∑
k=−∞

(
1

2π

∫
π

−π

g(s)e−iks ds
)

r|k|eikθ =
1

2π

∫
π

−π

g(s)
∞

∑
k=−∞

r|k|eik(θ−s) ds.

Moreover,
∞

∑
k=−∞

r|k|eik(θ−s) =
∞

∑
k=0

(rei(θ−s))k +
∞

∑
k=1

(re−i(θ−s))k =
1

1− rei(θ−s)
+

re−i(θ−s)

1− re−i(θ−s)

=
1− r2

|1− rei(θ−s)|2
=

1− r2

|eis− reiθ |2
.



Hence,

u(r,θ) =
∫

π

−π

g(s)
1− r2

2π|eis− reiθ |2
,

and
1− r2

2π|eis− reiθ |2
= K(reiθ ,eis),

where K is the Poisson kernel for the unit disc (see Evans Section 2.2.4). The denominator
can also be written 2π(1−2r cos(θ − s)+ r2).

3. Making the Ansatz u(x, t) = ϕ(x)ψ(t) leads to iϕ(x)ψ ′(t)+ϕ ′′(x)ψ(t) = 0 and hence

ϕ ′′(x)
ϕ(x)

=− iψ ′(t)
ψ(t)

=−λ .

The periodic boundary conditions give ϕ(x) = Aeikx and λ = k2, k ∈ Z (where we’ve allowed
negative k but haven’t written the solutions e−ikx just like in the previous exercise in order to
count each solution just once). We also obtain ψ(t) = Be−ik2t . We now make the Ansatz

u(x, t) =
∞

∑
k=−∞

cke−ik2teikx

in order to find a solution which also satisfies the initial condition. This gives

g(x) = u(x,0) =
∞

∑
k=−∞

ckeikx

so that
ck =

1
2π

∫
π

−π

g(x)e−ikx dx

are the usual complex Fourier coefficients of g. Assuming that g is 2π-periodic and smooth,
one can integrate by parts arbitrarily many times in the formula for ck and obtain that |ck| ≤
CN(1 + |k|)−N for any N, where CN is a constant depending on N. From this it is easily
seen that u defined as above indeed is a solution of the initial/boundary-value problem for the
Schrödinger equation. Note also that

‖u(·, t)‖2
L2(−π,π) = 2π

∞

∑
k=−∞

|cke−ik2t |2 = 2π

∞

∑
k=−∞

|ck|2 = ‖g‖2
L2(−π,π)

by Parseval’s formula. Alternatively, one can deduce this using the energy method assuming
only that u is a smooth solution of the initial/boundary-value problem. The advantage of the
latter is that it also gives uniqueness (without assuming that u is given by the above Fourier
series formula).

4. Alternative 1: We use an energy method. Note that

d
dt

∫
π

0
u2(x, t)dx =

∫
π

0
u(x, t)ut(x, t)dx

=
∫

π

0
u(x, t)uxx(x, t)dx

=−
∫

π

0
u2

x(x, t)dx+[u(x, t)ux(x, t)]x=π
x=0

=−
∫

π

0
u2

x(x, t)dx

≤ 0
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since ux(0, t) = ux(π, t) = 0. It follows that∫
π

0
u2(x, t)dx≤

∫
π

0
u2(0, t)dx = 0

for all t ∈ [0,T ]. Hence, u(x, t)≡ 0.

Alternative 2: We use a maximum principle argument. Extend u to an even function on
[−π,π]× [0,T ] by setting u(x, t) = u(−x, t) for x ∈ [−π,0] and then to a 2π-periodic function
on R× [0,T ]. The extended function (also denoted u) belongs to C2

1(R×(0,T ])∩C(R× [0,T ])
and solves the heat equation with u(x,0) = 0. Since u is bounded (so that |u(x, t)| ≤ Aea|x|2 for
some A,a > 0), one can in fact deduce directly from Theorem 7 in Evans Section 2.3 that u
vanishes. However, one can also see this from the usual maximum principle by regarding the
domain [−π,π] with periodic boundary conditions as a compact manifold without boundary
(the unit circle). This means that the points (−π, t) and (π, t) for t ∈ (0,T ) can be regard
as interior points. Similarly, the points (−π,T ) and (π,T ) can be regarded as interior points
relative to the set R×{T}. The details are left to the reader.

Evans 4.7

1. Make the Ansatz u = v(x1)+w(x2). Inserting this in the equation, we get

(v′(x1))
2v′′(x1) =−(w′(x2))

2w′′(x2).

Since the left hand side is independent of x2 and the right hand side independent of x1, both
sides must be constant. Call this constant a ∈ R (we look for real solutions). Using the chain
rule, we get

d
dx1

(v′(x1))
3 = 3a

and hence
v′(x1) = (3ax1 +b1)

1
3

for some constant b1. Finally, assuming a 6= 0, we get

v(x1) =
1
4a

(3ax1 +b1)
4
3 + c1

for some constant c1. If a = 0, on the other hand, we get

v(x1) = b
1
3
1 x1 + c1.

Noting that w(x) =−v(x) solves (w′)2w′′ =−a if v solves (v′)2v′′ = a, we similarly get

w(x2) =−
1
4a

(3ax2 +b2)
4
3 − c2

if a 6= 0 and

w(x2) =−b
1
3
2 x2− c2

if a = 0.
In the case a = 0 we therefore obtain the solution

u(x1,x2) = B1x1 +B2x2 +C,



where we have set B j = b
1
3
j , j = 1,2, and C = c1− c2. This is of course a smooth solution on

R2.
In the case a 6= 0 we choose b1 = b2 = 0, which just corresponds to a translation. The solution
can then be written

u(x1,x2) = A(x
4
3
1 − x

4
3
2 )+C

with A = 3
4
3 a

1
3

4 . Note that x
4
3
j is a well-defined C1 function on the whole real line. However, it

isn’t twice differentiable at x1 = 0. This u is therefore only a classical solution of the equation
away from the coordinate axes.

2. To find the solution one makes the Ansatz u(x1,x2) = v(x1)w(x2). One then obtains the
equations v′′(x1) =−λv(x1), w′′(x2) = λw(x2). Furthermore, the condition u(x1,0) = 0 sug-
gests taking w(0) = 0, while the condition ux2(x1,0) = sin(nx1)/n suggest taking λ = n2,
v(x1) = sin(nx1)/n2 and w(x2) = sinh(nx2), resulting in

u(x1,x2) =
1
n2 sin(nx1)sinh(nx2).

One easily verifies that this is indeed a solution.
Note that the initial data converge to 0 both uniformly and in L2

per as n→ ∞. However, for
each fixed x2 > 0 the function x1→ u(x1,x2) tends to infinity, both in the supremum norm and
in L2, since

u
(

π

2n
,x2

)
=

sinh(nx2)

n2 → ∞

and ∫
π

−π

u
(

π

2n
,x2

)2
dx1 = π

(
sinh(nx2)

n2

)2

→ ∞

as n→ ∞.
Thus the Cauchy problem is ill-posed in the sense that the solution does not depend contin-
uously on the initial data (at least not in these topologies). The example can be modified so
that arbitrarily many derivatives of the initial data also tend to 0, by changing sin(nx1)/n to
sin(nx1)/nk, with k as large as wanted.

8. Using the solution formula

u(x, t) =
1

(4πit)n/2

∫
Rn

e
i|x−y|2

4t g(y)dy, t 6= 0,

(see Section 4.3), we obtain

|u(x, t)| ≤ 1
(4π|t|)n/2

∫
Rn
|g(y)|dy, t 6= 0.

Hence
‖u(·, t)‖L∞(Rn) ≤

1
(4π|t|)n/2 ‖g‖L1(Rn)→ 0

as |t| → ∞. Note however, that the L2 norm of the solution is conserved (see Section 4.3).


