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Composite optimization problems

® \We have introduced the composite optimization problem
minimize f(Lz) + g(x)
T

® Need an algorithm that solves it - proximal gradient method

® We will consider the simpler composite optimization problem
minimize f(x) + g(x)
xr

that gives the former by letting f — fo L



Problem assumptions

® Proximal gradient method works, e.g., for problems that satisfy

® fis B-smooth f:R™ — R (not necessarily convex)
® g is closed convex

® Recall that if S-smoothness implies that f satisfies
Fly) < fl@) + V@) (y—2) + Sy — |3
fly) = f@) + V@) (y—2) = Slly — |3

it has convex quadratic upper and concave quadratic lower bounds

® |f f in addition is convex, we instead have

f@) < f@) + V@) (y—2)+ Sy — =3
) > f@)+ Vi) (y—a)

where the concave quadratic lower bound is replaced by affine



Minimizing upper bound

® Due to S-smoothness of f, we have

f@) +9@) < f@)+ Vi) (y—2) + Elly — 213 + 9(»)

for all x,y € R", i.e., r.h.s. is upper bound to l.h.s.
® Minimizing in every iteration the r.h.s. w.r.t. y for given x gives

v = argmin (f(z) + V()" (y = 2) + 5y — 2} + 9(v))

Y

= argmin (g(y) + §lly — (z — 57" VS (@) 3)

Y

= proxg-1,(z — B~V f(2))



Proximal gradient method

Let us replace 8 by fyk_l, x by z, and v by x4 to get:

w1 = argmin (f(ax) + V(@) (v = o) + 54 ly = 2llf + 9(v)
Yy

= axgmin (9(v) + 757 Iy — (ox = 0V () )

= prox,, o (zr — WV f(zk))

This is exactly the proximal gradient method
The method replaces f by quadratic approximation and minimizes

(Note that we need an initial guess x( to start the iteration)



Proximal gradient — Example

Proximal gradient iterations for problem minimize (2 — a)? + |z|
x

f(z) = 4(x — a)? is smooth term and g(z) = |z| is nonsmooth
Iteration: z41 = prox, (vx — YV f(zk))

Note: convergence in finite number of iterations (not always)

Zo



Proximal gradient — Example

Proximal gradient iterations for problem minimize (2 — a)? + |z|
x

f(z) = 4(x — a)? is smooth term and g(z) = |z| is nonsmooth
Iteration: z41 = prox, (vx — YV f(zk))

Note: convergence in finite number of iterations (not always)

\




Proximal gradient — Example

Proximal gradient iterations for problem minimize (2 — a)? + |z|
x

f(z) = 4(x — a)? is smooth term and g(z) = |z| is nonsmooth
Iteration: z41 = prox, (vx — YV f(zk))

Note: convergence in finite number of iterations (not always)

X—

//
j
J




Proximal gradient — Example

Proximal gradient iterations for problem minimize (2 — a)? + |z|
x

f(z) = 4(x — a)? is smooth term and g(z) = |z| is nonsmooth
Iteration: z41 = prox, (vx — YV f(zk))

Note: convergence in finite number of iterations (not always)

3



Proximal gradient — Example

Proximal gradient iterations for problem minimize (2 — a)? + |z|
x

f(z) = 4(x — a)? is smooth term and g(z) = |z| is nonsmooth
Iteration: z41 = prox, (vx — YV f(zk))

Note: convergence in finite number of iterations (not always)

/1

Z
3I4



Proximal gradient — Example

Proximal gradient iterations for problem minimize (2 — a)? + |z|
x

f(z) = 4(x — a)? is smooth term and g(z) = |z| is nonsmooth
Iteration: z41 = prox, (vx — YV f(zk))

Note: convergence in finite number of iterations (not always)

/1

/

Z
3I4



Proximal gradient — Special cases

® Proximal gradient method:

® solves minimize(f(x) + g(z))

® iteration: kaH = prox,, ,(vx — 7V f(2k))
® Proximal gradient method with g = 0:

® solves minizmize(f(x))

® prox,, ,(z) = argmin_ (0 + %Hx —z|3) =2

® jteration: xp41 = pI"O)QWQ(CC;C — % Vf(zk)) =2k — %V f(zk)
® reduces to gradient method

® Proximal gradient method with f = 0:
® solves minimize(g(x))
® Vf(x)=0

iteration: xpy1 = plroxﬂ/kg(ac;c — vV f(zk)) = prokag(:ck)
® reduces to proximal point method (which is not very useful)
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Proximal gradient method — Fixed-point set

® Proximal gradient step
Tp41 = prox,, o(zx — 7V f(zk))
® If 2511 = xy, they are in proximal gradient fixed-point set

{r:z= prox,yg(x —7Vf(x))}

® Under some assumptions, algorithm will satisfy 1 — 2z — 0

® this means that fixed-point equation will be satisfied in limit
® what does it mean for x to be a fixed-point?

10



Proximal gradient — Optimality condition

® Proximal gradient step:

v = prox, (z =7V f(r)) = arg;nin(g(y) +55lly = (@ =V F(@)I3)

h(y)

where v is unique due to strong convexity of h

® Fermat's rule (since CQ holds) gives v = prox. ,(z — vV f(z)) iff:

0 € 9g(v) + Oh(v)
=9dg(v) + ’fl(v —(z =V f(z)))
= g(v) + Vf(x) +7 (v - )

since h differentiable
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Proximal gradient — Fixed-point characterization

For v > 0, we have that

T = prox, (T —yVf(z)) if and onlyif 0€ dg(z)+ Vf(7)

® Proof: the proximal step equivalence
v=prox,,(r —7Vf(r)) <« 0€0dg(v)+Vf(z)+ 7w — )
evaluated at a fixed-point £ = v = T reads
T =prox, (2 —Vf(z)) < 0€09g(@)+Vf(z)

® We call inclusion 0 € 0g(z) + V f(Z) fixed-point characterization
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Meaning of fixed-point characterization

® What does fixed-point characterization 0 € dg(Z) + V f(Z) mean?
® For convex differentiable f, subdifferential 9f(x) = {V f(x)} and

0€df(x)+09(z) =0(f+g)(@)

(subdifferential sum rule holds), i.e., fixed-points solve problem
® For nonconvex differentiable f, we might have 0f(z) =0

® Fixed-point are not in general global solutions
® Points Z that satisfy 0 € dg(Z) + V f(Z) are called critical points
® If g = 0, the condition is Vf(Z) = 0, i.e., a stationary point

® Quality of fixed-points differs between convex and nonconvex f
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Conditions on v, for convergence

We replace in proximal gradient method f(y) by
FQ@r) + V()" (v — o) + 2 lly — a3

and minimize this plus g(y) over y to get the next iterate

We know from (-smoothness of f that for all z,y
F) < F@) + V(@) (g —2) + 5lly - l3

If v1. € [e, %] with € > 0, an upper bound is minimized

Can use v; € [e,% — €] and show convergence of some quantity

14



Practical convergence — Example

® | ogarithmic y axis of quantity that should go to O for convergence
® |inear x axis with iteration number

0 02 04 06 08 1 12 14 16 18 2
iteration k x10°

® Fast convergence to medium accuracy, slow from medium to high
® Many iterations may be required
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Stopping conditions

® For S-smooth f:R™ — R, we can stop algorithm when
suk = (0 (@ — 2ps1) + Vi (@p1) — VF(r)

is small (notation and reason will be motivated in future lecture)

® This is the plotted quantity on the previous slide
® \We can use absolute or relative stopping conditions:
® absolute stopping conditions with small e,ps > 0

%Huk||2 < €abs or %HUI@H2 < €ansV/n

® relative stopping condition with small €1, € > O:

1 llwgll2 <
B TenllztB 1V f(wp)llate = Crel

® Problem considered solved to optimality if, say, %||uk||2 <10°¢

® Often lower accuracy of 1073 or 10~% is enough
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Applying proximal gradient to primal problems

Problem minimize f(z) + g(z):

® Assumptions:
® f smooth
® g closed convex and prox friendly*

® Algorithm: xp 41 = prox,, ,(zr — WV f(zk))

Problem minimize f(Lz) + g(x):

® Assumptions:
® f smooth (implies f o L smooth)
® g closed convex and prox friendly1
e Gradient V(f o L)(x) = LTV f(Lx)

® Algorithm: zj41 = prox,, ,(z) — LTV f(Lxy))

1 Prox friendly: proximal operator cheap to evaluate, e.g., g separable
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Applying proximal gradient to dual problem

Let us apply the proximal gradient method to the dual problem
minimize f* (1) + g*(—L" )
I

Assumptions:
® f: closed convex and prox friendly
® g: o-strongly convex

Why these assumptions?
® f*: closed convex and prox friendly

113

® g%o LT “—2-smooth and convex

Algorithm:

fuy1 = Prox,, o (uk — WV (g* o =L") (ux))
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Dual proximal gradient method — Explicit version 1

® We will make the dual proximal gradient method more explicit
pks1 = prox., (ks — V(9" 0 —L7) (1))
® Use V(g* o —LT) (1) = —LVg*(—LTp) to get

xr = Vg (=L )
Prt1 = ProxX., p. (g + e Lay)
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Dual proximal gradient method — Explicit version 2

® Restating the previous formulation

zp = Vg (=L k)

HEk41 = PTOXy, g+ (ke + i Lay)
® Use Moreau decomposition for prox:
prox, ;. (v) = v — 'yproxvflf(vflv)
to get
wp = Vg (=L k)
Uk = pi + YL

Hit1 = Vg — %pfOXkalf(%:lvk)
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Dual proximal gradient method — Explicit version 3

® Restating the previous formulation
xr = Vg (—L" i)
v = pu + Y Lag
Hk+1 = Uk — VkPYOXV,Zlf(%lek)
® Use subdifferential formula, since g* differentiable:

Vg*(v) = arggrunax(uTx —gx)) = arg;nin(g(ac) —vTla)

with v = —LT 1, to get

2, = argmin(g(x) + ()" La)

v = pg + Ly

g1 = U — ’YkPI“OXA,]c—lf(’yk‘lvk)

® Can implement method without computing conjugate functions
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Dual proximal gradient method — Primal recovery

® Can we recover a primal solution from dual prox grad method?

® | et us use explicit version 1
zp = Vg (=L i)
Prt1 = ProxX., p. (g + e Lag)
and assume we have found fixed-point (Z, i): for some 5 > 0,

T =Vg'(~L"p)
[i = proxs s (fi + YLT)

® Fermat's rule for proximal step

0€df(m)+7 (& — (p+7L7)) = df*(p) — LT

is with Z = Vg*(— L") a primal-dual optimality condition
® So xy will solve primal problem if algorithm converges
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Problems that prox-grad cannot solve

® Problem minimize f(z) + g(zx)

® Assumptions: f and g convex but nondifferentiable
® No term differentiable, another method must be used:

® Subgradient method
® Douglas-Rachford splitting
® Primal-dual methods
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Problems that prox-grad cannot solve efficiently

® Problem minimize f(z) + g(Lx)

® Assumptions:

® f smooth
® ¢ nonsmooth convex
® [ arbitrary structured matrix

® Can apply proximal gradient method

g1 = argmin(g(Ly) + 5-ly — (@x — WV f(@r))l[3)
Yy

but proximal operator of go L

1o, gor(2) = argmin(y(La) + & 1« = 2[3)

often not “prox friendly”, i.e., it is expensive to evaluate
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