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In this short note, we prove the following duality correspondence.
Theorem 1 The following are equivalent for f : R™ — RU {oo}.
(i) f is proper closed and o-strongly convex
(ii) Of : R™ — 2R" is mazimally monotone and o-strongly monotone
(iii) Vf*:R™ = R™ is o-cocoercive
(iv) Vf* is %—Lz‘pschitz continuous and mazimally monotone
(v) f*:R™ =R is closed convex and satisfies descent lemma (is L-smooth)

(vi) f* satisfies for all u,v € R™:
Frw) + V) (0 —u) + IV (0) = VW)l < (). (1)

The implication (iv) = (i4i) is called the Baillon-Haddad theorem.
We will make use of the following results.

Proposition 1 (Rockafellar) The function f: R™ — RU{oo} is proper closed and convex
if and only if Of : R™ — 28" is mazimally monotone.

Proposition 2 (Minty) The subdifferential Of : R* — 28" is mazimally monotone if and
only if ran(al + 0f) = R™ for any a > 0.

Proposition 3 Suppose that f is proper closed and convex. Then (Of)~ = of*.

Proof. (i) < (i): (i) is equivalent to that g(z) = f(x) — $|lz[3 is proper closed and
convex and Proposition 1 implies its equivalence to that dg = 9(f — |- [|3) = 0f — ol is
maximally monotone (where the last equality can trivially be shown to hold). This, in turn,
is equivalent to that df is maximally monotone and o-strongly monontone.

(#4) < (i4d): (i1) is equivalent to that dg = Of — ol is maximally monotone. The
monotonicity part is equivalent to

(u—v)"(x—y) > olz -yl

for all (z,u) € gphdf and (y,v) € gphdf or equivalently (Proposition 3) for all x € 9 f*(u)
and y € 9f*(v). Since Cauchy-Schwarz implies that df* is singlevalued on its domain
(D =randf), it is equivlent to that

(u =) (Vf(u) = Vf*(v) > ol|VF*(w) = V()3 (2)

where Vf* : D — R"™ where D = randf.
The maximally part is (by Proposition 2) equivalent to that ran(al 4+ dg) = R™ for any
a > 0. Now set @ = o to get ran(ol + 0f — ol) =ran(df) = D = R™.
Hence maximal monotonicity of g = f — | - ||3 is equivalent to that Vf* : R* — R"
satisfies (2), i.e., is o-cocoercive.
(#4i) = (iv): Cauchy-Schwarz and nonnegativity of norms give that cocoercivity (2)
1

implies monotonicity and —-Lipschitz continuity of V f*. Further, since f* is proper closed

convex (by contruction of conjugate functions) V f* is maximally monotone (Proposition 1).



(tv) = (v): Let h(1) = f*(u+ 7(v — u)), then by chain rule
Vh(r) = VI (u+7w—u)"(v—u)

and

() — f*(w) = h(1) — h(0) = /:0 Vh(r)dr = /:0 Vi(u+7w—u)’(v—u)dr

Further
1

V(W) (v —u) = V)" (v —u)dr

7=0

Adding equalities on previous slide and taking absolute value:
[f*(0) = f*(u) = Vf* ()T (v — u)|
1
= [ (Vfu+r(v—u) =V @) (v—u)drl

7=0

1
< / [(Vf*(u+7(v—u) = V(@) (v—u)|dr
=0

1
< / IV £+ 70— w) — V£* (@)|allo — ull2 dr
7=0
1

1
< [ Blrto=wlallo - uldr =gl [ rar
7=0 T

=0
= gllv —ull3

Rearranging gives
Fr@) = £ () = V(@) (v —u) < 5l —ull3
Fr@) = £ (w) = V(@) (v =) > = 5o —ull3.
Now, since f* is closed convex, the second condition is redundant and f* satisfies
Fr ) = ) = V(@) (0 = u) < §llv - ull3
Fr) = fw) + V(@) (v —u)

i.e., f* is closed convex and satisfies the descent lemma.

(v) = (vi): Define ¢(v) = f*(v) — Vf*(u)Tv, which is also t-smooth (w.r.t. v) and
convex with gradient: V¢(v) = Vf*(v) — Vf*(u). A minimizing point is u since ¢ convex
and Vo(u) = 0. Therefore, and since ¢ is smooth and the descent lemma holds, and we can
conclude:

$(u) < p(v = V() < 6(v) + Vé(v)" (v = aV(v) = v) + 55 |[v — TV (v) — w3
= 6(v) = §[IVo()II5.
Inserting the defintion of ¢ gives:
Fr(u) =V (u)Tu < f(v) =V (@)To = GV () = V)l
and after rearrangement
Fr@) + V(@) (v —u) + SV (v) = V@)l < f(v),

which was to be proven.
(vi) = (4i7): Inequality (1) holds for arbitrary u,v € R™. Adding two copies with u, v
swapped gives

(Vf*(u) = V() (u—v) > 0l|VF*(v) = VF*(w)l3,

which is the definition of cocoercivity in (ii7). O



