Strong Convexity and Smoothness Duality

Pontus Giselsson

In this short note, we prove the following duality correspondence.

Theorem 1 The following are equivalent for $f: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$.

- (i) f is proper closed and σ -strongly convex
- (ii) $\partial f: \mathbb{R}^n \to 2^{\mathbb{R}^n}$ is maximally monotone and σ -strongly monotone
- (iii) $\nabla f^* : \mathbb{R}^n \to \mathbb{R}^n$ is σ -cocoercive
- (iv) ∇f^* is $\frac{1}{\sigma}$ -Lipschitz continuous and maximally monotone
- (v) $f^*: \mathbb{R}^n \to \mathbb{R}$ is closed convex and satisfies descent lemma (is $\frac{1}{\sigma}$ -smooth)
- (vi) f^* satisfies for all $u, v \in \mathbb{R}^n$:

$$f^*(u) + \nabla f^*(u)^T(v - u) + \frac{\sigma}{2} \|\nabla f^*(v) - \nabla f^*(u)\|_2^2 \le f^*(v). \tag{1}$$

The implication $(iv) \Rightarrow (iii)$ is called the Baillon-Haddad theorem.

We will make use of the following results.

Proposition 1 (Rockafellar) The function $f: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ is proper closed and convex if and only if $\partial f: \mathbb{R}^n \to 2^{\mathbb{R}^n}$ is maximally monotone.

Proposition 2 (Minty) The subdifferential $\partial f: \mathbb{R}^n \to 2^{\mathbb{R}^n}$ is maximally monotone if and only if $\operatorname{ran}(\alpha I + \partial f) = \mathbb{R}^n$ for any $\alpha > 0$.

Proposition 3 Suppose that f is proper closed and convex. Then $(\partial f)^{-1} = \partial f^*$.

Proof. (i) \Leftrightarrow (ii): (i) is equivalent to that $g(x) = f(x) - \frac{\sigma}{2} ||x||_2^2$ is proper closed and convex and Proposition 1 implies its equivalence to that $\partial g = \partial (f - \frac{\sigma}{2} ||\cdot||_2^2) = \partial f - \sigma I$ is maximally monotone (where the last equality can trivially be shown to hold). This, in turn, is equivalent to that ∂f is maximally monotone and σ -strongly monontone.

 $(ii) \Leftrightarrow (iii)$: (ii) is equivalent to that $\partial g = \partial f - \sigma I$ is maximally monotone. The monotonicity part is equivalent to

$$(u-v)^T(x-y) \ge \sigma ||x-y||_2^2$$

for all $(x, u) \in \operatorname{gph} \partial f$ and $(y, v) \in \operatorname{gph} \partial f$ or equivalently (Proposition 3) for all $x \in \partial f^*(u)$ and $y \in \partial f^*(v)$. Since Cauchy-Schwarz implies that ∂f^* is singlevalued on its domain $(D = \operatorname{ran} \partial f)$, it is equivlent to that

$$(u-v)^{T}(\nabla f^{*}(u) - \nabla f^{*}(v)) \ge \sigma \|\nabla f^{*}(u) - \nabla f^{*}(v)\|_{2}^{2}$$
(2)

where $\nabla f^*: D \to \mathbb{R}^n$ where $D = \operatorname{ran} \partial f$.

The maximally part is (by Proposition 2) equivalent to that $\operatorname{ran}(\alpha I + \partial g) = \mathbb{R}^n$ for any $\alpha > 0$. Now set $\alpha = \sigma$ to get $\operatorname{ran}(\sigma I + \partial f - \sigma I) = \operatorname{ran}(\partial f) = D = \mathbb{R}^n$.

Hence maximal monotonicity of $g = f - \frac{\sigma}{2} \|\cdot\|_2^2$ is equivalent to that $\nabla f^* : \mathbb{R}^n \to \mathbb{R}^n$ satisfies (2), i.e., is σ -cocoercive.

 $(iii) \Rightarrow (iv)$: Cauchy-Schwarz and nonnegativity of norms give that cocoercivity (2) implies monotonicity and $\frac{1}{\sigma}$ -Lipschitz continuity of ∇f^* . Further, since f^* is proper closed convex (by contruction of conjugate functions) ∇f^* is maximally monotone (Proposition 1).

$$(iv) \Rightarrow (v)$$
: Let $h(\tau) = f^*(u + \tau(v - u))$, then by chain rule
$$\nabla h(\tau) = \nabla f^*(u + \tau(v - u))^T(v - u)$$

and

$$f^*(v) - f^*(u) = h(1) - h(0) = \int_{\tau=0}^1 \nabla h(\tau) d\tau = \int_{\tau=0}^1 \nabla f^*(u + \tau(v - u))^T (v - u) d\tau.$$

Further

$$\nabla f^{*}(u)^{T}(v-u) = \int_{\tau=0}^{1} \nabla f^{*}(u)^{T}(v-u) d\tau$$

Adding equalities on previous slide and taking absolute value:

$$\begin{split} |f^*(v) - f^*(u) - \nabla f^*(u)^T(v - u)| \\ &= |\int_{\tau=0}^1 (\nabla f^*(u + \tau(v - u)) - \nabla f^*(u))^T(v - u) \, d\tau| \\ &\leq \int_{\tau=0}^1 |(\nabla f^*(u + \tau(v - u)) - \nabla f^*(u))^T(v - u)| \, d\tau \\ &\leq \int_{\tau=0}^1 \|\nabla f^*(u + \tau(v - u)) - \nabla f^*(u)\|_2 \|v - u\|_2 \, d\tau \\ &\leq \int_{\tau=0}^1 \beta \|\tau(v - u)\|_2 \|v - u\|_2 \, d\tau = \beta \|v - u\|_2^2 \int_{\tau=0}^1 \tau \, d\tau \\ &= \frac{\beta}{2} \|v - u\|_2^2 \end{split}$$

Rearranging gives

$$f^*(v) - f^*(u) - \nabla f^*(u)^T (v - u) \le \frac{\beta}{2} \|v - u\|_2^2$$

$$f^*(v) - f^*(u) - \nabla f^*(u)^T (v - u) \ge -\frac{\beta}{2} \|v - u\|_2^2.$$

Now, since f^* is closed convex, the second condition is redundant and f^* satisfies

$$f^*(v) - f^*(u) - \nabla f^*(u)^T (v - u) \le \frac{\beta}{2} ||v - u||_2^2$$

$$f^*(v) \ge f^*(u) + \nabla f^*(u)^T (v - u)$$

i.e., f^* is closed convex and satisfies the descent lemma.

 $(v) \Rightarrow (vi)$: Define $\phi(v) = f^*(v) - \nabla f^*(u)^T v$, which is also $\frac{1}{\sigma}$ -smooth (w.r.t. v) and convex with gradient: $\nabla \phi(v) = \nabla f^*(v) - \nabla f^*(u)$. A minimizing point is u since ϕ convex and $\nabla \phi(u) = 0$. Therefore, and since ϕ is smooth and the descent lemma holds, and we can conclude:

$$\phi(u) \le \phi(v - \sigma \nabla \phi(v)) \le \phi(v) + \nabla \phi(v)^T (v - \sigma \nabla \phi(v) - v) + \frac{1}{2\sigma} \|v - \sigma \nabla \phi(v) - v\|_2^2$$
$$= \phi(v) - \frac{\sigma}{2} \|\nabla \phi(v)\|_2^2.$$

Inserting the defintion of ϕ gives:

$$f^*(u) - \nabla f^*(u)^T u \le f^*(v) - \nabla f^*(u)^T v - \frac{\sigma}{2} \|\nabla f^*(v) - \nabla f^*(u)\|_2^2$$

and after rearrangement

$$f^*(u) + \nabla f^*(u)^T(v - u) + \frac{\sigma}{2} ||\nabla f^*(v) - \nabla f^*(u)||_2^2 \le f^*(v),$$

which was to be proven.

 $(vi) \Rightarrow (iii)$: Inequality (1) holds for arbitrary $u, v \in \mathbb{R}^n$. Adding two copies with u, v swapped gives

$$(\nabla f^*(u) - \nabla f^*(v))^T (u - v) \ge \sigma \|\nabla f^*(v) - \nabla f^*(u)\|_{2}^2$$

which is the definition of cocoercivity in (iii).