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Extended-valued functions and domain

We consider extended-valued functions f : R® — RU {0} =: R

Example: Indicator function of interval [a, ]

0 ifa<zxz<bd
o] (z) = oo else

s
The (effective) domain of f : R™ — R U {oo} is the set
dom f={z eR": f(z) < oo}

(Will always assume domf # (), this is called proper)



Convex functions

® Graph below line connecting any two pairs (z, f(x)) and (y, f(v))

convex function nonconvex function
® Function f : R™ — R is convex if for all 2,y € R™ and 6 € [0, 1]:
flOz+(1—0)y) <O0f(x)+(1-0)f(y)

(in extended valued arithmetics)

® A function f is concave if —f is convex



Epigraphs

® The epigraph of a function f is the set of points above graph
epif

® Mathematical definition:

epif ={(z,r) | f(z) <r}

® The epigraph is a set in R™ x R



Epigraphs and convexity

® Let f : R" > RU{o0}
® Then f is convex if and only epif is a convex set in R” x R

eplf I eplf

® fis called closed (lower semi-continuous) if epif is closed set



Convex envelope

® Convex envelope of f is largest convex minorizer

f(@) envf(x)

® Definition: The convex envelope env f satisfies: env f convex,

envf < f and envf > g for all convex g < f



Convex envelope and convex hull

® Assume f:R" — RU {co} is closed

® Epigraph of convex envelope of f is closed convex hull of epif

N

® cpif in light gray, epienvf includes dark gray
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Affine functions

Affine functions f : R™ — R are of the form

fly)=sTy+r

Affine functions f : R®™ — R cut R™ x R in two halves

fy)=sTy+r

(87 _1)

s defines slope of function

Upper halfspace is epigraph with normal vector (s, —1):

epif ={(y,t) :t>s"y+r} ={(y,t): (s, =) (y,t) < —r}
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Affine functions — Reformulation

® Pick any fixed z € R"; affine f(y) = sTy + r can be written as

fly) = f(z) +s"(y — )

(since r = f(z) — sTx)

fly) = f@) + 5" (y — 2)

(s,—1)

® Affine function of this form is important in convex analysis
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First-order condition for convexity

e A differentiable function f : R™ — R is convex if and only if

f) > f@)+ V@) (y— =)

for all z,y € R™

® Function f has for all z € R™ an affine minorizer that:
® coincides with function f at =
has slope s defined by V f, which coincides the function slope
is supporting hyperplane to epigraph of f
defines normal (Vf(z), —1) to epigraph of f
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Second-order condition for convexity

® A twice differentiable function is convex if and only if
V2f(z) =0

for all z € R™ (i.e., the Hessian is positive semi-definite)
® “The function has non-negative curvature”
® Nonconvex example: f(z) =T [§ %]z with V2f(z) £ 0

13



Outline

e Definition, epigraph, convex envelope

e First- and second-order conditions for convexity

¢ First- and second-order conditions without full domain
o Convexity preserving operations

e Concluding convexity — Examples

e Strict and strong convexity

® Smoothness

14



First-order condition without full domain

® Suppose f : R™ — RU{oo} is differentiable on dom f
® Then f is convex if and only if

fy) = f@) + V@) (y - )

for all x,y € domf and domf is convex
l/z x>0

oo else

® Example f(x) = {
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Second-order condition without full domain

® Suppose f : R™ — RU {oo} is twice differentiable on domf

® Then f is convex if and only if
V2f(z) =0

for all x € domf and domf is convex
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Operations that preserve convexity

Positive sum

Marginal function

Supremum of family of convex functions
Composition rules

Prespective of convex function
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Positive sum

® Assume that f; are convex for all j € {1,...,m}
® Assume that there exists x such that f;(x) < oo for all j
® Then the positive sum

f=Y tf;
i=1

with £; > 0 is convex
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Marginal function

® let f:R" xR™ — RU {oo} be convex
® Define the marginal function

g(z) == igff(xyy)

® The marginal function g : R® — R U {£oc} is convex if f is!

Lot may be that g(z) = —oo for all # € domg, we call such functions convex here.
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Supremum of convex functions

® Point-wise supremum of convex functions from family {f;};c:

f(a) :=sup{f;(x) : j e J}

® Supremum is over functions in family for fixed x
® Example:

f3
[

S

® Convex since epigraph is intersection of convex epigraphs
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Scalar composition rule

® Consider the function f : R" — R U {oo} defined as

f(z) = h(g(z))

where h: R — R U {oo} is convex and g : R — R
® Suppose that one of the following holds:

® h is nondecreasing and g is convex
® h is nonincreasing and g is concave
® g is affine

Then f is convex
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Vector composition rule

e Consider the function f: R™ — R U {oco} defined as

f(@) = hg1(2), g2(2), - - - gr(2))

where h : RF — R U {oo} is convex and g; : R® — R
® Suppose that for each i € {1,...,k} one of the following holds:

® h is nondecreasing in the ith argument and g; is convex
® h is nonincreasing in the ith argument and g; is concave
® g; is affine

Then f is convex
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Perspective of function

Let

e {:R™ — R be convex
® { be positive, i.e, t € Ry

then the perspective function g : R® x R — R, defined by

g(z,t) == {tf(a:/t) ift>0

00 else

is convex
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Ways to conclude convexity

Use convexity definition
Show that epigraph is convex set
Use first or second order condition for convexity

Show that function constructed by convexity preserving operations
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Conclude convexity — Some examples

From definition:
® indicator function of convex set C'
0 ifzeC
te(z) =
oo else
® norms: ||z||
From first- or second-order conditions:
® affine functions: f(z) =sTa +r
® quadratics: f(z) = %J?TQI with @Q positive semi-definite matrix
From convex epigraph:
2TY 'z ifY =0

® matrix fractional function: f(z,Y) = { |
00 else

From marginal function:
® (shortest) distance to convex set C: distc(z) = infyec(|ly — z||)
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Example — Convexity of norms

Show that f(z) := ||z|| is convex from convexity definition

® Norms satisfy the triangle inequality
[+ f| < [lul] + o]
® For arbitrary z,y and 6 € [0, 1]:

[0z + (1= 0)y) = [|0x + (1 - 0)y]|
<0zl + [[(1 = O)y
= Oll] + (1 = 0)lyll
=0f(x)+(1-0)f(y)

which is definition of convexity

® Proof uses triangle inequality and 6 € [0, 1]
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Example — Matrix fractional function

Show that the matrix fractional function is convex via its epigraph
® The matrix fractional function

2TY "1z ifY =0

0 else

f(x7Y) :{

® The epigraph satisfies
epif ={(z, Y1) : f(z,Y) < t}
={(z,Y,t): 2’V ' <tand Y = 0}

® Schur complement condition says for Y > 0 that

_ Y =«
dylr<t o [xT t}zo

which is a (convex) linear matrix inequality (LMI) in (z,Y,t)
® Epigraph is intersection between LMI and positive definite cone
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Example — Composition with matrix

® |et
e f:R™ — R be convex
® . ¢ R™*™ be a matrix

then composition with a matrix
(folL)(x):= f(Lx)

is convex
® Vector composition with convex function and affine mappings
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Example — Image of function under linear mapping

® |et

® f:R™ — R be convex
® [, ¢ R™*™ be a matrix

then image function (sometimes called infimal postcomposition)
(L)) == mf{f(y) : Ly =z}

is convex
® Proof: Define

h(z,y) = f(y) + t{oy(Ly — z)

which is convex in (z,y), then
(L) () = inf bz, )

which is convex since marginal of convex function
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Example — Nested composition

Show that: f(z) := ellL2=bl13 is convex where L is matrix b vector:
® |et

0 ifu<O u
gl(u) - Hu”27 gZ(U) - {ug if u > 0 ) gS(U) =e€

then f(z) = g3(92(91(La — b)))
® g1(Lx —b) convex: convex g1 and Lz — b affine
® g5(g1(Lxz — b)) convex: cvx nondecreasing go and cvx g1 (Lx — b)
® f(z) convex: convex nondecreasing g3 and convex gs(g1(Lx — b))



Example — Conjugate function

Show that the conjugate f*(s) := sup (s’ @ — f(z)) is convex:
zeR™

® Define index set J and z; such that Ujcs{z;} = R"

Define r; := f(z;) and affine (in s): a;(s) :=sTz; —r;
Therefore f*(s) = sup{a;(s):j € J}

® Convex since supremum over family of convex (affine) functions

® Note convexity of f* not dependent on convexity of f
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Strict convexity

A function f: R™ — R U {oo} is strictly convex if

f0z+(1—=0)y) <O0f(x)+ (1 -0)f(y)

for each z,y € domf, x # y, and 6 € (0,1) and domf is convex
“Convexity definition with strict inequality”

No flat (affine) regions

Example: f(z) =1/x for x > 0

f(x)
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Strong convexity

Let o >0
A function f is a—strong/}{ convex if f — | - [|3 is convex
Alternative equivalent definition of o-strong convexity:

f(Oz+(1—0)y) <Of(x) +(1-0)f(y) — 5601 — )]z -yl
holds for every z,y € R™ and 6 € [0, 1]

® Strongly convex functions are strictly convex and convex

Example: f 2-strongly convex since f — || - ||3 convex:

f(a) = =3
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Uniqueness of minimizers

e Strictly (strongly) convex functions have unique minimizers
® Strictly convex functions may not have a minimizing point

® Strongly convex functions always have a unique minimizing point
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First-order condition for strict convexity

® Suppose f : R™ — RU{oo} is differentiable on dom f
® Then f is strictly convex if and only if
fy) > f(2) + V(@) (y - =)
for all z,y € domf where x # y and domf is convex

()

(Vi(z),-1)

® Function f has for all x € R™ an affine minorizer that:
® has slope s defined by V f
® coincides with function f only at x
® is supporting hyperplane to epigraph of f
® defines normal (Vf(x),—1) to epigraph of f
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First-order condition for strong convexity

® Suppose f : R™ — RU {oo} is differentiable on dom f
® Then f is o-strongly convex with ¢ > 0 if and only if

fy) = f@) + V(@) (y —2) + Gllz — yll3
for all x,y € domf and domf is convex
f)
f@) + V@) (y—2)+ Sz —yl3

(Vi(z),-1)

® Function f has for all z € R™ a quadratic minorizer that:
® has curvature defined by o
® coincides with function f at =
® defines normal (V f(x),—1) to epigraph of f
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Second-order condition for strict/strong convexity

Let f: R™ — RU{oo} be twice differentiable on domf, domf convex

® f is strictly convex if
V2f(z) =0

for all z € domf (i.e., the Hessian is positive definite)

® fis o-strongly convex if
V2if(z) = ol

for all x € domf
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Examples of strictly/strongly convex functions

Strictly convex

FIOE

—log(z) + t>o(x)

* fz) =1/z+150(2)

* flz) =

—x

Strongly convex

i

H

i x

) =
(z) =
* fla)=
(z) =
(z) =

L4 x

== =

L4 x

AII»”CHQ
$27Qx where Q positive definite
f x) + fa(x) where f; strongly convex and fy convex
fi(x) + fa(x) where f1, fo strongly convex
% TQxz + 1c(z) where Q positive definite and C' convex
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Proofs for two examples

xZ.

Strict convexity of f(z) =e~
e Vf(x)=—e% V3f(z)=e*>0forallz eR

) =
Strong convexity of f(z) = % TQx with @ positive definite
e Vf(x)=Qx, V2f(z) = Q = Amin(Q)I where \pin(Q) >0
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Smoothness

A function is called S-smooth if its gradient is B-Lipschitz:

IVf(z) = Vi)l < Bllz =yl

for all z,y € R™ (it is not necessarily convex)
Alternative equivalent definition of S-smoothness

(b + (1= 0)y) > 0f(2) + (1 - 0)f(y) — 50(1 — )]z —y|
f0x+ (1= 0)y) < Of(x) + (1 —0)f(y) + 50(1 = 0)||lz — y|?

hold for every z,y € R™ and 0 € [0, 1]
Smoothness does not imply convexity
Example:
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First-order condition for smoothness
® fis B-smooth with 8 > 0 if and only if
fly) < f@)+ V@) (y—2) + 5llz —yll3
Fy) = fl@) + V@) (y —2) = §llz =yl
for all z,y € R"
/ f(=) J(r )Vf(m)T(y —2)+ Sz -yl

)= Sl -yl

® Quadratic upper/lower bounds with curvatures defined by 3
® Quadratic bounds coincide with function f at x
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First-order condition for smooth convex

® fis S-smooth with 8 > 0 and convex if and only if
fly) < fl@) + V@) (y—2) + Sl —yll3
fy) = fa) + V(@) (y — 2)
for all z,y € R™
/ F@)+ V@) T (y—2)+ 5z - yl3

(Vf(z),-1)

® Quadratic upper bounds and affine lower bound
® Bounds coincide with function f at x
® Quadratic upper bound is called descent lemma
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Second-order condition for smoothness

Let f: R™ — R be twice differentiable

® fis B-smooth if and only if
—BI X V2 f(x) = BI

for all z € R™

® fis B-smooth and convex if and only if
0= V2f(x) < I

for all z € R™
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Convex Optimization Problems
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Composite optimization form

We will consider optimization problem on composite form
minimize f(Lz) + g(x)
x

where f and g are convex functions and L is a matrix
Convex problem due to convexity preserving operations
Can model constrained problems via indicator function

This model format is suitable for many algorithms
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