Convex Functions

Pontus Giselsson

Outline

- Definition, epigraph, convex envelope
- First- and second-order conditions for convexity
- First- and second-order conditions without full domain
- Convexity preserving operations
- Concluding convexity Examples
- Strict and strong convexity
- Smoothness

Extended-valued functions and domain

- We consider extended-valued functions $f: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\} =: \overline{\mathbb{R}}$
- ullet Example: Indicator function of interval [a,b]

$$\iota_{[a,b]}(x) = \begin{cases} 0 & \text{if } a \leq x \leq b \\ \infty & \text{else} \end{cases}$$

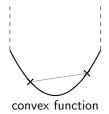
ullet The (effective) domain of $f:\mathbb{R}^n o \mathbb{R} \cup \{\infty\}$ is the set

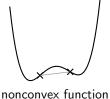
$$dom f = \{x \in \mathbb{R}^n : f(x) < \infty\}$$

• (Will always assume $\mathrm{dom} f \neq \emptyset$, this is called proper)

Convex functions

ullet Graph below line connecting any two pairs (x,f(x)) and (y,f(y))





• Function $f : \mathbb{R}^n \to \overline{\mathbb{R}}$ is *convex* if for all $x,y \in \mathbb{R}^n$ and $\theta \in [0,1]$:

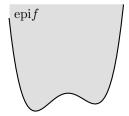
$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

(in extended valued arithmetics)

ullet A function f is $\mathit{concave}$ if -f is convex

Epigraphs

• The epigraph of a function f is the set of points above graph



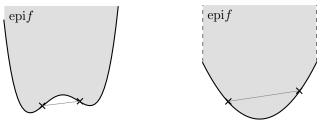
• Mathematical definition:

$$epi f = \{(x, r) \mid f(x) \le r\}$$

• The epigraph is a set in $\mathbb{R}^n \times \mathbb{R}$

Epigraphs and convexity

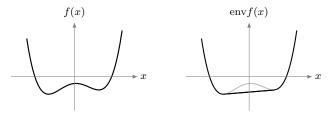
- Let $f: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$
- Then f is convex if and only $\mathrm{epi} f$ is a convex set in $\mathbb{R}^n \times \mathbb{R}$



ullet f is called closed (lower semi-continuous) if $\mathrm{epi}f$ is closed set

Convex envelope

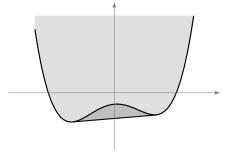
Convex envelope of f is largest convex minorizer



• Definition: The convex envelope $\mathrm{env} f$ satisfies: $\mathrm{env} f$ convex, $\mathrm{env} f \leq f$ and $\mathrm{env} f \geq g$ for all convex $g \leq f$

Convex envelope and convex hull

- Assume $f: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ is closed
- ullet Epigraph of convex envelope of f is closed convex hull of $\mathrm{epi} f$



 \bullet epif in light gray, epi envf includes dark gray

Outline

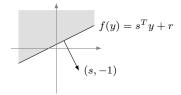
- Definition, epigraph, convex envelope
- First- and second-order conditions for convexity
- First- and second-order conditions without full domain
- Convexity preserving operations
- Concluding convexity Examples
- Strict and strong convexity
- Smoothness

Affine functions

ullet Affine functions $f:\mathbb{R}^n o \mathbb{R}$ are of the form

$$f(y) = s^T y + r$$

• Affine functions $f: \mathbb{R}^n \to \mathbb{R}$ cut $\mathbb{R}^n \times \mathbb{R}$ in two halves



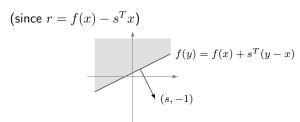
- ullet s defines slope of function
- Upper halfspace is epigraph with normal vector (s, -1):

$$epif = \{(y,t) : t \ge s^T y + r\} = \{(y,t) : (s,-1)^T (y,t) \le -r\}$$

Affine functions – Reformulation

ullet Pick any fixed $x \in \mathbb{R}^n$; affine $f(y) = s^T y + r$ can be written as

$$f(y) = f(x) + s^{T}(y - x)$$



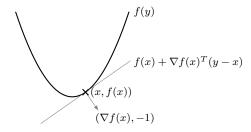
• Affine function of this form is important in convex analysis

First-order condition for convexity

ullet A differentiable function $f:\mathbb{R}^n \to \mathbb{R}$ is convex if and only if

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$

for all $x, y \in \mathbb{R}^n$



- Function f has for all $x \in \mathbb{R}^n$ an affine minorizer that:
 - ullet coincides with function f at x
 - has slope s defined by ∇f , which coincides the function slope
 - ullet is supporting hyperplane to epigraph of f
 - defines normal $(\nabla f(x), -1)$ to epigraph of f

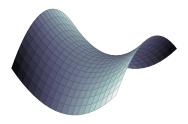
Second-order condition for convexity

A twice differentiable function is convex if and only if

$$\nabla^2 f(x) \succeq 0$$

for all $x \in \mathbb{R}^n$ (i.e., the Hessian is positive semi-definite)

- "The function has non-negative curvature"
- Nonconvex example: $f(x) = x^T \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} x$ with $\nabla^2 f(x) \not\succeq 0$



Outline

- Definition, epigraph, convex envelope
- First- and second-order conditions for convexity
- First- and second-order conditions without full domain
- Convexity preserving operations
- Concluding convexity Examples
- Strict and strong convexity
- Smoothness

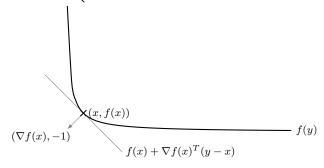
First-order condition without full domain

- Suppose $f: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ is differentiable on $\mathrm{dom} f$
- Then f is convex if and only if

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$

for all $x, y \in \text{dom} f$ and dom f is convex

• Example $f(x) = \begin{cases} 1/x & x > 0 \\ \infty & \text{else} \end{cases}$:



Second-order condition without full domain

- ullet Suppose $f:\mathbb{R}^n o \mathbb{R} \cup \{\infty\}$ is twice differentiable on $\mathrm{dom} f$
- ullet Then f is convex if and only if

$$\nabla^2 f(x) \succeq 0$$

for all $x \in \text{dom} f$ and dom f is convex

Outline

- Definition, epigraph, convex envelope
- First- and second-order conditions for convexity
- First- and second-order conditions without full domain
- Convexity preserving operations
- Concluding convexity Examples
- Strict and strong convexity
- Smoothness

Operations that preserve convexity

- Positive sum
- Marginal function
- Supremum of family of convex functions
- Composition rules
- Prespective of convex function

Positive sum

- Assume that f_j are convex for all $j \in \{1, \dots, m\}$
- Assume that there exists x such that $f_j(x) < \infty$ for all j
- Then the positive sum

$$f = \sum_{j=1}^{m} t_j f_j$$

with $t_j > 0$ is convex

Marginal function

- Let $f: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R} \cup \{\infty\}$ be convex
- Define the marginal function

$$g(x) := \inf_{y} f(x, y)$$

• The marginal function $g: \mathbb{R}^n \to \mathbb{R} \cup \{\pm \infty\}$ is convex if f is

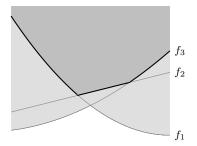
 $^{^1}$ It may be that $g(x)=-\infty$ for all $x\in\mathrm{dom}g$, we call such functions convex here.

Supremum of convex functions

• Point-wise supremum of convex functions from family $\{f_j\}_{j\in J}$:

$$f(x) := \sup\{f_j(x) : j \in J\}$$

- ullet Supremum is over functions in family for fixed x
- Example:



Convex since epigraph is intersection of convex epigraphs

Scalar composition rule

• Consider the function $f:\mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ defined as

$$f(x) = h(g(x))$$

where $h: \mathbb{R} \to \mathbb{R} \cup \{\infty\}$ is convex and $g: \mathbb{R}^n \to \mathbb{R}$

- Suppose that one of the following holds:
 - h is nondecreasing and q is convex
 - ullet h is nonincreasing and g is concave
 - ullet g is affine

Then f is convex

Vector composition rule

• Consider the function $f: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ defined as

$$f(x) = h(g_1(x), g_2(x), \dots, g_k(x))$$

where $h: \mathbb{R}^k \to \mathbb{R} \cup \{\infty\}$ is convex and $g_i: \mathbb{R}^n \to \mathbb{R}$

- Suppose that for each $i \in \{1, \dots, k\}$ one of the following holds:
 - h is nondecreasing in the ith argument and g_i is convex
 - h is nonincreasing in the ith argument and g_i is concave
 - g_i is affine

Then f is convex

Perspective of function

Let

- $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ be convex
- t be positive, i.e, $t \in \mathbb{R}_+$

then the perspective function $g: \mathbb{R}^n \times \mathbb{R} \to \overline{\mathbb{R}}$, defined by

$$g(x,t) := \begin{cases} tf(x/t) & \text{if } t > 0\\ \infty & \text{else} \end{cases}$$

is convex

Outline

- Definition, epigraph, convex envelope
- First- and second-order conditions for convexity
- First- and second-order conditions without full domain
- Convexity preserving operations
- Concluding convexity Examples
- Strict and strong convexity
- Smoothness

Ways to conclude convexity

- Use convexity definition
- Show that epigraph is convex set
- Use first or second order condition for convexity
- Show that function constructed by convexity preserving operations

Conclude convexity – Some examples

- From definition:
 - indicator function of convex set C

$$\iota_C(x) := \begin{cases} 0 & \text{if } x \in C \\ \infty & \text{else} \end{cases}$$

- norms: ||x||
- From first- or second-order conditions:
 - affine functions: $f(x) = s^T x + r$
 - quadratics: $f(x) = \frac{1}{2}x^TQx$ with Q positive semi-definite matrix
- From convex epigraph:
 - matrix fractional function: $f(x,Y) = \begin{cases} x^T Y^{-1} x & \text{if } Y \succ 0 \\ \infty & \text{else} \end{cases}$
- From marginal function:
 - (shortest) distance to convex set C: $\operatorname{dist}_C(x) = \inf_{y \in C}(\|y x\|)$

Example – Convexity of norms

Show that f(x) := ||x|| is convex from convexity definition

Norms satisfy the triangle inequality

$$||u+v|| \le ||u|| + ||v||$$

• For arbitrary x, y and $\theta \in [0, 1]$:

$$f(\theta x + (1 - \theta)y) = \|\theta x + (1 - \theta)y\|$$

$$\leq \|\theta x\| + \|(1 - \theta)y\|$$

$$= \theta\|x\| + (1 - \theta)\|y\|$$

$$= \theta f(x) + (1 - \theta)f(y)$$

which is definition of convexity

• Proof uses triangle inequality and $\theta \in [0,1]$

Example – Matrix fractional function

Show that the matrix fractional function is convex via its epigraph

• The matrix fractional function

$$f(x,Y) = \begin{cases} x^T Y^{-1} x & \text{if } Y \succ 0\\ \infty & \text{else} \end{cases}$$

The epigraph satisfies

$$\begin{split} \mathrm{epi} f &= \{ (x, Y, t) : f(x, Y) \leq t \} \\ &= \{ (x, Y, t) : x^T Y^{-1} x \leq t \text{ and } Y \succ 0 \} \end{split}$$

• Schur complement condition says for $Y \succ 0$ that

$$x^T Y^{-1} x \le t \quad \Leftrightarrow \quad \begin{bmatrix} Y & x \\ x^T & t \end{bmatrix} \succeq 0$$

which is a (convex) linear matrix inequality (LMI) in (x, Y, t)

Epigraph is intersection between LMI and positive definite cone

Example – Composition with matrix

- Let
 - $f: \mathbb{R}^m \to \overline{\mathbb{R}}$ be convex
 - $L \in \mathbb{R}^{m \times n}$ be a matrix

then composition with a matrix

$$(f \circ L)(x) := f(Lx)$$

is convex

Vector composition with convex function and affine mappings

Example - Image of function under linear mapping

- Let
 - $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ be convex
 - $L \in \mathbb{R}^{m \times n}$ be a matrix

then image function (sometimes called infimal postcomposition)

$$(Lf)(x) := \inf_{y} \{ f(y) : Ly = x \}$$

is convex

• Proof: Define

$$h(x,y) = f(y) + \iota_{\{0\}}(Ly - x)$$

which is convex in (x, y), then

$$(Lf)(x) = \inf_{y} h(x, y)$$

which is convex since marginal of convex function

Example - Nested composition

Show that: $f(x) := e^{\|Lx - b\|_2^3}$ is convex where L is matrix b vector:

• Let

$$g_1(u) = ||u||_2, \quad g_2(u) = \begin{cases} 0 & \text{if } u < 0 \\ u^3 & \text{if } u \ge 0 \end{cases}, \quad g_3(u) = e^u$$

then
$$f(x) = g_3(g_2(g_1(Lx - b)))$$

- ullet $g_1(Lx-b)$ convex: convex g_1 and Lx-b affine
- $g_2(g_1(Lx-b))$ convex: cvx nondecreasing g_2 and cvx $g_1(Lx-b)$
- ullet f(x) convex: convex nondecreasing g_3 and convex $g_2(g_1(Lx-b))$

Example – Conjugate function

Show that the conjugate $f^*(s) := \sup_{x \in \mathbb{R}^n} (s^T x - f(x))$ is convex:

- Define index set J and x_i such that $\bigcup_{i \in J} \{x_i\} = \mathbb{R}^n$
- Define $r_j := f(x_j)$ and affine (in s): $a_j(s) := s^T x_j r_j$
- Therefore $f^*(s) = \sup\{a_j(s) : j \in J\}$
- Convex since supremum over family of convex (affine) functions
- ullet Note convexity of f^* not dependent on convexity of f

Outline

- Definition, epigraph, convex envelope
- First- and second-order conditions for convexity
- First- and second-order conditions without full domain
- Convexity preserving operations
- Concluding convexity Examples
- Strict and strong convexity
- Smoothness

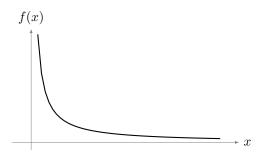
Strict convexity

• A function $f: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ is strictly convex if

$$f(\theta x + (1 - \theta)y) < \theta f(x) + (1 - \theta)f(y)$$

for each $x, y \in \text{dom} f$, $x \neq y$, and $\theta \in (0, 1)$ and dom f is convex

- "Convexity definition with strict inequality"
- No flat (affine) regions
- Example: f(x) = 1/x for x > 0

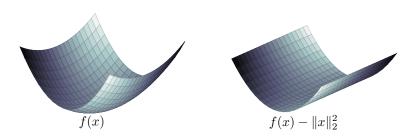


Strong convexity

- Let $\sigma > 0$
- A function f is σ -strongly convex if $f \frac{\sigma}{2} \| \cdot \|_2^2$ is convex
- Alternative equivalent definition of σ -strong convexity:

$$f(\theta x + (1-\theta)y) \leq \theta f(x) + (1-\theta)f(y) - \tfrac{\sigma}{2}\theta(1-\theta)\|x-y\|^2$$
 holds for every $x,y \in \mathbb{R}^n$ and $\theta \in [0,1]$

- Strongly convex functions are strictly convex and convex
- Example: f 2-strongly convex since $f \|\cdot\|_2^2$ convex:



Uniqueness of minimizers

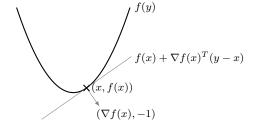
- Strictly (strongly) convex functions have unique minimizers
- Strictly convex functions may not have a minimizing point
- Strongly convex functions always have a unique minimizing point

First-order condition for strict convexity

- Suppose $f: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ is differentiable on $\mathrm{dom} f$
- Then f is strictly convex if and only if

$$f(y) > f(x) + \nabla f(x)^{T} (y - x)$$

for all $x, y \in \text{dom} f$ where $x \neq y$ and dom f is convex



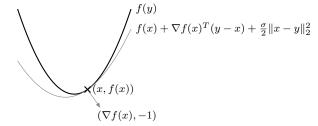
- Function f has for all $x \in \mathbb{R}^n$ an affine minorizer that:
 - ullet has slope s defined by ∇f
 - ullet coincides with function f only at x
 - ullet is supporting hyperplane to epigraph of f
 - defines normal $(\nabla f(x), -1)$ to epigraph of f

First-order condition for strong convexity

- Suppose $f: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ is differentiable on $\mathrm{dom} f$
- \bullet Then f is $\sigma\text{-strongly convex}$ with $\sigma>0$ if and only if

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{\sigma}{2} ||x - y||_2^2$$

for all $x, y \in \text{dom} f$ and dom f is convex



- Function f has for all $x \in \mathbb{R}^n$ a quadratic minorizer that:
 - ullet has curvature defined by σ
 - ullet coincides with function f at x
 - defines normal $(\nabla f(x), -1)$ to epigraph of f

Second-order condition for strict/strong convexity

Let $f: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ be twice differentiable on $\mathrm{dom} f$, $\mathrm{dom} f$ convex

 \bullet f is strictly convex if

$$\nabla^2 f(x) \succ 0$$

for all $x \in \text{dom} f$ (i.e., the Hessian is positive definite)

• f is σ -strongly convex if

$$\nabla^2 f(x) \succeq \sigma I$$

for all $x \in \text{dom} f$

Examples of strictly/strongly convex functions

Strictly convex

- $f(x) = -\log(x) + \iota_{>0}(x)$
- $f(x) = 1/x + \iota_{>0}(x)$
- $f(x) = e^{-x}$

Strongly convex

- $\bullet \ f(x) = \frac{\lambda}{2} ||x||_2^2$
- $f(x) = \frac{1}{2}x^TQx$ where Q positive definite
- ullet $f(x)=f_1(x)+f_2(x)$ where f_1 strongly convex and f_2 convex
- $f(x) = f_1(x) + f_2(x)$ where f_1, f_2 strongly convex
- $f(x) = \frac{1}{2}x^TQx + \iota_C(x)$ where Q positive definite and C convex

Proofs for two examples

Strict convexity of $f(x) = e^{-x}$:

•
$$\nabla f(x) = -e^{-x}$$
, $\nabla^2 f(x) = e^{-x} > 0$ for all $x \in \mathbb{R}$

Strong convexity of $f(x) = \frac{1}{2}x^TQx$ with Q positive definite

•
$$\nabla f(x) = Qx$$
, $\nabla^2 f(x) = Q \succeq \lambda_{\min}(Q)I$ where $\lambda_{\min}(Q) > 0$

Outline

- Definition, epigraph, convex envelope
- First- and second-order conditions for convexity
- First- and second-order conditions without full domain
- Convexity preserving operations
- Concluding convexity Examples
- Strict and strong convexity
- Smoothness

Smoothness

• A function is called β -smooth if its gradient is β -Lipschitz:

$$\|\nabla f(x) - \nabla f(y)\|_2 \le \beta \|x - y\|_2$$

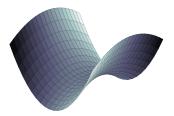
for all $x, y \in \mathbb{R}^n$ (it is not necessarily convex)

• Alternative equivalent definition of β -smoothness

$$f(\theta x + (1 - \theta)y) \ge \theta f(x) + (1 - \theta)f(y) - \frac{\beta}{2}\theta(1 - \theta)\|x - y\|^{2}$$
$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y) + \frac{\beta}{2}\theta(1 - \theta)\|x - y\|^{2}$$

hold for every $x, y \in \mathbb{R}^n$ and $\theta \in [0, 1]$ Smoothness does not imply convexity

- Example:



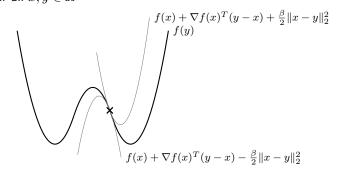
First-order condition for smoothness

• f is β -smooth with $\beta \geq 0$ if and only if

$$f(y) \le f(x) + \nabla f(x)^T (y - x) + \frac{\beta}{2} ||x - y||_2^2$$

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) - \frac{\beta}{2} ||x - y||_2^2$$

for all $x, y \in \mathbb{R}^n$



- Quadratic upper/lower bounds with curvatures defined by β
- Quadratic bounds coincide with function f at x

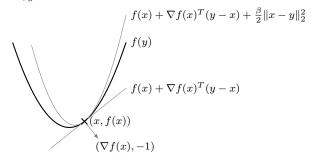
First-order condition for smooth convex

• f is β -smooth with $\beta \geq 0$ and convex if and only if

$$f(y) \le f(x) + \nabla f(x)^T (y - x) + \frac{\beta}{2} ||x - y||_2^2$$

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$

for all $x,y \in \mathbb{R}^n$



- Quadratic upper bounds and affine lower bound
- ullet Bounds coincide with function f at x
- Quadratic upper bound is called descent lemma

Second-order condition for smoothness

Let $f: \mathbb{R}^n \to \mathbb{R}$ be twice differentiable

• f is β -smooth if and only if

$$-\beta I \preceq \nabla^2 f(x) \preceq \beta I$$

for all $x \in \mathbb{R}^n$

ullet f is eta-smooth and convex if and only if

$$0 \leq \nabla^2 f(x) \leq \beta I$$

for all $x \in \mathbb{R}^n$

Convex Optimization Problems

Composite optimization form

We will consider optimization problem on composite form

$$\underset{x}{\text{minimize}} f(Lx) + g(x)$$

where f and g are convex functions and L is a matrix

- Convex problem due to convexity preserving operations
- Can model constrained problems via indicator function
- This model format is suitable for many algorithms