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Gradients of convex functions

® Recall: A differentiable function f : R™ — R is convex iff
fy) = fa) + V(@) (y - 2)

for all z,y € R
)

f@) + V@) (y - )

z, f(x))
(Vf(z),-1)

® Function f has for all z € R" an affine minorizer that:
® has slope s defined by V f
® coincides with function f at =
® defines normal (V f(x),—1) to epigraph of f

® What if function is nondifferentiable?




Subdifferentials and subgradients

® Subgradients s define affine minorizers to the function that:

® coincide with f at x

® define normal vector (s, —1) to epigraph of f

® can be one of many affine minorizers at nondifferentiable points x
® Subdifferential of f: R™ — R at z is set of vectors s satisfying

f) > flx)+s"(y—x) forally e R, (1)

® Notation:
® subdifferential: 9f : R™ — 2% (power-set notation 2%")
® subdifferential at z: df(z) = {s: (1) holds}
® clements s € df(x) are called subgradients of f at x



Relation to gradient

(Vf(z1), —1)

(Vf(zg), —1)

If f differentiable at = and df(x) # 0 then df(xz) = {V f(x)}
If f convex and Of(z) a singleton then df(z) = {V f(z)}
If f convex but not differentiable at « € int domf, then

Of (z) = cl (convS(x))

where S(x) is set of all s such that V f(zy) — s when xj, = «
In general for convex f: 0f(x) = cl(convS(z)) + Naoms ()



Subgradient existence — Convex setting

’ For finite-valued convex functions, a subgradient exists for every x

® In extended-valued setting, let f : R™ — R U {co} be convex:
(i) Subgradients exist for all z in relative interior of dom f
(i) Subgradients sometimes exist for = on relative boundary of dom f
(iii) No subgradient exists for = outside dom f

® Examples for second case, boundary points of dom f:

® No subgradient (affine minorizer) exists for left function at =1



Subgradient existence — Nonconvex setting

® Function can be differentiable at = but df(z) =0

® z1: Of(x1) = {0}, Vf(z1) =0
® 221 Of(z2) =0, Vf(z2) =0
® x3: Of(x3) =0, Vf(xzs) =0

® Gradient is a local concept, subdifferential is a global property
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Monotonicity of subdifferential

e Subdifferential operator is monotone:
(52— 5y)" (x—y) >0

for all s, € Of(x) and s, € Of(y)
® Proof: Add two copies of subdifferential definition

Fy) > f(z) + 55 (y — @)

with z and y swapped
® Of : R — 2% Minimum slope 0 and maximum slope co

of




Monotonicity beyond subdifferentials

e Let A:R™ — 2R" be monotone, i.e.:
(u—v)"(x—y)>0

for all u € Az and v € Ay

® There exist monotone A that are not subdifferentials
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Maximal monotonicity

® et the set gphdf := {(x,u) : u € df(x)} be the graph of 9f
® Jf is maximally monotone if no other function g exists with

gphdf C gphdyg,

with strict inclusion
® A result (due to Rockafellar):

’ f is closed convex if and only if Jf is maximally monotone
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Minty’s theorem

o Let 9f : R" — 28" and o > 0
® Of is maximally monotone if and only if range(al + 9f) =R

8f1 8f2
maximally monotone not maximally monotone
8f1 +al afg +al (
T J T

! _

full range not full range

® |nterpretation: No “holes” in gphJf

n
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Example — Absolute value

® The absolute value:

f(@) = ||

® Subdifferential
® For z > 0, f differentiable and V f(z) =1, so 9f(z) = {1}
® For x < 0, f differentiable and Vf(z) = —1, so df(x) = {-1}
® For x =0, f not differentiable, but since f convex:

9f(0) = cl(convS(0)) = cl(conv({—1,1}) = [-1,1]
® The subdifferential operator:

of(x)
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A nonconvex example

® Nonconvex function:

<
ot

® Subdifferential

® For x > b, f differentiable and Vf(z) =1, so df(z) = {1}
For x < a, f differentiable and V f(z) = —1, so 9f(x) = {—1}

For z € (a,b), no affine minorizer, 8f(z) = 0

For z = a, f not differentiable, Of(x ) -1,

For z = b, f not differentiable, df(z) = [0, 1]

® The subdifferential operator:

0]




Example — Separable functions

Consider the separable function f(z) =>"", fi(;)
Subdifferential

Of () ={s=(81,...,8n) : 8; € Ofi(z;)}

The subgradient s € df(z) if and only if each s; € Ofi(z;)
Proof:
® Assume all s; € fi(x;):

w):Zfi(yl — fi(=:) ZZ ) —ST(y—x)
i=1 i=1

® Assume s; € 0f;(z;) and x; = y; for all ¢ # j:
Fi(ys) = fi(ws) < si(y; — z;)
which gives

F) = f(@) = fily;) — fi(ws) < sily; —x5) = 8" (y — x)
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Example — 1-norm

® Consider the 1-norm f(z) = ||z|1 = Y i, |z
® |t is a separable function of absolute values

® From previous examples, we conclude that the subdifferential is

s;=—1 if £; <0
Of(x) =< (s1,...,8n): 8 8, € [—1,1] ifx; =0
si=1 if x; >0
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Example — 2-norm

Consider the 2-norm f(z) = ||z|l2 = /||z|3
The function is differentiable everywhere except for when x =0
Divide into two cases; x = 0 and « # 0
Subdifferential for x # 0: df(z) = {V f(x)}:
® Let h(u) = V/u and g(z) = ||z[|3, then f(z) = (ho g)(z)
® The gradient for all  # 0 by chain rule (since h: R; — R):

1 T

Vf(z) = Vh(g(z))Vg(x) = 2\/W2x =

2
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Example cont’d — 2-norm

Subdifferential of ||z||2 at z =0

(i) educated guess of subdifferential from 9f(0) = cl(convS(0))
® recall S(0) is set of all limit points of (V f(x))keny when z — 0

let 2 = t*d with ¢ € (0,1) and d € R™\{0}, then V f(zs) = it
® since d arbitrary, (V f(x1)) can converge to any unit norm vector
® 50 .5(0)={s:||s|l2=1} and Of(0) = {s: ||s]]a < 1}?

(i) verify using subgradient definition f(y) > f(0)+s¥(y —0) = sTy
® Let ||s||l2 > 1, then for, e.g., y = 2s

s"y =2sl3 > 2|Isll2 = f(y)

so such s are not subgradients
® Let ||s]|l2 < 1, then for all y:

T
s y < lsllzllyll2 < llyll2 = f(y)

so such s are subgradients
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Strong convexity revisited

® Recall that f is o-strongly convex if f — & - |3 is convex
® |f f is o-strongly convex then

f) = f@)+s"(y—=)+ 5z —yl3

holds for all z € domdf, s € df(x), and y € R™
® The function has convex quadratic minorizers instead of affine

1)
f(x2) + 83 5(y — x2) + Sllz2 — yll3

fx2) + 53 1 (y — w2) + Zllwz — yll3

fla) +s{ (y = 21) + Zllzr — yll3

® Multiple lower bounds at x5 with subgradients s3 1 and s 2
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Strong monotonicity

If f o-strongly convex function, then Jf is o-strongly monotone:
(52— sy) " (x —y) 2 ollz — yl3
for all s, € Of(z) and s, € Of(y)
Proof: Add two copies of strong convexity inequality
Fy) = f@) + 55 (y — 2) + §llz — yll3

with = and y swapped
df is o-strongly monotone if and only if f — oI is monotone
df : R — 2% Minimum slope o and maximum slope oo

of
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Strongly convex functions — An equivalence

The following are equivalent for f : R” — R U {o0}

(i) f is closed and o-strongly convex
(i) Of is maximally monotone and o-strongly monotone

Proof:

(i)=(ii): we know this from before

(i)=(@): (i) =0f —ol =0(f—%| -|3) maximally monotone
= f— g |3 closed convex
= f closed and o-strongly convex
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Smooth convex functions

® A differentiable function f : R™ — R is convex and -smooth if
F) < f@) + V@) (y —2) + Sz — yl3
F) = f(@) + V() (y - o)

hold for all z,y € R
® f has convex quadratic majorizers and affine minorizers

) f@) + V@) T @y —21) + Slles - yll3
) fl@2) + V(22)T(y — z2) + Zllz2 — yl13

(Vf(zz), —1)

(Vf(x2), =1)

® Quadratic upper bound is called descent lemma
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Cocoercivity of gradient

® Gradient of smooth convex function is monotone and Lipschitz
(Vi) = Vfy) (@ —y) >0
IVf(y) = Vi)l < Bl —yll2

® Vf:R — R: Minimum slope 0 and maximum slope 3
V(x)

/ ‘ x
® Actually satisfies the stronger %—cocoercivity property:

(Vi) = V) (@ —y) > 5IVIly) - Vi@)3

due to the Baillon-Haddad theorem
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Smooth convex functions — An equivalence

Let f : R™ — R be differentiable. The following are equivalent:
(i) Vfis %—cocoercive
(i) Vf is maximally monotone and (-Lipschitz continuous

(i) f is convex and satisfies descent lemma (is S-smooth)

Will later connect smooth convexity and strong convexity via conjugates
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Smooth strongly convex functions

® let f : R™ — R be differentiable
® fis S-smooth and o-strongly convex with 0 < o < g if

Fy) < f@) + V(@) (y - 2) + 5llz —yl3
Fy) = f@) + V@) (y—2) + §llz — yll3

hold for all z,y € R™
® f has quadratic minorizers and quadratic majorizers

| @)+ V@) (y - o) + §llz - yli3

Iy

(Vi(z),-1)

® \We say that the ratio 5 is the condition number for the function

oa
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Gradient of smooth strongly convex function

® Gradient of S-smooth o-strongly convex function f satisfies

IVF(y) = V@)l < Bllz -yl
(Vf(z) = VW) (z —y) 2 ollz —yl3

so is B-Lipschitz continuous and o-strongly monotone
® Vf:R — R: Minimum slope ¢ and maximum slope

V(x)

‘ x
® Actually satisfies this stronger property:

(V@) = Vi) (@ —y) 2 151V ) = V(@) + 75z —yli3

for all z,y € R”
28



Proof of stronger property

® fis o-strongly convex if and only if g := f — Z|| - |3 is convex

® Since f is 8-smooth and g convex, g is (8 — o)-smooth

1

® Since g convex and (8 — o)-smooth, Vg is 5= -cocoercive:

(Vg(z) = Vg) " (z —y) > 52 1IVg(x) — Va)l3
which by using Vg =V f — ol gives
(Vf(z) = Vi) (@ —y) —ollz = yl3 > 75 IVFf(@) = V(y) — oz - y)|3
which by expanding the square and rearranging is equivalent to

(V@) = Vi) (@ —y) > 571511V (@) = VI3 + 75l — yll3
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Fermat’s rule

Let f: R™ — RU {oo}, then 2 minimizes f if and only if
0€df(x)

® Proof: z minimizes f if and only if

fy) > flz) = f(x)+0"(y —x) forallyeR"

which by definition of subdifferential is equivalent to 0 € Jf(z)
® Example: several subgradients at solution, including 0

.

(0, —1)
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Fermat’s rule — Nonconvex example

® Fermat's rule holds also for nonconvex functions

® Example:

2
Z1

(0, =1)

® Jf(x1) = {0} and Vf(x1) = 0 (global minimum)
® 9f(z2) =0 and Vf(z2) = 0 (local minimum)

® For nonconvex f, we can typically only hope to find local minima
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Subdifferential calculus rules

e Subdifferential of sum 9(f1 + f2)
® Subdifferential of composition with matrix d(g o L)

34



Subdifferential of sum

If f1, f2 closed convex and relint dom f; N relint dom fo # §:
O(f1+ fo) =0f1 +0f2

® One direction always holds: if z € domdf; N domadfs:
(f1+ f2)(x) 2 0f1(x) + Ofa(x)
Proof: let s; € 0f;(x), add subdifferential definitions:
Fiy) + fo(y) 2 fr(@) + fa(@) + (s1+ 52)" (y — @)

i.e. 51+ 89 € 8<f1 + fg)(.%‘)
e If f; and f> differentiable, we have (without convexity of f)

V(fi+ fo)=Vfi+Vfo
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Subdifferential of composition

If f closed convex and relint dom(f o L) # (:
O(foL)(z)=LTof(Lx)

® One direction always holds: If Lz € domf, then
A(foL)(x)2L"of(Lx)
Proof: let s € 9f(Lx), then by definition of subgradient of f:
(foL)(y) = (foL)(z)+s"(Ly — La) = (f o L)(2) + (L"s)" (y — 2)

ie., LTs € 0(foL)(x)

e If f differentiable, we have chain rule (without convexity of f)

V(folL)(z)= L'V f(Lz)
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Composite optimization problems

® We consider optimization problems on composite form

minimize f(Lzx) + g(x)

where f: R™ - RU {0}, g : R" - RU {o0}, and L € R™*"
e Can model constrained problems via indicator function
® This model format is suitable for many algorithms
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A sufficient optimality condition

Let f:R™ = R, g:R" — R, and L € R™*™ then:
minimize f(Lz) + g(z)
is solved by every z € R™ that satisfies

0c LTof(Lx) + dg(x)

® Subdifferential calculus inclusions say:
0e LTaf(Lz) + dg(x) CA(f o L+ g)(x)

which by Fermat's rule is equivalent to z solution to (1)

® Note: (1) can have solution but no z exists that satisfies (2)
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A necessary and sufficient optimality condition

Let f:R™ = R, g: R” = R, L € R™*" with f, g closed convex
and assume relint dom(f o L) Nrelint domg # () then:

minimize f(Lzx) + g(z) (1)
is solved by & € R™ if and only if x satisfies

0c LTof(Lx) + dg(x) (2)

® Subdifferential calculus equality rules say:
0c LTof(Lx) + dg(zx) = O(f o L + g)(x)

which by Fermat's rule is equivalent to « solution to (1)
e Algorithms search for z that satisfy 0 € LT9f(Lx) + dg(z)
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A comment on constraint qualification

® The condition
relint dom(f o L) Nrelint domg # 0

is called constraint qualification and referred to as CQ

® |t is a mild condition that rarely is not satisfied

< =
no solution solution solution
no CQ cQ
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Evaluating subgradients of convex functions

® Obviously need to evaluate subdifferentials to solve
0¢c LTof(Lx) + dg(x)

® Explicit evaluation:

® |f function is differentiable: V f (unique)
® |f function is nondifferentiable: compute element in 9 f

® Implicit evaluation:
® Proximal operator (specific element of subdifferential)
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Proximal operators
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Proximal operator — Definition

® Proximal operator of g : R — R U {oco} defined as:

prox. ,(2) = argmin(g(z) + 55|z — 2[3)
z€Rn
where v > 0 is a parameter
® Evaluating prox requires solving optimization problem
® If g closed convex, prox is single-valued mapping from R" to R™
® Objective closed and strongly convex = unique minimizing point
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Prox is generalization of projection

® Recall the indicator function of a set C'

(@) = {0 ifzecC

oo otherwise
® Then
prox,, (z) = argmin(} |z — 2[5 + o ()
xT

= argmin{i||z — z||3 : z € C}
= argmin{||z — z|2 : 2 € C}
= lle(2)

® Projection onto C' equals prox of indicator function of C'
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Prox computes a subgradient

® Fermat’s rule on prox definition: = = prox. (2) if and only if
0€dg(x)+y (w—2) & 7 '(z—2)€dg(z)

Hence, v~ 1(z — z) is element in dg(z)

® A subgradient Og(z) where z = prox, () is computed
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Prox is 1-cocoercive

® For convex g, the proximal operator is 1-cocoercive:
(J,‘ - y)T(prOX'yg (J}) - prOX'yf (y)) > ||prOX'yg (x) - prOX'yf (y) H%

® Proof
® Combine monotonicity of dg, that for all z, € dg(u), z, € dg(v):

(zu — 2) (u—0) >0
® with Fermat’s rule on prox that evalutes subgradients of g:
"Mz —u) € dg(u)
"My —v) € 9g(v)

u = prox_ () if and only if ~

v = prox, . (y) if and only if 5
® which gives, by letting z, = v !(z — u) and z, = v (y — v):

v (@ —u) = (y—v) (u—w

g ("’L‘ - prOX'yg(x) - (y - prox/yg( ))) (prOX ( ) - proxfyg (y)

& (@—y)"(prox,,(z) — prox,, () = [lprox,,(z) — prox,,



Prox is (firmly) nonexpansive

® We know 1-cocoercivity implies nonexpansiveness (1-Lipschitz)

[[prox. ,(z) — prox,, (y)ll2 < [z — yl2
which was shown using Cauchy-Schwarz inequality
® Actually the stronger firm nonexpansive inequality holds
[prox.,4 () — prox.,(y)|3 < [l — yl3
— ||z — prox,4(x) — (y — prox,,(y)) |3

which implies nonexpansiveness
® Proof:
® take 1-cocoercivity and multiply both sides by 2:

2(x — y)T(proxwg (z) — prox.; () > 2||proxvg (z) — prox.; (y)||§
® use the following equality with u = prox_ (z) and v = prox_,(y):

(@ =) (u—v) =3 (lz = yl5 + w5 ~ llz —y — (u—~v)|3)
49



Proximal operator — Separable functions

® Let x = (21,...,2,) and g(z) = >, gi(z;) be separable, then
prox.,(z) = (prox,, (21),--.,prox, , (2,))

decomposes into n individual proxes
® Why? Since also || - ||3 is separable:

prox,,(z) = argmin(g(x) + 5 [lv — z|3)

z€R™
n
= argmin | Y gi(w) + o (@i — 2:)?
zeR”™ i—1

which gives n independent optimization problems

argmin(gi(w;) + 2 (2, — 2)?) = prox, , (=)

z; ER
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Proximal operator — Example 1

® Consider the function g with subdifferential dg:

<0 -1 ifx <0
—x ifx
g(x) {o o> 0 g9(x) = 4 [-1,0] ifz=0
0 ifz >0
® Graphical representations
9(x)
9g(x)

(=1, -1)

> T

s ] —
(=0.5,=1) (o, —1) (0, = 1)

® Fermat's rule for z = prox,  (2):

0€dg(z)+~ Yz —2)
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Proximal operator — Example 1 cont’d

Let x < 0, then Fermat’s rule reads
0=-1+7z—-2) & z=z+7
which is valid (z < 0) if 2 < —y
Let z = 0, then Fermat's rule reads
0€[-1,0] +~v71(0—2)
which is valid (z = 0) if z € [—7,0]
Let x > 0, then Fermat’s rule reads
0=04+71z—-2) & z==z
which is valid (z > 0) if 2 >0
The prox satisfies
2+ ifz<—y
prox.,(z) = 4 0 if z€[—,0]
z if z>0
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Proximal operator — Example 2

Let g(z) = %mTPx + ¢Tz with P positive semidefinite
® Gradient satisfies Vg(x) = Pz +¢

® Fermat's rule for z = prox, ,(2):

0=Vgx)+7y (x—2) & 0=Prt+qg+y (z—2)
& (+7P)r=2-1g
& z=I+vP)H(z—9)

® So prox. ,(z) = (I +~vP) "' (z —vq)
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Computational cost

Evaluating prox requires solving optimization problem
Prox,¢(2) = argmin(g(x) + o lle —213)

Prox often more expensive to evaluate than gradient
® Example: Quadratic g(z) = 22" Pz + ¢ a:
prox. ,(z) = (I+7P)—1(z —7q), Vg(z) =Pz +q

But typically cheap to evaluate for separable functions
Prox often used for nondifferentiable and separable functions
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