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Gradients of convex functions

• Recall: A differentiable function f : Rn → R is convex iff

f(y) ≥ f(x) +∇f(x)T (y − x)

for all x, y ∈ Rn

f(y)

f(x) +∇f(x)T (y − x)

(∇f(x),−1)

(x, f(x))

• Function f has for all x ∈ Rn an affine minorizer that:
• has slope s defined by ∇f
• coincides with function f at x
• defines normal (∇f(x),−1) to epigraph of f

• What if function is nondifferentiable?
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Subdifferentials and subgradients

• Subgradients s define affine minorizers to the function that:

(s,−1)

(s,−1)

• coincide with f at x
• define normal vector (s,−1) to epigraph of f
• can be one of many affine minorizers at nondifferentiable points x

• Subdifferential of f : Rn → R at x is set of vectors s satisfying

f(y) ≥ f(x) + sT (y − x) for all y ∈ Rn, (1)

• Notation:
• subdifferential: ∂f : Rn → 2R

n

(power-set notation 2R
n

)
• subdifferential at x: ∂f(x) = {s : (1) holds}
• elements s ∈ ∂f(x) are called subgradients of f at x
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Relation to gradient

x2

(∇f(x1),−1)
x1

(∇f(x3),−1)

x3

• If f differentiable at x and ∂f(x) ̸= ∅ then ∂f(x) = {∇f(x)}
• If f convex and ∂f(x) a singleton then ∂f(x) = {∇f(x)}
• If f convex but not differentiable at x ∈ int domf , then

∂f(x) = cl (convS(x))

where S(x) is set of all s such that ∇f(xk) → s when xk → x
• In general for convex f : ∂f(x) = cl (convS(x)) +Ndomf (x)
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Subgradient existence – Convex setting

For finite-valued convex functions, a subgradient exists for every x

• In extended-valued setting, let f : Rn → R ∪ {∞} be convex:
(i) Subgradients exist for all x in relative interior of domf
(ii) Subgradients sometimes exist for x on relative boundary of domf
(iii) No subgradient exists for x outside domf

• Examples for second case, boundary points of domf :

−
√
1− x2 + ι[−1,1](x) x2 + ι[−2,2](x)

• No subgradient (affine minorizer) exists for left function at x = 1
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Subgradient existence – Nonconvex setting

• Function can be differentiable at x but ∂f(x) = ∅

x1

x2
x3

• x1: ∂f(x1) = {0}, ∇f(x1) = 0
• x2: ∂f(x2) = ∅, ∇f(x2) = 0
• x3: ∂f(x3) = ∅, ∇f(x3) = 0

• Gradient is a local concept, subdifferential is a global property
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Monotonicity of subdifferential

• Subdifferential operator is monotone:

(sx − sy)
T (x− y) ≥ 0

for all sx ∈ ∂f(x) and sy ∈ ∂f(y)

• Proof: Add two copies of subdifferential definition

f(y) ≥ f(x) + sTx (y − x)

with x and y swapped
• ∂f : R → 2R: Minimum slope 0 and maximum slope ∞

∂f

x
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Monotonicity beyond subdifferentials

• Let A : Rn → 2R
n

be monotone, i.e.:

(u− v)T (x− y) ≥ 0

for all u ∈ Ax and v ∈ Ay

• There exist monotone A that are not subdifferentials
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Maximal monotonicity

• Let the set gph ∂f := {(x, u) : u ∈ ∂f(x)} be the graph of ∂f

• ∂f is maximally monotone if no other function g exists with

gph ∂f ⊂ gph ∂g,

with strict inclusion

• A result (due to Rockafellar):

f is closed convex if and only if ∂f is maximally monotone
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Minty’s theorem

• Let ∂f : Rn → 2R
n

and α > 0

• ∂f is maximally monotone if and only if range(αI + ∂f) = Rn

∂f1

x

maximally monotone

∂f2

x

not maximally monotone

∂f1 + αI

x

full range

∂f2 + αI

x

not full range

• Interpretation: No “holes” in gph ∂f
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Example – Absolute value

• The absolute value:
f(x) = |x|

• Subdifferential
• For x > 0, f differentiable and ∇f(x) = 1, so ∂f(x) = {1}
• For x < 0, f differentiable and ∇f(x) = −1, so ∂f(x) = {−1}
• For x = 0, f not differentiable, but since f convex:

∂f(0) = cl(convS(0)) = cl(conv({−1, 1}) = [−1, 1]

• The subdifferential operator:

f(x) = |x|

∂f(x)
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A nonconvex example

• Nonconvex function:

a b

• Subdifferential
• For x > b, f differentiable and ∇f(x) = 1, so ∂f(x) = {1}
• For x < a, f differentiable and ∇f(x) = −1, so ∂f(x) = {−1}
• For x ∈ (a, b), no affine minorizer, ∂f(x) = ∅
• For x = a, f not differentiable, ∂f(x) = [−1, 0]
• For x = b, f not differentiable, ∂f(x) = [0, 1]

• The subdifferential operator:

f(x) = |x|
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Example – Separable functions

• Consider the separable function f(x) =
∑n

i=1 fi(xi)

• Subdifferential

∂f(x) = {s = (s1, . . . , sn) : si ∈ ∂fi(xi)}

• The subgradient s ∈ ∂f(x) if and only if each si ∈ ∂fi(xi)
• Proof:

• Assume all si ∈ ∂fi(xi):

f(y)− f(x) =

n∑
i=1

fi(yi)− fi(xi) ≥
n∑

i=1

si(yi − xi) = sT (y − x)

• Assume sj ̸∈ ∂fj(xj) and xi = yi for all i ̸= j:

fj(yj)− fj(xj) < sj(yj − xj)

which gives

f(y)− f(x) = fj(yj)− fj(xj) < sj(yj − xj) = sT (y − x)
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Example – 1-norm

• Consider the 1-norm f(x) = ∥x∥1 =
∑n

i=1 |xi|
• It is a separable function of absolute values

• From previous examples, we conclude that the subdifferential is

∂f(x) =

(s1, . . . , sn) :


si = −1 if xi < 0

si ∈ [−1, 1] if xi = 0

si = 1 if xi > 0
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Example – 2-norm

• Consider the 2-norm f(x) = ∥x∥2 =
√
∥x∥22

• The function is differentiable everywhere except for when x = 0

• Divide into two cases; x = 0 and x ̸= 0

• Subdifferential for x ̸= 0: ∂f(x) = {∇f(x)}:
• Let h(u) =

√
u and g(x) = ∥x∥22, then f(x) = (h ◦ g)(x)

• The gradient for all x ̸= 0 by chain rule (since h : R+ → R):

∇f(x) = ∇h(g(x))∇g(x) = 1

2
√

∥x∥22
2x =

x

∥x∥2
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Example cont’d – 2-norm

Subdifferential of ∥x∥2 at x = 0

(i) educated guess of subdifferential from ∂f(0) = cl(convS(0))
• recall S(0) is set of all limit points of (∇f(xk))k∈N when xk → 0
• let xk = tkd with t ∈ (0, 1) and d ∈ Rn\{0}, then ∇f(xk) =

d
∥d∥2

• since d arbitrary, (∇f(xk)) can converge to any unit norm vector
• so S(0) = {s : ∥s∥2 = 1} and ∂f(0) = {s : ∥s∥2 ≤ 1}?

(ii) verify using subgradient definition f(y) ≥ f(0) + sT (y− 0) = sT y
• Let ∥s∥2 > 1, then for, e.g., y = 2s

sT y = 2∥s∥22 > 2∥s∥2 = f(y)

so such s are not subgradients
• Let ∥s∥2 ≤ 1, then for all y:

sT y ≤ ∥s∥2∥y∥2 ≤ ∥y∥2 = f(y)

so such s are subgradients
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Strong convexity revisited

• Recall that f is σ-strongly convex if f − σ
2 ∥ · ∥

2
2 is convex

• If f is σ-strongly convex then

f(y) ≥ f(x) + sT (y − x) + σ
2 ∥x− y∥22

holds for all x ∈ dom∂f , s ∈ ∂f(x), and y ∈ Rn

• The function has convex quadratic minorizers instead of affine

f(y)

f(x1) + sT1 (y − x1) +
σ
2
∥x1 − y∥22x1

(s1,−1)

f(x2) + sT2,1(y − x2) +
σ
2
∥x2 − y∥22

(s2,1,−1)

f(x2) + sT2,2(y − x2) +
σ
2
∥x2 − y∥22

x2

(s2,2,−1)

• Multiple lower bounds at x2 with subgradients s2,1 and s2,2
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Strong monotonicity

• If f σ-strongly convex function, then ∂f is σ-strongly monotone:

(sx − sy)
T (x− y) ≥ σ∥x− y∥22

for all sx ∈ ∂f(x) and sy ∈ ∂f(y)
• Proof: Add two copies of strong convexity inequality

f(y) ≥ f(x) + sTx (y − x) + σ
2 ∥x− y∥22

with x and y swapped
• ∂f is σ-strongly monotone if and only if ∂f − σI is monotone
• ∂f : R → 2R: Minimum slope σ and maximum slope ∞

∂f

x
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Strongly convex functions – An equivalence

The following are equivalent for f : Rn → R ∪ {∞}

(i) f is closed and σ-strongly convex

(ii) ∂f is maximally monotone and σ-strongly monotone

Proof:

(i)⇒(ii): we know this from before
(ii)⇒(i): (ii) ⇒ ∂f − σI = ∂(f − σ

2 ∥ · ∥
2
2) maximally monotone

⇒ f − σ
2 ∥ · ∥

2
2 closed convex

⇒ f closed and σ-strongly convex
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Smooth convex functions

• A differentiable function f : Rn → R is convex and β-smooth if

f(y) ≤ f(x) +∇f(x)T (y − x) + β
2 ∥x− y∥22

f(y) ≥ f(x) +∇f(x)T (y − x)

hold for all x, y ∈ Rn

• f has convex quadratic majorizers and affine minorizers

f(x1) +∇f(x1)T (y − x1) +
β
2
∥x1 − y∥22

x1

(∇f(x2),−1)

f(x2) +∇f(x2)T (y − x2) +
β
2
∥x2 − y∥22

x2

(∇f(x2),−1)

f(y)

• Quadratic upper bound is called descent lemma
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Cocoercivity of gradient

• Gradient of smooth convex function is monotone and Lipschitz

(∇f(x)−∇f(y))T (x− y) ≥ 0

∥∇f(y)−∇f(x)∥2 ≤ β∥x− y∥2

• ∇f : R → R: Minimum slope 0 and maximum slope β

∇f(x)

x

• Actually satisfies the stronger 1
β -cocoercivity property:

(∇f(x)−∇f(y))T (x− y) ≥ 1
β ∥∇f(y)−∇f(x)∥22

due to the Baillon-Haddad theorem
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Smooth convex functions – An equivalence

Let f : Rn → R be differentiable. The following are equivalent:

(i) ∇f is 1
β -cocoercive

(ii) ∇f is maximally monotone and β-Lipschitz continuous

(iii) f is convex and satisfies descent lemma (is β-smooth)

Will later connect smooth convexity and strong convexity via conjugates
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Smooth strongly convex functions

• Let f : Rn → R be differentiable
• f is β-smooth and σ-strongly convex with 0 < σ ≤ β if

f(y) ≤ f(x) +∇f(x)T (y − x) + β
2 ∥x− y∥22

f(y) ≥ f(x) +∇f(x)T (y − x) + σ
2 ∥x− y∥22

hold for all x, y ∈ Rn

• f has quadratic minorizers and quadratic majorizers

f(y)

f(x) +∇f(x)T (y − x) + σ
2
∥x− y∥22

(∇f(x),−1)

(x, f(x))

f(x) +∇f(x)T (y − x) + β
2
∥x− y∥22

• We say that the ratio β
σ is the condition number for the function
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Gradient of smooth strongly convex function

• Gradient of β-smooth σ-strongly convex function f satisfies

∥∇f(y)−∇f(x)∥2 ≤ β∥x− y∥2
(∇f(x)−∇f(y))T (x− y) ≥ σ∥x− y∥22

so is β-Lipschitz continuous and σ-strongly monotone
• ∇f : R → R: Minimum slope σ and maximum slope β

∇f(x)

x

• Actually satisfies this stronger property:

(∇f(x)−∇f(y))T (x− y) ≥ 1
β+σ∥∇f(y)−∇f(x)∥22 +

σβ
β+σ∥x− y∥22

for all x, y ∈ Rn
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Proof of stronger property

• f is σ-strongly convex if and only if g := f − σ
2 ∥ · ∥

2
2 is convex

• Since f is β-smooth and g convex, g is (β − σ)-smooth

• Since g convex and (β − σ)-smooth, ∇g is 1
β−σ -cocoercive:

(∇g(x)−∇g(y))T (x− y) ≥ 1
β−σ

∥∇g(x)−∇g(y)∥22

which by using ∇g = ∇f − σI gives

(∇f(x)−∇f(y))T (x− y)− σ∥x− y∥22 ≥ 1
β−σ

∥∇f(x)−∇f(y)− σ(x− y)∥22

which by expanding the square and rearranging is equivalent to

(∇f(x)−∇f(y))T (x− y) ≥ 1
β+σ

∥∇f(x)−∇f(y)∥22 + σβ
β+σ

∥x− y∥22
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Fermat’s rule

Let f : Rn → R ∪ {∞}, then x minimizes f if and only if

0 ∈ ∂f(x)

• Proof: x minimizes f if and only if

f(y) ≥ f(x) = f(x) + 0T (y − x) for all y ∈ Rn

which by definition of subdifferential is equivalent to 0 ∈ ∂f(x)

• Example: several subgradients at solution, including 0

(0,−1)
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Fermat’s rule – Nonconvex example

• Fermat’s rule holds also for nonconvex functions

• Example:

x1
x2

(0,−1)

• ∂f(x1) = {0} and ∇f(x1) = 0 (global minimum)
• ∂f(x2) = ∅ and ∇f(x2) = 0 (local minimum)

• For nonconvex f , we can typically only hope to find local minima
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Subdifferential calculus rules

• Subdifferential of sum ∂(f1 + f2)

• Subdifferential of composition with matrix ∂(g ◦ L)

34



Subdifferential of sum

If f1, f2 closed convex and relint domf1 ∩ relint domf2 ̸= ∅:
∂(f1 + f2) = ∂f1 + ∂f2

• One direction always holds: if x ∈ dom∂f1 ∩ dom∂f2:

∂(f1 + f2)(x) ⊇ ∂f1(x) + ∂f2(x)

Proof: let si ∈ ∂fi(x), add subdifferential definitions:

f1(y) + f2(y) ≥ f1(x) + f2(x) + (s1 + s2)
T (y − x)

i.e. s1 + s2 ∈ ∂(f1 + f2)(x)

• If f1 and f2 differentiable, we have (without convexity of f)

∇(f1 + f2) = ∇f1 +∇f2
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Subdifferential of composition

If f closed convex and relint dom(f ◦ L) ̸= ∅:
∂(f ◦ L)(x) = LT∂f(Lx)

• One direction always holds: If Lx ∈ domf , then

∂(f ◦ L)(x) ⊇ LT∂f(Lx)

Proof: let s ∈ ∂f(Lx), then by definition of subgradient of f :

(f ◦ L)(y) ≥ (f ◦ L)(x) + sT (Ly − Lx) = (f ◦ L)(x) + (LT s)T (y − x)

i.e., LT s ∈ ∂(f ◦ L)(x)
• If f differentiable, we have chain rule (without convexity of f)

∇(f ◦ L)(x) = LT∇f(Lx)
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Composite optimization problems

• We consider optimization problems on composite form

minimize
x

f(Lx) + g(x)

where f : Rm → R ∪ {∞}, g : Rn → R ∪ {∞}, and L ∈ Rm×n

• Can model constrained problems via indicator function

• This model format is suitable for many algorithms
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A sufficient optimality condition

Let f : Rm → R, g : Rn → R, and L ∈ Rm×n then:

minimize f(Lx) + g(x) (1)

is solved by every x ∈ Rn that satisfies

0 ∈ LT∂f(Lx) + ∂g(x) (2)

• Subdifferential calculus inclusions say:

0 ∈ LT∂f(Lx) + ∂g(x) ⊆ ∂(f ◦ L+ g)(x)

which by Fermat’s rule is equivalent to x solution to (1)

• Note: (1) can have solution but no x exists that satisfies (2)
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A necessary and sufficient optimality condition

Let f : Rm → R, g : Rn → R, L ∈ Rm×n with f, g closed convex
and assume relint dom(f ◦ L) ∩ relint domg ̸= ∅ then:

minimize f(Lx) + g(x) (1)

is solved by x ∈ Rn if and only if x satisfies

0 ∈ LT∂f(Lx) + ∂g(x) (2)

• Subdifferential calculus equality rules say:

0 ∈ LT∂f(Lx) + ∂g(x) = ∂(f ◦ L+ g)(x)

which by Fermat’s rule is equivalent to x solution to (1)

• Algorithms search for x that satisfy 0 ∈ LT∂f(Lx) + ∂g(x)
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A comment on constraint qualification

• The condition

relint dom(f ◦ L) ∩ relint domg ̸= ∅

is called constraint qualification and referred to as CQ

• It is a mild condition that rarely is not satisfied

dom(f ◦ L)

domg

no solution

dom(f ◦ L)

domg

solution
no CQ

dom(f ◦ L)

domg

solution
CQ
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Evaluating subgradients of convex functions

• Obviously need to evaluate subdifferentials to solve

0 ∈ LT∂f(Lx) + ∂g(x)

• Explicit evaluation:
• If function is differentiable: ∇f (unique)
• If function is nondifferentiable: compute element in ∂f

• Implicit evaluation:
• Proximal operator (specific element of subdifferential)

42
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Proximal operators
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Proximal operator – Definition

• Proximal operator of g : Rn → R ∪ {∞} defined as:

proxγg(z) = argmin
x∈Rn

(g(x) + 1
2γ ∥x− z∥22)

where γ > 0 is a parameter

• Evaluating prox requires solving optimization problem

• If g closed convex, prox is single-valued mapping from Rn to Rn

• Objective closed and strongly convex ⇒ unique minimizing point
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Prox is generalization of projection

• Recall the indicator function of a set C

ιC(x) :=

{
0 if x ∈ C

∞ otherwise

• Then

proxιC (z) = argmin
x

( 12∥x− z∥22 + ιC(x))

= argmin{ 1
2∥x− z∥22 : x ∈ C}

= argmin{∥x− z∥2 : x ∈ C}
= ΠC(z)

• Projection onto C equals prox of indicator function of C
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Prox computes a subgradient

• Fermat’s rule on prox definition: x = proxγg(z) if and only if

0 ∈ ∂g(x) + γ−1(x− z) ⇔ γ−1(z − x) ∈ ∂g(x)

Hence, γ−1(z − x) is element in ∂g(x)

• A subgradient ∂g(x) where x = proxγg(z) is computed
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Prox is 1-cocoercive

• For convex g, the proximal operator is 1-cocoercive:

(x− y)T (proxγg(x)− proxγf (y)) ≥ ∥proxγg(x)− proxγf (y)∥22
• Proof

• Combine monotonicity of ∂g, that for all zu ∈ ∂g(u), zv ∈ ∂g(v):

(zu − zv)
T (u− v) ≥ 0

• with Fermat’s rule on prox that evalutes subgradients of g:

u = proxγg(x) if and only if γ−1(x− u) ∈ ∂g(u)

v = proxγg(y) if and only if γ−1(y − v) ∈ ∂g(v)

• which gives, by letting zu = γ−1(x− u) and zv = γ−1(y − v):

γ−1((x− u)− (y − v))T (u− v) ≥ 0

⇔ (x− proxγg(x)− (y − proxγg(y)))
T (proxγg(x)− proxγg(y)) ≥ 0

⇔ (x− y)T (proxγg(x)− proxγg(y)) ≥ ∥proxγg(x)− proxγg(y)∥
2
2
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Prox is (firmly) nonexpansive

• We know 1-cocoercivity implies nonexpansiveness (1-Lipschitz)

∥proxγg(x)− proxγg(y)∥2 ≤ ∥x− y∥2

which was shown using Cauchy-Schwarz inequality
• Actually the stronger firm nonexpansive inequality holds

∥proxγg(x)− proxγg(y)∥22 ≤ ∥x− y∥22
− ∥x− proxγg(x)− (y − proxγg(y))∥22

which implies nonexpansiveness
• Proof:

• take 1-cocoercivity and multiply both sides by 2:

2(x− y)T (proxγg(x)− proxγf (y)) ≥ 2∥proxγg(x)− proxγf (y)∥
2
2

• use the following equality with u = proxγg(x) and v = proxγg(y):

(x− y)T (u− v) = 1
2

(
∥x− y∥22 + ∥u− v∥22 − ∥x− y − (u− v)∥22

)
49



Proximal operator – Separable functions

• Let x = (x1, . . . , xn) and g(x) =
∑n

i=1 gi(xi) be separable, then

proxγg(z) = (proxγg1(z1), . . . ,proxγgn(zn))

decomposes into n individual proxes

• Why? Since also ∥ · ∥22 is separable:

proxγg(z) = argmin
x∈Rn

(g(x) + 1
2γ ∥x− z∥22)

= argmin
x∈Rn

(
n∑

i=1

gi(xi) +
1
2γ (xi − zi)

2

)

which gives n independent optimization problems

argmin
xi∈R

(gi(xi) +
1
2γ (xi − zi)

2) = proxγgi(zi)
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Proximal operator – Example 1

• Consider the function g with subdifferential ∂g:

g(x) =

{
−x if x ≤ 0

0 if x ≥ 0
∂g(x) =


−1 if x < 0

[−1, 0] if x = 0

0 if x > 0

• Graphical representations

(−1,−1)

(−1,−1)
(−0.5,−1) (0,−1) (0,−1)

g(x)

x

∂g(x)

x

• Fermat’s rule for x = proxγg(z):

0 ∈ ∂g(x) + γ−1(x− z)
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Proximal operator – Example 1 cont’d

• Let x < 0, then Fermat’s rule reads

0 = −1 + γ−1(x− z) ⇔ x = z + γ

which is valid (x < 0) if z < −γ
• Let x = 0, then Fermat’s rule reads

0 ∈ [−1, 0] + γ−1(0− z)

which is valid (x = 0) if z ∈ [−γ, 0]
• Let x > 0, then Fermat’s rule reads

0 = 0 + γ−1(x− z) ⇔ x = z

which is valid (x > 0) if z > 0
• The prox satisfies

proxγg(z) =


z + γ if z < −γ

0 if z ∈ [−γ, 0]

z if z > 0
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Proximal operator – Example 2

Let g(x) = 1
2x

TPx+ qTx with P positive semidefinite

• Gradient satisfies ∇g(x) = Px+ q

• Fermat’s rule for x = proxγg(z):

0 = ∇g(x) + γ−1(x− z) ⇔ 0 = Px+ q + γ−1(x− z)

⇔ (I + γP )x = z − γq

⇔ x = (I + γP )−1(z − γq)

• So proxγg(z) = (I + γP )−1(z − γq)
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Computational cost

• Evaluating prox requires solving optimization problem

proxγg(z) = argmin
x

(g(x) + 1
2γ ∥x− z∥22)

• Prox often more expensive to evaluate than gradient
• Example: Quadratic g(x) = 1

2
xTPx+ qTx:

proxγg(z) = (I + γP )−1(z − γq), ∇g(z) = Pz + q

• But typically cheap to evaluate for separable functions

• Prox often used for nondifferentiable and separable functions
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