Subdifferentials and Proximal Operators

Pontus Giselsson

Outline

- Subdifferential and subgradient Definition and basic properties
- Monotonicity
- Examples
- Strong monotonicity and cocoercivity
- Fermat's rule
- Subdifferential calculus
- Optimality conditions
- Proximal operators

Gradients of convex functions

• Recall: A *differentiable* function $f: \mathbb{R}^n \to \mathbb{R}$ is convex iff

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$

for all $x, y \in \mathbb{R}^n$

- Function f has for all $x \in \mathbb{R}^n$ an affine minorizer that:
 - has slope s defined by ∇f
 - ullet coincides with function f at x
 - defines normal $(\nabla f(x), -1)$ to epigraph of f
- What if function is nondifferentiable?

Subdifferentials and subgradients

• Subgradients s define affine minorizers to the function that:

- ullet coincide with f at x
- define normal vector (s, -1) to epigraph of f
- ullet can be one of many affine minorizers at nondifferentiable points x
- Subdifferential of $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ at x is set of vectors s satisfying

$$f(y) \ge f(x) + s^T(y - x)$$
 for all $y \in \mathbb{R}^n$, (1)

- Notation:
 - subdifferential: $\partial f:\mathbb{R}^n o 2^{\mathbb{R}^n}$ (power-set notation $2^{\mathbb{R}^n}$)
 - subdifferential at x: $\partial f(x) = \{s : (1) \text{ holds}\}$
 - elements $s \in \partial f(x)$ are called *subgradients* of f at x

Relation to gradient

- If f differentiable at x and $\partial f(x) \neq \emptyset$ then $\partial f(x) = {\nabla f(x)}$
- \bullet If f convex and $\partial f(x)$ a singleton then $\partial f(x) = \{\nabla f(x)\}$
- If f convex but not differentiable at $x \in \operatorname{int} \operatorname{dom} f$, then

$$\partial f(x) = \operatorname{cl}\left(\operatorname{conv}S(x)\right)$$

where S(x) is set of all s such that $\nabla f(x_k) \to s$ when $x_k \to x$

• In general for convex f: $\partial f(x) = \operatorname{cl}(\operatorname{conv} S(x)) + N_{\operatorname{dom} f}(x)$

Subgradient existence – Convex setting

For finite-valued convex functions, a subgradient exists for every x

- In extended-valued setting, let $f: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ be convex:
 - (i) Subgradients exist for all x in relative interior of dom f
 - (ii) Subgradients sometimes exist for x on relative boundary of dom f
 - (iii) No subgradient exists for x outside dom f
- Examples for second case, boundary points of dom f:

• No subgradient (affine minorizer) exists for left function at x=1

Subgradient existence – Nonconvex setting

• Function can be differentiable at x but $\partial f(x) = \emptyset$

- x_1 : $\partial f(x_1) = \{0\}$, $\nabla f(x_1) = 0$
- x_2 : $\partial f(x_2) = \emptyset$, $\nabla f(x_2) = 0$
- x_3 : $\partial f(x_3) = \emptyset$, $\nabla f(x_3) = 0$
- Gradient is a local concept, subdifferential is a global property

Outline

- Subdifferential and subgradient Definition and basic properties
- Monotonicity
- Examples
- Strong monotonicity and cocoercivity
- Fermat's rule
- Subdifferential calculus
- Optimality conditions
- Proximal operators

Monotonicity of subdifferential

• Subdifferential operator is *monotone*:

$$(s_x - s_y)^T (x - y) \ge 0$$

for all $s_x \in \partial f(x)$ and $s_y \in \partial f(y)$

• Proof: Add two copies of subdifferential definition

$$f(y) \ge f(x) + s_x^T (y - x)$$

with x and y swapped

• $\partial f: \mathbb{R} \to 2^{\mathbb{R}}$: Minimum slope 0 and maximum slope ∞

Monotonicity beyond subdifferentials

• Let $A: \mathbb{R}^n \to 2^{\mathbb{R}^n}$ be monotone, i.e.:

$$(u-v)^T(x-y) \ge 0$$

for all $u \in Ax$ and $v \in Ay$

ullet There exist monotone A that are not subdifferentials

Maximal monotonicity

- Let the set $gph \partial f := \{(x, u) : u \in \partial f(x)\}$ be the graph of ∂f
- ullet ∂f is maximally monotone if no other function g exists with

$$gph \partial f \subset gph \partial g$$
,

with strict inclusion

• A result (due to Rockafellar):

f is closed convex if and only if ∂f is maximally monotone

Minty's theorem

- Let $\partial f: \mathbb{R}^n \to 2^{\mathbb{R}^n}$ and $\alpha > 0$
- ∂f is maximally monotone if and only if $\operatorname{range}(\alpha I + \partial f) = \mathbb{R}^n$

• Interpretation: No "holes" in ${\rm gph}\,\partial f$

Outline

- Subdifferential and subgradient Definition and basic properties
- Monotonicity
- Examples
- Strong monotonicity and cocoercivity
- Fermat's rule
- Subdifferential calculus
- Optimality conditions
- Proximal operators

Example – Absolute value

• The absolute value:

- Subdifferential
 - For x > 0, f differentiable and $\nabla f(x) = 1$, so $\partial f(x) = \{1\}$
 - For x<0, f differentiable and $\nabla f(x)=-1$, so $\partial f(x)=\{-1\}$
 - ullet For x=0, f not differentiable, but since f convex:

$$\partial f(0) = \operatorname{cl}(\operatorname{conv} S(0)) = \operatorname{cl}(\operatorname{conv}(\{-1,1\}) = [-1,1]$$

The subdifferential operator:

A nonconvex example

Nonconvex function:

- Subdifferential
 - For x > b, f differentiable and $\nabla f(x) = 1$, so $\partial f(x) = \{1\}$
 - For x < a, f differentiable and $\nabla f(x) = -1$, so $\partial f(x) = \{-1\}$
 - For $x \in (a,b)$, no affine minorizer, $\partial f(x) = \emptyset$
 - For x = a, f not differentiable, $\partial f(x) = [-1, 0]$
 - For x = b, f not differentiable, $\partial f(x) = [0, 1]$
- The subdifferential operator:

Example – Separable functions

- Consider the separable function $f(x) = \sum_{i=1}^{n} f_i(x_i)$
- Subdifferential

$$\partial f(x) = \{ s = (s_1, \dots, s_n) : s_i \in \partial f_i(x_i) \}$$

- The subgradient $s \in \partial f(x)$ if and only if each $s_i \in \partial f_i(x_i)$
- Proof:
 - Assume all $s_i \in \partial f_i(x_i)$:

$$f(y) - f(x) = \sum_{i=1}^{n} f_i(y_i) - f_i(x_i) \ge \sum_{i=1}^{n} s_i(y_i - x_i) = s^{T}(y - x)$$

• Assume $s_j \notin \partial f_j(x_j)$ and $x_i = y_i$ for all $i \neq j$:

$$f_j(y_j) - f_j(x_j) < s_j(y_j - x_j)$$

which gives

$$f(y) - f(x) = f_j(y_j) - f_j(x_j) < s_j(y_j - x_j) = s^T(y - x)$$

Example – 1-norm

- Consider the 1-norm $f(x) = ||x||_1 = \sum_{i=1}^n |x_i|$
- It is a separable function of absolute values
- From previous examples, we conclude that the subdifferential is

$$\partial f(x) = \left\{ (s_1, \dots, s_n) : \begin{cases} s_i = -1 & \text{if } x_i < 0 \\ s_i \in [-1, 1] & \text{if } x_i = 0 \\ s_i = 1 & \text{if } x_i > 0 \end{cases} \right\}$$

Example – 2-norm

- Consider the 2-norm $f(x) = ||x||_2 = \sqrt{||x||_2^2}$
- The function is differentiable everywhere except for when x=0
- Divide into two cases; x = 0 and $x \neq 0$
- Subdifferential for $x \neq 0$: $\partial f(x) = {\nabla f(x)}$:
 - Let $h(u) = \sqrt{u}$ and $g(x) = ||x||_2^2$, then $f(x) = (h \circ g)(x)$
 - The gradient for all $x \neq 0$ by chain rule (since $h : \mathbb{R}_+ \to \mathbb{R}$):

$$\nabla f(x) = \nabla h(g(x))\nabla g(x) = \frac{1}{2\sqrt{\|x\|_2^2}} 2x = \frac{x}{\|x\|_2}$$

Example cont'd – 2-norm

Subdifferential of $||x||_2$ at x=0

- (i) educated guess of subdifferential from $\partial f(0) = \operatorname{cl}(\operatorname{conv} S(0))$
 - recall S(0) is set of all limit points of $(\nabla f(x_k))_{k\in\mathbb{N}}$ when $x_k\to 0$
 - let $x_k = t^k d$ with $t \in (0,1)$ and $d \in \mathbb{R}^n \setminus \{0\}$, then $\nabla f(x_k) = \frac{d}{\|d\|_2}$
 - since d arbitrary, $(\nabla f(x_k))$ can converge to any unit norm vector
 - so $S(0) = \{s : ||s||_2 = 1\}$ and $\partial f(0) = \{s : ||s||_2 \le 1\}$?
- (ii) verify using subgradient definition $f(y) \geq f(0) + s^T(y-0) = s^Ty$
 - Let $||s||_2 > 1$, then for, e.g., y = 2s

$$s^T y = 2||s||_2^2 > 2||s||_2 = f(y)$$

so such s are not subgradients

• Let $||s||_2 \le 1$, then for all y:

$$s^T y \le ||s||_2 ||y||_2 \le ||y||_2 = f(y)$$

so such s are subgradients

Outline

- Subdifferential and subgradient Definition and basic properties
- Monotonicity
- Examples
- Strong monotonicity and cocoercivity
- Fermat's rule
- Subdifferential calculus
- Optimality conditions
- Proximal operators

Strong convexity revisited

- Recall that f is σ -strongly convex if $f \frac{\sigma}{2} \| \cdot \|_2^2$ is convex
- ullet If f is σ -strongly convex then

$$f(y) \ge f(x) + s^T(y - x) + \frac{\sigma}{2} ||x - y||_2^2$$

holds for all $x \in \text{dom}\partial f$, $s \in \partial f(x)$, and $y \in \mathbb{R}^n$

• The function has convex quadratic minorizers instead of affine

ullet Multiple lower bounds at x_2 with subgradients $s_{2,1}$ and $s_{2,2}$

Strong monotonicity

• If f σ -strongly convex function, then ∂f is σ -strongly monotone:

$$(s_x - s_y)^T (x - y) \ge \sigma ||x - y||_2^2$$

for all $s_x \in \partial f(x)$ and $s_y \in \partial f(y)$

Proof: Add two copies of strong convexity inequality

$$f(y) \ge f(x) + s_x^T(y - x) + \frac{\sigma}{2} ||x - y||_2^2$$

with x and y swapped

- ∂f is σ -strongly monotone if and only if $\partial f \sigma I$ is monotone
- $\partial f: \mathbb{R} \to 2^{\mathbb{R}}$: Minimum slope σ and maximum slope ∞

Strongly convex functions – An equivalence

The following are equivalent for $f:\mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$

- (i) f is closed and σ -strongly convex
- (ii) ∂f is maximally monotone and σ -strongly monotone

Proof:

- (i)⇒(ii): we know this from before
- (ii) \Rightarrow (i): (ii) $\Rightarrow \partial f \sigma I = \partial (f \frac{\sigma}{2} \| \cdot \|_2^2)$ maximally monotone $\Rightarrow f \frac{\sigma}{2} \| \cdot \|_2^2$ closed convex $\Rightarrow f$ closed and σ -strongly convex

Smooth convex functions

• A differentiable function $f:\mathbb{R}^n \to \mathbb{R}$ is convex and β -smooth if

$$f(y) \le f(x) + \nabla f(x)^{T} (y - x) + \frac{\beta}{2} ||x - y||_{2}^{2}$$

$$f(y) \ge f(x) + \nabla f(x)^{T} (y - x)$$

hold for all $x, y \in \mathbb{R}^n$

• f has convex quadratic majorizers and affine minorizers

Quadratic upper bound is called descent lemma

Cocoercivity of gradient

Gradient of smooth convex function is monotone and Lipschitz

$$(\nabla f(x) - \nabla f(y))^T (x - y) \ge 0$$
$$\|\nabla f(y) - \nabla f(x)\|_2 \le \beta \|x - y\|_2$$

• $\nabla f: \mathbb{R} \to \mathbb{R}$: Minimum slope 0 and maximum slope β

• Actually satisfies the stronger $\frac{1}{\beta}$ -cocoercivity property:

$$(\nabla f(x) - \nabla f(y))^T (x - y) \ge \frac{1}{\beta} ||\nabla f(y) - \nabla f(x)||_2^2$$

due to the Baillon-Haddad theorem

Smooth convex functions - An equivalence

Let $f: \mathbb{R}^n \to \mathbb{R}$ be differentiable. The following are equivalent:

- (i) ∇f is $\frac{1}{\beta}$ -cocoercive
- (ii) ∇f is maximally monotone and β -Lipschitz continuous
- (iii) f is convex and satisfies descent lemma (is β -smooth)

Smooth strongly convex functions

- Let $f: \mathbb{R}^n \to \mathbb{R}$ be differentiable
- f is β -smooth and σ -strongly convex with $0<\sigma\leq\beta$ if

$$f(y) \le f(x) + \nabla f(x)^{T} (y - x) + \frac{\beta}{2} ||x - y||_{2}^{2}$$

$$f(y) \ge f(x) + \nabla f(x)^{T} (y - x) + \frac{\sigma}{2} ||x - y||_{2}^{2}$$

hold for all $x, y \in \mathbb{R}^n$

ullet f has quadratic minorizers and quadratic majorizers

• We say that the ratio $\frac{\beta}{\sigma}$ is the *condition number* for the function

Gradient of smooth strongly convex function

• Gradient of β -smooth σ -strongly convex function f satisfies

$$\|\nabla f(y) - \nabla f(x)\|_{2} \le \beta \|x - y\|_{2}$$
$$(\nabla f(x) - \nabla f(y))^{T} (x - y) \ge \sigma \|x - y\|_{2}^{2}$$

so is β -Lipschitz continuous and σ -strongly monotone

• $\nabla f: \mathbb{R} \to \mathbb{R}$: Minimum slope σ and maximum slope β

• Actually satisfies this stronger property:

$$(\nabla f(x) - \nabla f(y))^T(x - y) \ge \frac{1}{\beta + \sigma} \|\nabla f(y) - \nabla f(x)\|_2^2 + \frac{\sigma\beta}{\beta + \sigma} \|x - y\|_2^2$$
 for all $x, y \in \mathbb{R}^n$

Proof of stronger property

- f is σ -strongly convex if and only if $g:=f-\frac{\sigma}{2}\|\cdot\|_2^2$ is convex
- Since f is β -smooth and g convex, g is $(\beta \sigma)$ -smooth
- Since g convex and $(\beta \sigma)$ -smooth, ∇g is $\frac{1}{\beta \sigma}$ -cocoercive:

$$(\nabla g(x) - \nabla g(y))^T (x - y) \ge \frac{1}{\beta - \sigma} \|\nabla g(x) - \nabla g(y)\|_2^2$$

which by using $\nabla g = \nabla f - \sigma I$ gives

$$(\nabla f(x) - \nabla f(y))^T (x - y) - \sigma ||x - y||_2^2 \ge \frac{1}{\beta - \sigma} ||\nabla f(x) - \nabla f(y) - \sigma (x - y)||_2^2$$

which by expanding the square and rearranging is equivalent to

$$(\nabla f(x) - \nabla f(y))^T (x - y) \ge \frac{1}{\beta + \sigma} \|\nabla f(x) - \nabla f(y)\|_2^2 + \frac{\sigma \beta}{\beta + \sigma} \|x - y\|_2^2$$

Outline

- Subdifferential and subgradient Definition and basic properties
- Monotonicity
- Examples
- Strong monotonicity and cocoercivity
- Fermat's rule
- Subdifferential calculus
- Optimality conditions
- Proximal operators

Fermat's rule

Let $f:\mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$, then x minimizes f if and only if $0 \in \partial f(x)$

Proof: x minimizes f if and only if

$$f(y) \ge f(x) = f(x) + 0^T (y - x)$$
 for all $y \in \mathbb{R}^n$

which by definition of subdifferential is equivalent to $0 \in \partial f(x)$

Example: several subgradients at solution, including 0

Fermat's rule – Nonconvex example

- Fermat's rule holds also for nonconvex functions
- Example:

- $\partial f(x_1) = \{0\}$ and $\nabla f(x_1) = 0$ (global minimum)
- $\partial f(x_2) = \emptyset$ and $\nabla f(x_2) = 0$ (local minimum)
- ullet For nonconvex f, we can typically only hope to find local minima

Outline

- Subdifferential and subgradient Definition and basic properties
- Monotonicity
- Examples
- Strong monotonicity and cocoercivity
- Fermat's rule
- Subdifferential calculus
- Optimality conditions
- Proximal operators

Subdifferential calculus rules

- Subdifferential of sum $\partial (f_1 + f_2)$
- ullet Subdifferential of composition with matrix $\partial(g\circ L)$

Subdifferential of sum

If f_1, f_2 closed convex and relint $dom f_1 \cap relint dom f_2 \neq \emptyset$:

$$\partial(f_1 + f_2) = \partial f_1 + \partial f_2$$

• One direction always holds: if $x \in \text{dom}\partial f_1 \cap \text{dom}\partial f_2$:

$$\partial (f_1 + f_2)(x) \supseteq \partial f_1(x) + \partial f_2(x)$$

Proof: let $s_i \in \partial f_i(x)$, add subdifferential definitions:

$$f_1(y) + f_2(y) \ge f_1(x) + f_2(x) + (s_1 + s_2)^T (y - x)$$

i.e. $s_1 + s_2 \in \partial (f_1 + f_2)(x)$

• If f_1 and f_2 differentiable, we have (without convexity of f)

$$\nabla(f_1 + f_2) = \nabla f_1 + \nabla f_2$$

Subdifferential of composition

If
$$f$$
 closed convex and relint $dom(f \circ L) \neq \emptyset$: $\partial (f \circ L)(x) = L^T \partial f(Lx)$

• One direction always holds: If $Lx \in dom f$, then

$$\partial (f \circ L)(x) \supseteq L^T \partial f(Lx)$$

Proof: let $s \in \partial f(Lx)$, then by definition of subgradient of f:

$$(f \circ L)(y) \ge (f \circ L)(x) + s^T (Ly - Lx) = (f \circ L)(x) + (L^T s)^T (y - x)$$

i.e., $L^T s \in \partial (f \circ L)(x)$

• If f differentiable, we have chain rule (without convexity of f)

$$\nabla (f \circ L)(x) = L^T \nabla f(Lx)$$

Outline

- Subdifferential and subgradient Definition and basic properties
- Monotonicity
- Examples
- Strong monotonicity and cocoercivity
- Fermat's rule
- Subdifferential calculus
- Optimality conditions
- Proximal operators

Composite optimization problems

• We consider optimization problems on *composite form*

$$\underset{x}{\operatorname{minimize}} f(Lx) + g(x)$$

where $f: \mathbb{R}^m \to \mathbb{R} \cup \{\infty\}$, $g: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$, and $L \in \mathbb{R}^{m \times n}$

- Can model constrained problems via indicator function
- This model format is suitable for many algorithms

A sufficient optimality condition

 $0 \in L^T \partial f(Lx) + \partial g(x)$

 $0 \in L^T \partial f(Lx) + \partial g(x) \subseteq \partial (f \circ L + g)(x)$

which by Fermat's rule is equivalent to x solution to (1)

• Note: (1) can have solution but no x exists that satisfies (2)

(2)

A necessary and sufficient optimality condition

Let $f: \mathbb{R}^m \to \overline{\mathbb{R}}, \ g: \mathbb{R}^n \to \overline{\mathbb{R}}, \ L \in \mathbb{R}^{m \times n}$ with f, g closed convex and assume $\operatorname{relint} \operatorname{dom}(f \circ L) \cap \operatorname{relint} \operatorname{dom} g \neq \emptyset$ then:

$$minimize f(Lx) + g(x)$$
 (1)

is solved by $x \in \mathbb{R}^n$ if and only if x satisfies

$$0 \in L^T \partial f(Lx) + \partial g(x) \tag{2}$$

Subdifferential calculus equality rules say:

$$0 \in L^T \partial f(Lx) + \partial g(x) = \partial (f \circ L + g)(x)$$

which by Fermat's rule is equivalent to x solution to (1)

• Algorithms search for x that satisfy $0 \in L^T \partial f(Lx) + \partial g(x)$

A comment on constraint qualification

• The condition

relint dom
$$(f \circ L) \cap$$
 relint dom $g \neq \emptyset$

is called constraint qualification and referred to as CQ

• It is a mild condition that rarely is not satisfied

Evaluating subgradients of convex functions

Obviously need to evaluate subdifferentials to solve

$$0 \in L^T \partial f(Lx) + \partial g(x)$$

- Explicit evaluation:
 - If function is differentiable: ∇f (unique)
 - ullet If function is nondifferentiable: compute element in ∂f
- Implicit evaluation:
 - Proximal operator (specific element of subdifferential)

Outline

- Subdifferential and subgradient Definition and basic properties
- Monotonicity
- Examples
- Strong monotonicity and cocoercivity
- Fermat's rule
- Subdifferential calculus
- Optimality conditions
- Proximal operators

Proximal operators

Proximal operator – Definition

• Proximal operator of $g: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ defined as:

$$\mathrm{prox}_{\gamma g}(z) = \operatorname*{argmin}_{x \in \mathbb{R}^n} (g(x) + \tfrac{1}{2\gamma} \|x - z\|_2^2)$$

where $\gamma > 0$ is a parameter

- Evaluating prox requires solving optimization problem
- ullet If g closed convex, prox is single-valued mapping from \mathbb{R}^n to \mathbb{R}^n
 - ullet Objective closed and strongly convex \Rightarrow unique minimizing point

Prox is generalization of projection

Recall the indicator function of a set C

$$\iota_C(x) := \begin{cases} 0 & \text{if } x \in C \\ \infty & \text{otherwise} \end{cases}$$

Then

$$\begin{aligned} \operatorname{prox}_{\iota_{C}}(z) &= \underset{x}{\operatorname{argmin}} (\frac{1}{2} \|x - z\|_{2}^{2} + \iota_{C}(x)) \\ &= \underset{x}{\operatorname{argmin}} \{ \frac{1}{2} \|x - z\|_{2}^{2} : x \in C \} \\ &= \underset{x}{\operatorname{argmin}} \{ \|x - z\|_{2} : x \in C \} \\ &= \Pi_{C}(z) \end{aligned}$$

Projection onto C equals prox of indicator function of C

Prox computes a subgradient

• Fermat's rule on prox definition: $x = \text{prox}_{\gamma q}(z)$ if and only if

$$0 \in \partial g(x) + \gamma^{-1}(x - z) \quad \Leftrightarrow \quad \gamma^{-1}(z - x) \in \partial g(x)$$

Hence, $\gamma^{-1}(z-x)$ is element in $\partial g(x)$

• A subgradient $\partial g(x)$ where $x = \text{prox}_{\gamma g}(z)$ is computed

Prox is 1-cocoercive

ullet For convex g, the proximal operator is 1-cocoercive:

$$(x-y)^T(\operatorname{prox}_{\gamma g}(x)-\operatorname{prox}_{\gamma f}(y))\geq \|\operatorname{prox}_{\gamma g}(x)-\operatorname{prox}_{\gamma f}(y)\|_2^2$$

- Proof
 - Combine monotonicity of ∂g , that for all $z_u \in \partial g(u)$, $z_v \in \partial g(v)$:

$$(z_u - z_v)^T (u - v) \ge 0$$

ullet with Fermat's rule on prox that evalutes subgradients of g:

$$u = \operatorname{prox}_{\gamma g}(x)$$
 if and only if $\gamma^{-1}(x - u) \in \partial g(u)$
 $v = \operatorname{prox}_{\gamma g}(y)$ if and only if $\gamma^{-1}(y - v) \in \partial g(v)$

• which gives, by letting $z_u = \gamma^{-1}(x-u)$ and $z_v = \gamma^{-1}(y-v)$:

$$\gamma^{-1}((x-u)-(y-v))^{T}(u-v) \ge 0$$

$$\Leftrightarrow (x-\operatorname{prox}_{\gamma g}(x)-(y-\operatorname{prox}_{\gamma g}(y)))^{T}(\operatorname{prox}_{\gamma g}(x)-\operatorname{prox}_{\gamma g}(y)) \ge 0$$

$$\Leftrightarrow (x-y)^{T}(\operatorname{prox}_{\gamma g}(x)-\operatorname{prox}_{\gamma g}(y)) \ge \|\operatorname{prox}_{\gamma g}(x)-\operatorname{prox}_{\gamma g}(y)\|_{2}^{2}$$

Prox is (firmly) nonexpansive

• We know 1-cocoercivity implies nonexpansiveness (1-Lipschitz)

$$\|\operatorname{prox}_{\gamma g}(x) - \operatorname{prox}_{\gamma g}(y)\|_2 \le \|x - y\|_2$$

which was shown using Cauchy-Schwarz inequality

Actually the stronger firm nonexpansive inequality holds

$$\begin{aligned} &\| \text{prox}_{\gamma g}(x) - \text{prox}_{\gamma g}(y) \|_2^2 \le \|x - y\|_2^2 \\ &\quad - \|x - \text{prox}_{\gamma g}(x) - (y - \text{prox}_{\gamma g}(y)) \|_2^2 \end{aligned}$$

which implies nonexpansiveness

- Proof:
 - take 1-cocoercivity and multiply both sides by 2:

$$2(x-y)^T (\operatorname{prox}_{\gamma g}(x) - \operatorname{prox}_{\gamma f}(y)) \ge 2 \|\operatorname{prox}_{\gamma g}(x) - \operatorname{prox}_{\gamma f}(y)\|_2^2$$

• use the following equality with $u = \mathrm{prox}_{\gamma g}(x)$ and $v = \mathrm{prox}_{\gamma g}(y)$:

$$(x-y)^{T}(u-v) = \frac{1}{2} (\|x-y\|_{2}^{2} + \|u-v\|_{2}^{2} - \|x-y-(u-v)\|_{2}^{2})$$

Proximal operator – Separable functions

• Let $x=(x_1,\ldots,x_n)$ and $g(x)=\sum_{i=1}^n g_i(x_i)$ be separable, then

$$\operatorname{prox}_{\gamma g}(z) = (\operatorname{prox}_{\gamma g_1}(z_1), \dots, \operatorname{prox}_{\gamma g_n}(z_n))$$

decomposes into n individual proxes

• Why? Since also $\|\cdot\|_2^2$ is separable:

$$\operatorname{prox}_{\gamma g}(z) = \underset{x \in \mathbb{R}^n}{\operatorname{argmin}} (g(x) + \frac{1}{2\gamma} || x - z ||_2^2)$$
$$= \underset{x \in \mathbb{R}^n}{\operatorname{argmin}} \left(\sum_{i=1}^n g_i(x_i) + \frac{1}{2\gamma} (x_i - z_i)^2 \right)$$

which gives n independent optimization problems

$$\underset{x_i \in \mathbb{R}}{\operatorname{argmin}} (g_i(x_i) + \frac{1}{2\gamma}(x_i - z_i)^2) = \operatorname{prox}_{\gamma g_i}(z_i)$$

Proximal operator - Example 1

• Consider the function g with subdifferential ∂g :

$$g(x) = \begin{cases} -x & \text{if } x \le 0 \\ 0 & \text{if } x \ge 0 \end{cases} \qquad \partial g(x) = \begin{cases} -1 & \text{if } x < 0 \\ [-1,0] & \text{if } x = 0 \\ 0 & \text{if } x > 0 \end{cases}$$

Graphical representations

• Fermat's rule for $x = \text{prox}_{\gamma q}(z)$:

$$0 \in \partial g(x) + \gamma^{-1}(x - z)$$

Proximal operator – Example 1 cont'd

• Let x < 0, then Fermat's rule reads

$$0 = -1 + \gamma^{-1}(x - z) \quad \Leftrightarrow \quad x = z + \gamma$$

which is valid (x < 0) if $z < -\gamma$

• Let x = 0, then Fermat's rule reads

$$0 \in [-1, 0] + \gamma^{-1}(0 - z)$$

which is valid (x = 0) if $z \in [-\gamma, 0]$

• Let x > 0, then Fermat's rule reads

$$0 = 0 + \gamma^{-1}(x - z) \quad \Leftrightarrow \quad x = z$$

which is valid (x > 0) if z > 0

• The prox satisfies

$$\operatorname{prox}_{\gamma g}(z) = \begin{cases} z + \gamma & \text{if } z < -\gamma \\ 0 & \text{if } z \in [-\gamma, 0] \\ z & \text{if } z > 0 \end{cases}$$

Proximal operator – Example 2

Let $g(x) = \frac{1}{2}x^T P x + q^T x$ with P positive semidefinite

- Gradient satisfies $\nabla g(x) = Px + q$
- \bullet Fermat's rule for $x = \text{prox}_{\gamma g}(z)$:

$$0 = \nabla g(x) + \gamma^{-1}(x - z) \quad \Leftrightarrow \quad 0 = Px + q + \gamma^{-1}(x - z)$$
$$\Leftrightarrow \quad (I + \gamma P)x = z - \gamma q$$
$$\Leftrightarrow \quad x = (I + \gamma P)^{-1}(z - \gamma q)$$

• So $\operatorname{prox}_{\gamma g}(z) = (I + \gamma P)^{-1}(z - \gamma q)$

Computational cost

Evaluating prox requires solving optimization problem

$$\operatorname{prox}_{\gamma g}(z) = \operatorname*{argmin}_{x}(g(x) + \tfrac{1}{2\gamma} \|x - z\|_2^2)$$

- Prox often more expensive to evaluate than gradient
 - Example: Quadratic $g(x) = \frac{1}{2}x^T P x + q^T x$:

$$\operatorname{prox}_{\gamma g}(z) = (I + \gamma P)^{-1}(z - \gamma q), \qquad \nabla g(z) = Pz + q$$

- But typically cheap to evaluate for separable functions
- Prox often used for nondifferentiable and separable functions