Convex Sets

Pontus Giselsson

Today's lecture

Motivation and context

- What is optimization?
- Why optimization?
- Convex vs nonconvex optimization
- Short course outlook

Today's subject: Convex sets

What is optimization?

• Find point $x \in \mathbb{R}^n$ that minimizes a function $f : \mathbb{R}^n \to \mathbb{R}$:

$$\underset{x \in \mathbb{R}^n}{\operatorname{minimize}} \, f(x)$$

• Example in \mathbb{R} :

What is optimization?

• Can also require x to belong to a set $S \subset \mathbb{R}^n$:

$$\mathop{\mathrm{minimize}}_{x \in S} f(x)$$

• Example in \mathbb{R} :

Why optimization?

- Many engineering problems can be modeled using optimization
 - Supervised learning
 - Optimal control
 - Signal reconstruction
 - Portfolio selection
 - Image classifiction
 - Circuit design
 - Estimation
 - ..
- Results in "optimal":
 - Model
 - Decision
 - Performance
 - Design
 - Estimate
 - ...

w.r.t. optimization problem model

• Different question: How good is the model?

Convex vs nonconvex optimization

- Convex optimization if set and function are convex
- Otherwise nonconvex optimization problem
- Why convexity? Local minima are global minima
- Why go nonconvex? Richer modeling capabilities

• If convex modeling enough, use it, otherwise try nonconvex

Short course outlook – Convex analysis part

- Set up to arrive at convex duality theory
- Fenchel duality (as opposed to (equivalent) Lagrange duality)
- Dual problem:
 - is companion problem to stated *primal* problem
 - can be easier to solve and than primal (SVM)
 - solution can (sometimes) be used to recover primal solution
 - is based on *conjugate functions* and optimizes over *subgradients*
 - in Fenchel duality assumes primal problem on *composite* form:

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} f(x) + g(x)$$

• Will see one algorithm for composite problem form

Short course outlook – Supervised learning part

- Some supervised learning methods from optimization perspective
- Classical supervised learning is based on convexity
 - Least squares, logistic regression, support vector machines (SVM)
 - SVM relies heavily on duality, state of the art until 10 years ago
 - "All local minima good" (if properly regularized)
 - Separates modeling from algorithm design
- Deep learning is based on nonconvex training problems
 - Algorithm can end up in local minima
 - Contemporary deep networks often overparameterized
 - Many global minima, some desired some not
 - Used algorithms (SGD variations) often find a "good" minimum
 - There is implicit regularization in SGD will try to understand
 - No separation between modeling and algorithm

Different global minima generalize differently well

- Binary classification problem with blue and red class
- Black line is decision boundary of trained network with 0 loss
- Perfect fit to data and probably OK generalization

Different global minima generalize differently well

- Binary classification problem with blue and red class
- Decision boundary of another 0 loss network (same problem)
- Perfect fit to data and probably much worse generalization

- SGD has implicit regularization often finds "good" minima
- Will try to understand why this is the case

Convex Sets

Outline

- Definition and convex hull
- Examples of convex sets
- Convexity preserving operations
- Concluding convexity Examples
- Separating and supporting hyperplanes

• A set C is convex if for every $x,y\in C$ and $\theta\in[0,1]$:

$$\theta x + (1 - \theta)y \in C$$

"Every line segment that connect any two points in C is in C"

• A set C is convex if for every $x,y\in C$ and $\theta\in[0,1]$:

$$\theta x + (1 - \theta)y \in C$$

"Every line segment that connect any two points in C is in C"

• A set C is convex if for every $x,y\in C$ and $\theta\in[0,1]$:

$$\theta x + (1 - \theta)y \in C$$

"Every line segment that connect any two points in C is in C"

• A set C is convex if for every $x,y\in C$ and $\theta\in[0,1]$:

$$\theta x + (1 - \theta)y \in C$$

"Every line segment that connect any two points in C is in C"

• A set C is convex if for every $x,y\in C$ and $\theta\in[0,1]$:

$$\theta x + (1 - \theta)y \in C$$

"Every line segment that connect any two points in C is in C"

Convex combination and convex hull

Convex hull (conv S) of S is smallest convex set that contains S:

Mathematical construction:

ullet Convex combinations of x_1,\ldots,x_k are all points x of the form

$$x = \theta_1 x_1 + \theta_2 x_2 + \ldots + \theta_k x_k$$

where
$$\theta_1 + \ldots + \theta_k = 1$$
 and $\theta_i \geq 0$

ullet Convex hull: set of all convex combinations of points in S

Outline

- Definition and convex hull
- Examples of convex sets
- Convexity preserving operations
- Concluding convexity Examples
- Separating and supporting hyperplanes

Affine sets

• Take any two points $x, y \in V$: V is affine if full line in V:

Lines and planes are affine sets

• Definition: A set V is affine if for every $x, y \in V$ and $\alpha \in \mathbb{R}$:

$$\alpha x + (1 - \alpha)y \in V \tag{1}$$

hence convex this holds in particular for $\alpha \in [0,1]$

Affine hyperplanes

• Affine hyperplanes in \mathbb{R}^n are affine sets that cut \mathbb{R}^n in two halves

- Dimension of affine hyperplane in \mathbb{R}^n is n-1 (If $s \neq 0$)
- All affine sets in \mathbb{R}^n of dimension n-1 are hyperplanes
- Mathematical definition:

$$h_{s,r} := \{ x \in \mathbb{R}^n : s^T x = r \}$$

where $s \in \mathbb{R}^n$ and $r \in \mathbb{R}$, i.e., defined by one affine function

Vector s is called normal to hyperplane

Halfspaces

• A halfspace is one of the halves constructed by a hyperplane

• Mathematical definition:

$$H_{r,s} = \{ x \in \mathbb{R}^n : s^T x \le r \}$$

 \bullet Halfspaces are convex, and vector s is called normal to halfspace

Polytopes

• A polytope is intersection of halfspaces and hyperplanes

• Mathematical representation:

$$C = \{x \in \mathbb{R}^n : s_i^T x \le r_i \text{ for } i \in \{1, \dots, m\} \text{ and } s_i^T x = r_i \text{ for } i \in \{m+1, \dots, p\}\}$$

Polytopes convex since intersection of convex sets

Cones

- A set K is a cone if for all $x \in K$ and $\alpha \ge 0$: $\alpha x \in K$
- If x is in cone K, so is entire ray from origin passing through x:

• Examples:

Convex cones

• Cones can be convex or nonconvex:

- Convex cone examples:
 - Linear subspaces $\{x \in \mathbb{R}^n : Ax = 0\}$ (but not affine subspaces)
 - Halfspaces based on linear (not affine) hyperplanes $\{x: s^Tx \leq 0\}$
 - Positive semi-definite matrices $\{X \in \mathbb{R}^{n \times n} : X \text{ symmetric and } z^T X z \geq 0 \text{ for all } z \in \mathbb{R}^n \}$
 - Nonnegative orthant $\{x \in \mathbb{R}^n : x \ge 0\}$
 - Second order cone $\{(x,r) \in \mathbb{R}^n \times \mathbb{R} : ||x||_2 \le r\}$

Sublevel sets

- Suppose that $g:\mathbb{R}^n \to \mathbb{R}$ is a real-valued function
- ullet The (0th) sublevel set of g is defined as

$$S := \{ x \in \mathbb{R}^n : g(x) \le 0 \}$$

ullet Example: construction giving 1D interval $S=\left[a,b\right]$

- ullet S is a convex set if g is a convex function
- $\bullet \ S$ is not necessarily nonconvex although g is

Sublevel sets – Examples

• Levelset of convex quadratic function

 $\{x \in \mathbb{R}^n: \frac{1}{2}x^TPx + q^Tx + r \leq 0\},$ with P positive definite

- $\bullet \ \ \text{Norm balls} \ \{x \in \mathbb{R}^n: \|x\| r \leq 0\}$
- \bullet Second-order cone $\{(x,r)\in\mathbb{R}^n\times\mathbb{R}:\|x\|_2-r\leq 0\}$
- Halfspaces $\{x \in \mathbb{R}^n : c^T x r \leq 0\}$

Outline

- Definition and convex hull
- Examples of convex sets
- Convexity preserving operations
- Concluding convexity Examples
- Separating and supporting hyperplanes

Convexity preserving operations

- Intersection (but not union)
- Affine image and inverse affine image of a set

Intersection and union

- Intersection $C = C_1 \cap C_2$ means $x \in C$ if $x \in C_1$ and $x \in C_2$
 - If no x exists such that $x \in C_1$ and $x \in C_2$ then $C_1 \cap C_2 = \emptyset$
- Union $C = C_1 \cup C_2$ means $x \in C$ if $x \in C_1$ or $x \in C_2$

- Intersection of any number of, e.g., infinite, convex sets is convex
- Union of convex sets need not be convex

Image sets and inverse image sets

- Let L(x) = Ax + b be an affine mapping defined by
 - matrix $A \in \mathbb{R}^{m \times n}$
 - vector $b \in \mathbb{R}^m$
- Let C be a convex set in \mathbb{R}^n then the image set of C under L

$$\{Ax + b : x \in C\}$$

is convex

• Let D be a convex set in \mathbb{R}^m then the inverse image of D under L

$$\{x : Ax + b \in D\}$$

is convex

Outline

- Definition and convex hull
- Examples of convex sets
- Convexity preserving operations
- Concluding convexity Examples
- Separating and supporting hyperplanes

Ways to conclude convexity

- Use convexity definition
- Show that set is sublevel set of a convex function
- Show that set constructed by convexity preserving operations

Example – Nonnegative orthant

- Nonnegative orthant is set $C = \{x \in \mathbb{R}^n : x \ge 0\}$
- Prove convexity from definition:
 - Let $x \ge 0$ and $y \ge 0$ be arbitrary points in C
 - For all $\theta \in [0,1]$:

$$\theta x \geq 0 \qquad \text{and} \qquad (1-\theta)y \geq 0$$

All convex combinations therefore also satisfy

$$\theta x + (1 - \theta)y \ge 0$$

i.e., they belongs to \boldsymbol{C} and the set is convex

Example – Positive semidefinite cone

The positive semidefinite (PSD) cone is

$$\{X \in \mathbb{R}^{n \times n} : X \text{ symmetric}\} \bigcap \{X \in \mathbb{R}^{n \times n} : z^T X z \ge 0 \text{ for all } z \in \mathbb{R}^n\}$$

• This can be written as the following intersection over all $z \in \mathbb{R}^n$

$$\{X \in \mathbb{R}^{n \times n} : X \text{ symmetric}\} \bigcap \bigcap_{z \in \mathbb{R}^n} \{X \in \mathbb{R}^{n \times n} : z^T X z \geq 0\}$$

which, by noting that $z^TXz = \operatorname{tr}(z^TXz) = \operatorname{tr}(zz^TX)$, is equal to

$$\{X \in \mathbb{R}^{n \times n} : X \text{ symmetric}\} \bigcap \bigcap_{z \in \mathbb{R}^n} \{X \in \mathbb{R}^{n \times n} : \operatorname{tr}(zz^T X) \ge 0\}$$

where $\mathrm{tr}(zz^TX)\geq 0$ is a halfspace in $\mathbb{R}^{n\times n}$ (except when z=0)

- The PSD cone is convex since it is intersection of
 - symmetry set, which is a finite set of (convex) linear equalities
 - an infinite number of (convex) halfspaces in $\mathbb{R}^{n\times n}$
- Notation: If X belongs to the PSD cone, we write $X \succeq 0$

Example – Linear matrix inequality

Let us consider a linear matrix inequality (LMI) of the form

$$\{x \in \mathbb{R}^k : A + \sum_{i=1}^k x_i B_i \succeq 0\}$$

where A and B_i are fixed matrices in $\mathbb{R}^{n \times n}$

Convex since inverse image of PSD cone under affine mapping

Outline

- Definition and convex hull
- Examples of convex sets
- Convexity preserving operations
- Concluding convexity Examples
- Separating and supporting hyperplanes

Separating hyperplane theorem

- Suppose that $C,D\subseteq\mathbb{R}^n$ are two non-intersecting convex sets
- Then there exists hyperplane with C and D in opposite halves

• Mathematical formulation: There exists $s \neq 0$ and r such that

$$s^T x \le r \qquad \qquad \text{for all } x \in C$$

$$s^T x \ge r \qquad \qquad \text{for all } x \in D$$

• The hyperplane $\{x: s^Tx = r\}$ is called *separating hyperplane*

A strictly separating hyperplane theorem

- Suppose that $C, D \subseteq \mathbb{R}^n$ are non-intersecting closed and convex sets and that one of them is compact (closed and bounded)
- Then there exists hyperplane with strict separation

• Mathematical formulation: There exists $s \neq 0$ and r such that

$$s^T x < r$$
 for all $x \in C$ $s^T x > r$ for all $x \in D$

Consequence – C is intersection of halfspaces

a closed convex set C is the intersection of all halfspaces that contain it

proof:

- let H be the intersection of all halfspaces containing C
- \Rightarrow : obviously $x \in C \Rightarrow x \in H$
- \Leftarrow : assume $x \notin C$, since C closed and convex and $\{x\}$ compact singleton, there exists a strictly separating hyperplane, i.e., $x \notin H$:

Supporting hyperplanes

• Supporting hyperplanes touch set and have full set on one side:

- We call the halfspace that contains the set *supporting halfspace*
- s is called *normal vector* to C at x
- \bullet Definition: Hyperplane $\{y: s^Ty = r\}$ supports C at $x \in \operatorname{bd} C$ if

$$s^T x = r$$
 and $s^T y \le r$ for all $y \in C$

Supporting hyperplane theorem

Let C be a nonempty convex set and let $x \in \mathrm{bd}(C)$. Then there exists a supporting hyperplane to C at x.

- Does not exist for all point on boundary for nonconvex sets
- Many supporting hyperplanes exist for points of nonsmoothness

Normal cone operator

• Normal cone to C at $x \in \mathrm{bd}(C)$ is set of normals at x

- Normal cone operator N_C to C takes point input and returns set:
 - $x \in \mathrm{bd}(C) \cap C$: set of normal vectors to supporting halfspaces
 - $x \in \operatorname{int}(C)$: returns zero set $\{0\}$
 - $x \notin C$: returns emptyset \emptyset
- ullet Mathematical definition: The normal cone operator to a set C is

$$N_C(x) = \begin{cases} \{s : s^T(y - x) \le 0 \text{ for all } y \in C\} & \text{if } x \in C \\ \emptyset & \text{else} \end{cases}$$

i.e., vectors that form obtuse angle between s and all y-x, $y\in C$

• For all $x \in C$: the N_C outputs a set that contains 0