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Today’s lecture

Motivation and context
® What is optimization?
® Why optimization?
® Convex vs nonconvex optimization

® Short course outlook

Today's subject: Convex sets



What is optimization?

® Find point x € R™ that minimizes a function f : R” — R:

minimize f(zx)

® Example in R:

f(z)



What is optimization?

® Can also require = to belong to a set S C R™:

minimize f(z)

® Example in R:

f(x)



Why optimization?

® Many engineering problems can be modeled using optimization
® Supervised learning

Optimal control

Signal reconstruction

Portfolio selection

Image classifiction

Circuit design

Estimation

® Results in “optimal”:
® Model
® Decision
Performance
Design
Estimate

w.r.t. optimization problem model
o Different question: How good is the model?



Convex vs nonconvex optimization

e Convex optimization if set and function are convex
® QOtherwise nonconvex optimization problem
® Why convexity? Local minima are global minima

® Why go nonconvex? Richer modeling capabilities

nonconvex function convex function

® |f convex modeling enough, use it, otherwise try nonconvex



Short course outlook — Convex analysis part

® Set up to arrive at convex duality theory

® Fenchel duality (as opposed to (equivalent) Lagrange duality)
® Dual problem:

is companion problem to stated primal problem

can be easier to solve and than primal (SVM)

solution can (sometimes) be used to recover primal solution

is based on conjugate functions and optimizes over subgradients
in Fenchel duality assumes primal problem on composite form:

minimize f(z) + g(x)

® Will see one algorithm for composite problem form



Short course outlook — Supervised learning part

® Some supervised learning methods from optimization perspective
® Classical supervised learning is based on convexity

® Least squares, logistic regression, support vector machines (SVM)
SVM relies heavily on duality, state of the art until 10 years ago
“All local minima good” (if properly regularized)
Separates modeling from algorithm design

® Deep learning is based on nonconvex training problems
® Algorithm can end up in local minima
® Contemporary deep networks often overparameterized

® Many global minima, some desired some not
® Used algorithms (SGD variations) often find a “good” minimum
® There is implicit regularization in SGD — will try to understand

® No separation between modeling and algorithm



Different global minima generalize differently well

® Binary classification problem with blue and red class
® Black line is decision boundary of trained network with O loss
® Perfect fit to data and probably OK generalization




Different global minima generalize differently well

® Binary classification problem with blue and red class
® Decision boundary of another 0 loss network (same problem)
® Perfect fit to data and probably much worse generalization

® SGD has implicit regularization — often finds “good” minima
® Will try to understand why this is the case



Convex Sets
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Outline

¢ Definition and convex hull

e Examples of convex sets

e Convexity preserving operations
e Concluding convexity — Examples

e Separating and supporting hyperplanes
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Convex sets — Definition

® A set C is convex if for every z,y € C and 0 € [0,1]:
bxr+(1—-0)yeC

® “Every line segment that connect any two points in C'is in C"

® Will assume that all sets are nonempty and closed
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Convex sets — Definition

® A set C is convex if for every z,y € C and 0 € [0,1]:
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Convex combination and convex hull

Convex hull (convS) of S is smallest convex set that contains S:

Mathematical construction:

e Convex combinations of x,

., xy are all points = of the form

z=0121 + 03290 + ...+ Oy

where 01 + ...+ 0, =

=1 and 91 > 0
® Convex hull: set of all convex combinations of points in .S
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Outline

e Definition and convex hull

e Examples of convex sets

e Convexity preserving operations
e Concluding convexity — Examples

e Separating and supporting hyperplanes

14



Affine sets

® Take any two points z,y € V: V is affine if full line in V:

X

Lines and planes are affine sets

® Definition: A set V is affine if for every z,y € V and o € R:
ar+(1l-—a)yeV (1)

hence convex this holds in particular for o € [0, 1]
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Affine hyperplanes

Affine hyperplanes in R™ are affine sets that cut R™ in two halves

Dimension of affine hyperplane in R™ is n — 1 (If s # 0)
All affine sets in R™ of dimension n — 1 are hyperplanes

Mathematical definition:
hsy :={x e R": sTy = r}

where s € R™ and r € R, i.e., defined by one affine function

Vector s is called normal to hyperplane
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Halfspaces

® A halfspace is one of the halves constructed by a hyperplane

® Mathematical definition:
H,,={recR":s'e <r}

® Halfspaces are convex, and vector s is called normal to halfspace
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Polytopes

® A polytope is intersection of halfspaces and hyperplanes

® Mathematical representation:
C={reR":s]ox<r foric{l,...,m} and
sTa=riforic{m+1,..p}}

® Polytopes convex since intersection of convex sets
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Cones

o Aset Kisaconeifforallz€e Kanda>0: ar e K
® |f x is in cone K, so is entire ray from origin passing through x:

T

® Examples:

Cone Cone Not cone
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Convex cones

® Cones can be convex or nonconvex:

Nonconvex cone Convex cone

® Convex cone examples:
® Linear subspaces {x € R" : Az = 0} (but not affine subspaces)
® Halfspaces based on linear (not affine) hyperplanes {z : s7z < 0}
® Positive semi-definite matrices
{X € R™"™ : X symmetric and 27 Xz > 0 for all z € R"}
® Nonnegative orthant {z € R" : z > 0}
Second order cone {(z,r) € R" xR : ||z|]2 <7}
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Sublevel sets

® Suppose that g : R” — R is a real-valued function
® The (0th) sublevel set of g is defined as

S:={zeR":g(z) <0}

® Example: construction giving 1D interval S = [a, b]

g()

T

® S is a convex set if g is a convex function

® S is not necessarily nonconvex although g is
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Sublevel sets — Examples

® | evelset of convex quadratic function

{r € R": 22T Pz + qTx + r < 0}, with P positive definite
® Norm balls {z € R" : ||z|| — r < 0}
® Second-order cone {(z, r) eER"XR: |lzl|s —r <0}
® Halfspaces {zr € R" : ¢’z —r <0}
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Outline

e Definition and convex hull

e Examples of convex sets

e Convexity preserving operations
e Concluding convexity — Examples

e Separating and supporting hyperplanes
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Convexity preserving operations

® Intersection (but not union)

e Affine image and inverse affine image of a set
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Intersection and union

Intersection C =C1NCy meansx € Cif x € C; and x € Cq
® If no x exists such that x € C1 and x € C2 then C1 N Cy =

Union C =CiUCymeansz € Cifx € Cy or x € Cy

% <

Intersection Union

Intersection of any number of, e.g., infinite, convex sets is convex

Union of convex sets need not be convex

25



Image sets and inverse image sets

® Let L(x) = Az + b be an affine mapping defined by
® matrix A € R™*"
® vector b € R™

® Let C be a convex set in R™ then the image set of C' under L
{Az+b:2z € C}

is convex

® let D be a convex set in R™ then the inverse image of D under L
{z: Az +be D}

is convex
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Outline

e Definition and convex hull

e Examples of convex sets

e Convexity preserving operations

e Concluding convexity — Examples

e Separating and supporting hyperplanes
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Ways to conclude convexity

® Use convexity definition
® Show that set is sublevel set of a convex function

® Show that set constructed by convexity preserving operations
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Example — Nonnegative orthant

® Nonnegative orthant is set C' = {x e R" : z > 0}
® Prove convexity from definition:

® let x > 0 and y > 0 be arbitrary points in C
® Forall 8 € [0,1]:

x>0 and (1-0)y>0
® All convex combinations therefore also satisfy
Oz + (1—0)y >0

i.e., they belongs to C' and the set is convex
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Example — Positive semidefinite cone

® The positive semidefinite (PSD) cone is
{X e R™": X symmetric} ((|{X € R"*": 27Xz >0 for all z € R"}
® This can be written as the following intersection over all z € R™

{X eRV": X symmetric}m ﬂ {(X eR™"™: 2T X2 >0}
z€R™

which, by noting that 27 Xz = tr(27 X z2) = tr(227 X), is equal to

{XeR™": X symmetric}m m {X e R : tr(227 X) > 0}
z€R™

where tr(z27 X) > 0 is a halfspace in R"*" (except when z = ()
® The PSD cone is convex since it is intersection of
® symmetry set, which is a finite set of (convex) linear equalities
® an infinite number of (convex) halfspaces in R™*"
® Notation: If X belongs to the PSD cone, we write X = 0

30



Example — Linear matrix inequality

® |et us consider a linear matrix inequality (LMI) of the form
k
{zreR¥: A+ > 2B = 0}
i=1

where A and B; are fixed matrices in R"*"™

® Convex since inverse image of PSD cone under affine mapping
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Outline

e Definition and convex hull

e Examples of convex sets

e Convexity preserving operations
e Concluding convexity — Examples

e Separating and supporting hyperplanes
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Separating hyperplane theorem

® Suppose that C; D C R" are two non-intersecting convex sets
® Then there exists hyperplane with C' and D in opposite halves

Counter-example
Example D nonconvex

® Mathematical formulation: There exists s # 0 and r such that

sTe <y forallz € C

sTe>r forallz € D

® The hyperplane {x : sT2 = r} is called separating hyperplane
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A strictly separating hyperplane theorem

® Suppose that C, D C R"™ are non-intersecting closed and convex
sets and that one of them is compact (closed and bounded)

® Then there exists hyperplane with strict separation

D={(z,y):y>2z"1,z>0}

C={(zy):y<0}

Example Counter example
C, D not compact

® Mathematical formulation: There exists s # 0 and r such that

sTe <7 forallz e C

sTe>r for all z € D
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Consequence — (' is intersection of halfspaces

‘a closed convex set C' is the intersection of all halfspaces that contain it

proof:

® let H be the intersection of all halfspaces containing C'

® = obviouslyz € C =z € H

® «<: assume z ¢ C, since C closed and convex and {z} compact
singleton, there exists a strictly separating hyperplane, i.e., ¢ & H:

& "
\_/




Supporting hyperplanes

® Supporting hyperplanes touch set and have full set on one side:

S \ |/

[VAIVAY>)

/1A

® We call the halfspace that contains the set supporting halfspace

® s is called normal vector to C at =

® Definition: Hyperplane {y : sTy = 7} supports C at x € bd C if

stx=r and sTy<rforallyeC
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Supporting hyperplane theorem

Let C' be a nonempty convex set and let € bd(C). Then there exists
a supporting hyperplane to C at z.

® Does not exist for all point on boundary for nonconvex sets

® Many supporting hyperplanes exist for points of nonsmoothness

W

o
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Normal cone operator

® Normal cone to C' at z € bd(C) is set of normals at

® Normal cone operator N¢ to C takes point input and returns set:
® 1 € bd(C)NC: set of normal vectors to supporting halfspaces
® 1 ¢ int(C): returns zero set {0}
® 1 & C: returns emptyset ()

® Mathematical definition: The normal cone operator to a set C' is

{s:sT(y—x)<0forallyeC} ifzeC
0 else

Ne(z) = {

i.e., vectors that form obtuse angle between s and all y —x, y € C
® For all x € C: the N¢ outputs a set that contains 0
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