Parficulär lö'su.
$y^{\prime \prime}+a y^{\prime}+b y=h(x)$. Exempel och sedan seft.

Ex1: $y^{\prime \prime}+2 y^{\prime}+3 y=1 \rightarrow y^{\text {kristant }} \rightarrow y^{\prime}=0=y^{\prime \prime}$ och $3 \cdot A=1 \Rightarrow A=1 / 3$

Ex 2: $\quad y^{\prime \prime}+2 y^{\prime}+3 y=2 x+4 \quad$ Försöle: $y_{p}=A x+B \Rightarrow y_{p}^{\prime}=A$

$$
\left.\begin{array}{rl}
0+2 A+3(A x+B)=2 x+4 \\
3 A x+2 A+3 B=2 x+4
\end{array}\right\} \begin{aligned}
& \Rightarrow y^{\prime \prime} p=0 \\
& 3 A=2 \rightarrow A=2 / 3 \\
& 2 A+3 B=4 \rightarrow B=\frac{1}{3}\left(4-\frac{4}{3}\right)=\frac{8}{9}
\end{aligned}
$$

Ex 3: $\quad y^{\prime \prime}+2 y^{\prime}=x+1$ Ingen y-term. Hur fär vi uteu koustant? Hög gradeu.

$$
\begin{aligned}
& 2 a+2(2 a x+b)=x+1 \\
& 4 a x+2(a+b)=x+1
\end{aligned}
$$

$$
\Rightarrow a=b=1 / 4 \quad y_{p}(x)=\frac{1}{4}\left(x^{2}+x\right) \quad(+c)
$$

$$
\text { vátjeHc, t.ex } C=0 \text {. }
$$

ER4: $\quad y^{4}+2 y^{\prime}+3 y=(x+1) e^{x}$

$$
\begin{aligned}
& \qquad \begin{aligned}
& y_{p}:(a x+b) e^{x} \rightarrow y_{p}^{\prime}=e^{x}(a x+b+a) \\
& \rightarrow y_{p}^{\prime \prime}=e^{x}(a x+b+2 a)
\end{aligned} \\
& e^{x}\left\{a x+6+2 a+2(a x+b+a)+3\left(a_{x}+6\right)\right\}=e^{x}(x+1) \\
& e^{x}\{6 a x+6 b+4 a\}=e^{x}(x+1) \rightarrow a=\frac{1}{6}, b=\frac{1}{18}
\end{aligned}
$$

Ex: $\quad y^{\prime \prime}+9 y=\cos 3 x$ dus: $y^{\prime \prime}+9 y=e^{3 i x} \quad$ och vibehälle Re $\left(y_{1}\right)$

$$
\begin{aligned}
& y_{p}=p(x) e^{3 i x} ; p: p \text { dyuw } . \\
& y_{p}^{\prime}=p^{\prime} e^{3 i x}+3 i p e^{3 i x}=\left(p^{\prime}+3 i p\right) e^{3 i x} \\
& y^{\prime \prime} p=e^{3 i x}\left(3 i p^{\prime}-9 p+p^{\prime}+3 i p p^{\prime}\right)
\end{aligned}
$$

$$
e^{3 i x}\left(p^{\prime \prime}+6 i p^{\prime}-9 p+9 p\right)=e^{3 i x}
$$

$\operatorname{dus} p^{\prime \prime}+6 i p^{\prime}=1 \rightarrow p^{\prime}=\frac{1}{6 i}$ och $p(x)=-i x / 6$

$$
y_{p}(x)=-\frac{i x}{6} e^{3 i x}=\frac{1}{6} x \sin x-\frac{i}{6} x \cos x
$$

$\varphi_{p}(x)$ blir da $\frac{1}{6} x \sin x$.
SAMMANFATTNING: För $\quad h(x)=\{$ Bolyuom, e polyuom, "r \quad " \quad " $\}$
Försơk med y_{p} out saumua typ som $\ln (x)$.
on det rute slculle räcka, höj grádeu i polywouet, t.ex.
dä $\left\{\begin{array}{l}\cdot Y \text {-term sakcuas } \\ 0 r \equiv \text { en rot till den homogena elevationen. }\end{array}\right.$
Exempel: Los $\quad y^{\prime \prime}+y^{\prime}-2 y=x^{2}+1 ; \quad y(0)=1, \quad y^{\prime}(0)=-2$
(1) Howogen: $r^{2}+r-2=0 \rightarrow r=-\frac{1}{2} \pm \sqrt{\frac{1}{4}+2}=\{1,-2\}$

$$
y_{h}(x)=A e^{x}+B e^{-2 x}
$$

(2) Pait: $y_{p}(x)=a x^{2}+b x+c \rightarrow$

$$
\begin{aligned}
& 2 a+(2 a x+b)-2\left(a x^{2}+b x+c\right)=x^{2}+1 \\
& \begin{array}{c}
-2 a x^{2}+(2 a-2 b) x+(2 a+b-2 c)=x^{2}+1 \\
=1 \\
=1
\end{array} \\
& a=b=-1 / 2 ; \quad c=-5 / 4 \quad y(x)=-\frac{1}{2} x^{2}-\frac{1}{2} x-\frac{5}{4}+A e^{x}+B e^{-2 x} \\
& y(0)=1=-5 / 4+A+B \quad A=1 \\
& y^{\prime}(0)=-2=-1 / 2+A-2 B \quad B=5 / 4 \\
& y(x)=-\frac{1}{2} x^{2}-\frac{1}{2} x-\frac{5}{4}+e^{x}+\frac{5}{4} e^{-2 x}
\end{aligned}
$$

Resonaus:

$$
y^{\prime \prime}+9 y=\cos 3 t ; \quad y(0)=1 ; \quad y^{\prime}(0)=0
$$

(1)

$$
\begin{aligned}
& y_{h}(x)=A \cos 3 t+B \sin 3 t \\
& y_{p}(x)=\frac{1}{6} t \operatorname{sun} 3 t \\
& y^{\prime}(0)=A=1 \\
& y^{\prime}(0)=\left[\frac{1}{6} \sin 3 t+2 t \cos 3 t \leqslant 3 A \sin 3 t+3 B \cos 3 t\right]=\frac{1}{6} t \sin 3 t+A \cos 3 t+B \sin 3 t \\
& \Rightarrow B=0 . \\
& \left.y(t)=\frac{1}{6} t \sin 3 t+\cos 3 t\right] \quad \text { Resunans! }
\end{aligned}
$$

Omekvationen hau dämpring, kan löswingen hällas begräusad.
T.Ex: $\quad y^{\prime \prime}+2 y^{\prime}+10 y=\cos 3 t ; \quad y(0)=1 ; \quad y^{\prime}(0)=0$.

$$
\begin{aligned}
& y_{h}=e^{-k}(A \cos 3 t+B \sin 3 t) \quad{ }^{-k} A=36 / 37 \\
& y p=\frac{1}{37}(\cos 3 t+6 \sin 3 t) \quad B=6 / 37 \\
& y(t)=\frac{1}{37}\left[e^{-t}(36 \cos 3 t+6 \sin 3 t)+\cos 3 t+6 \sin 3 t\right] V_{j}^{u} E_{j \in R}^{u}
\end{aligned}
$$

Högre orduing: Semima Couceft.

$$
\varepsilon_{x: 15} 15.60 \quad \text { Lós } y^{(4)}-3 y^{\prime \prime}-4 y=e^{-2 x} \cdot y=y_{h}+y_{r}
$$

$$
\begin{array}{rl}
r^{4}-3 r^{2}-4=0 \rightarrow & S^{2}-3 S-4=0 \Rightarrow S=\frac{3}{2} \pm \sqrt{\frac{9}{4}+4} \\
s=r^{2} & s=4,-1 \\
2 x & \rightarrow r= \pm 2, \pm i
\end{array}
$$

$$
I_{4}(x)=A e^{2 x}+B e^{-2 x}+C \cos x+B \sin x
$$

$$
\begin{aligned}
&-\frac{1}{20} e^{-2 x} \leftrightarrow y_{p}(x)=p(x) e^{-2 x} \rightarrow y^{\prime} p=e^{-2 x}\left(p^{\prime}-2 p\right) \rightarrow y^{\prime \prime} p=e^{-2 x}\left(p^{\prime \prime}-4 p^{\prime}+4 p\right. \\
& y^{\prime \prime \prime}=e^{-2 x}\left(p^{\prime \prime \prime}-4 p^{4}+4 p^{\prime}-2\left(p^{\prime \prime}-4 p^{\prime}+4 p\right)\right)=e^{-2 x}\left(p^{(3)}-6 p^{4}+12 p^{\prime}-8 p\right) \\
& y^{\prime 4}=e^{-2 x}\left(p^{(4)}-6 p^{(3)}+12 p^{\prime \prime}-8 p^{\prime}-2\left(p^{(3)}-6 p^{\prime \prime}+12 p^{\prime}-8 p\right)\right) \\
& \rightarrow p^{(4)-8^{p(3)}+24 p^{4}-22 p^{\prime}+16 p-3\left(p^{\prime \prime}-4 p^{\prime}+4 p\right)-4 p=1 \rightarrow p^{\prime}=-1 / 20 .}
\end{aligned}
$$

