

State-space models (autonomous systems)

- State vector: a present the memory that the dynamical system has of its past Input vector:

 U splically control inspired applied to make the output to behave in aspectfic manner of variables of particular interest e.g. measurable required to previously interest to the output vector.
- $f(x,u,y,\dot{x},\dot{u},\dot{y},\ldots)=0$ Explicit: $(x) = f(x, u), \quad y = h(x)$ Affine in the control: $\dot{x} = f(x) + g(x)u, \quad y = h(x)$ Linear time-invariant: $\dot{x} = Ax + Bu, \quad y = Cx$ f(x) = Ax + b "bias"

 Linear map

Non-autonomous systems

- Autonomous forced system: $\dot{x} = f(x(u))$ Control Input vector: Non-autonomous system:
- explicitely the

becomes unforced after substituting explicitely Always possible to transform to autonomous system

Introduce $x_{n+1} = time$ the system $\dot{x} = f(x, x_{n+1})$ $\dot{x}_{n+1} = 1$

if t is a result of adding an integrator in the control input then the system can be transformed to attonomous by introducing and solutions

Linear Systems

State space representation $\dot{x} = \frac{d}{dt}x(t)$

Transfer function

$$\dot{x} = Ax + Bu$$

$$y = Cx + Du$$

$$H(s) = C(sI - A)^{-1}B + D$$

$$Y(s) = H(s)U(s)$$

State space models of systems are not unique

- · Controllable Canonical Form
- Observable Canonical Form

Linear Systems

State space representation $\dot{x} = \frac{d}{dt}x(t)$

$$\dot{x} = Ax + Bu$$
$$y = Cx + Du$$

Equilibrium 250 > 4x=0 if A full rank X=0

- Unique equilibrium if A is full-rank Regardless of the initial value, the equilibrium point is stable when the eigenvalues have negative real-parts
- Analytic solution: superposition of the natural modes of the system Lecture 02

Linear Systems

State space representation $\dot{x}=\frac{d}{dt}x(t)$

Y(s) = H(s)U(s)

 $\dot{x} = Ax + Bu$ y = Cx + Du

Properties:

· Principle of superposition and scaling

- If the unforced system is asymptotically stable, the forced system is bounded-input bounded-output stable
- Sinusoidal input → Sinusoidal output at the same frequency

Properties:

- · Unique equilibrium if A is full-rank
- Regardless of the initial value, the equilibrium point is stable when the eigenvalues have negative real-parts
- Analytic solution: superposition of the natural modes of the system

A standard form for analysis

LUND

Example: closed loop with friction

First order linear and nonlinear differential equations

- First order unforced systems described by differential equations $_{_{\it Nion}lineor}$
- Damping linear dynamic friction $m\dot{v} + dv = u$
- Damping nonlinear viscous friction (drag underwater vehicles) $\underline{m}\dot{v}+d|v|v=u$
- Population $\dot{N} = aN \left(1 \frac{N}{2}\right)$
- Population growth example $N = aN \left(1 \frac{1}{M}\right)$ Maximum size that can be reached
 - if N=670 N will reach the maximum pop. M

Second order nonlinear equations

- Circuit with negative resistance $CL\ddot{v} + Lh'(v)\dot{v} + v = 0$

Robot manipulators $\underbrace{M\ddot{q}+C(q,\dot{q})\dot{q}+g(q)+F_f(q,\dot{q})=u}_{positive \ definite \ but \ nonlinear \ incrtia \ mothrix}$

Transformation to first order systems & Equilibrium points

Assume
$$\underline{y^{(k)} = \frac{d^k y}{dt^k}}$$
 highest derivative of y Introduce $x = \begin{bmatrix} y & \dot{y} & \dots & y^{(k-1)} \end{bmatrix}^T$

Transformation to first order systems & Equilibrium points

- The system can stay at equilibrium forever without moving
- Set all derivatives equal to zero!

Assume
$$y^{(k)} = \frac{d^k y}{dt^k}$$
 highest derivative of y Introduce $\underline{x} = \begin{bmatrix} y & \dot{y} & \dots & y^{(k-1)} \end{bmatrix}^T$

General: $f(x_0, u_0, y_0, 0, 0, 0, ...) = 0$

Explicit: $f(x_0,u_0)=0$ \longrightarrow η on 0 in ear equation

Linear: $\underline{Ax_0} + \underline{Bu_0} = 0$ (has analytical solution(s)!) = Linear Systems of Equations

If $u_0 = - K \times_0 \implies (A - B K) \times_0 = 0$

Multiple isolated equilibria

• Pendulum

Population growth

$$\dot{N} = aN \left(1 - \underbrace{N}{M} \right)$$

$$N = 0$$
 $N = M$

LUND

Response to the input

Region of attraction

Region of attraction: The set of all initial conditions such that the solution converges to the equilibrium point 3 equilibrium points

Example: The differential equation

- If $|x_0| \le 1$ the solution exists $\forall t \ge 0$
- If $|x_0| > 1$ the solution exists for:

Limit Circles

Lipschitz Continuity and existence and uniqueness of solutions

Examples:
$$f(x) = \sqrt{x} \qquad \qquad f'(x) = \frac{1}{2\sqrt{x}}$$

$$f(x) = x^3 \qquad \qquad f'(x) = 3x^2 - 0 \qquad \qquad \int_{0}^{\infty} \cos(y) \frac{\log x}{\log x} dy = \int_{0}^{\infty$$

Lipschitz Continuity and existence and uniqueness of solutions

A solution of the diff. equation $\left\{ \begin{array}{l} \dot{x}(t) = f(x(t)) \\ x(0) = a \end{array} \right.$ exists $||f(z) - f(y)|| \le L||z - y||$ Lipschitz-continuous $\forall z, y \in \Omega_R$ $0 \le t < R/C_R,$ $C_R = \max_{x \in \Omega_R} \|f(x)\|$ $x(t)\,, \qquad t \geq 0\,.$ Global $\forall z, y \in \Re^n$ $\dot{x}(t) = f(x(t))$ A solution of the diff. equation exists and is unique if

- x(0) = a• f(x) is locally Lipschitz $\forall x \in \Omega_R$
 - and if it is known that every solution of the differential equation starting at a closed and bounded set $W\subset\Omega_R$ remains in it.

Lipschitz Continuity and existence and uniqueness of solutions

Check the continuity of $\ f(x)$ and the boundedness of first order partial derivatives

Examples:
$$f(x) = \sqrt{x} \qquad \qquad f'(x) = \frac{1}{2\sqrt{x}}$$

$$f(x) = x^3 \qquad \qquad f'(x) = 3x^2$$

$$f(x) = \tanh x$$
 $f'(x) = 1 - \tanh^2 x$

Lipschitz Continuity and existence and uniqueness of solutions

Check the continuity of $\ f(x)$ and the boundedness of first order partial derivatives

 $f'(x) = 3x^2$ $f(x) = x^3$

> $f'(x) = 1 - \tanh^2 x$ $f(x) = \tanh x$

LUND

Existence of the solution, finite escape time, instability (Quiz) esupe

LUND

Uniqueness problems

Does the initial value problem have more than one solution?

If so, the differential equation cannot be used for prediction

Example: The equation $\dot{x} = \sqrt{x}, \ x(0) = 0$ has many solutions:

$$x(t) = \begin{cases} (t-C)^2/4 & t > C \\ 0 & t \le C \end{cases}$$

Compare with water tank:

$$\dot{h} = -a\sqrt{h},$$
 h : height (water level)

Change to backward-time: "If I see it empty, when was it full?"

$$h(t) = \begin{cases} (t - 2\sqrt{h_0})^2/4 & t < 2\sqrt{h_0} \\ 0 & t > 2\sqrt{h_0} \end{cases}$$

Some nonlinearities -simulink

Next Lecture(s)

- Phase plane analysis for 2nd order linear systems
- Linearization
- · Stability definitions
- · Simulation in Matlab

FRNT05 Nonlinear Control Systems and Servo Systems

Lecture 2: Linearization and Phase plane analysis

YIANNIS KARAYIANNIDIS, ASSOCIATE PROFESSOR WWW.yiannis.info AUTOMATIC CONTROL, FACULTY OF ENGINEERING. yiannis@control.lth.se

Outline

- · Linearization around equilibrium
- · Phase plane analysis of linear systems

Material

- · Glad and Ljung: Chapter 13
- Khalil: Chapter 2.1-2.3
- Lecture notes

Linearization around an equilibrium point

· Linear systems with non-zero equilibrium points

Change of variables to move the origin to the equilibrium point

Example
$$\hat{x} = Ax + b$$
 $\hat{x} = 0$

A $\neq b \perp z \circ = 0$ Equilibrium $x^* = -A^{-1}b$

A $\neq b \perp 1$ New variable $\hat{x} = x - x^*$

The parameter $\hat{x} = x + x^*$

• Linear approximation of nonlinear systems (Taylor expansion
$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}$$
 $\dot{x} = f(x)$

$$\dot{\chi}_{\Xi\odot}$$
 **Equilibrium $f(x^{\star})=0$ $x=\tilde{x}+x^{\star}$ $\dot{\tilde{x}}=f(\tilde{x}+x^{\star})$

New variable $\tilde{x} = x - x'$

Linearization around an equilibrium point

• Linear approximation of nonlinear systems (Taylor expansion)

Example (nonlinear spring with external force)

Differential Equation

$$m\ddot{x} + k_v \dot{x} + k_s x^3 = F$$

State space representation

Position:
$$\underline{x_1=x}$$
 Velocity: $\underline{x_2=\dot{x}}$
$$\dot{x}_1=x_2 \\ \dot{x}_2=-\frac{k_s}{m}x_1^3-\frac{k_v}{m}x_2+\frac{F}{m}$$

• State space representation (vector form) $x = \begin{bmatrix} x_1 & x_2 \end{bmatrix}^T$

$$\dot{x} = f(x) \quad \text{if } (x) = \begin{bmatrix} x_2 \\ -\frac{k_s}{m} x_1^3 - \frac{k_v}{m} x_2 + \frac{F}{m} \end{bmatrix} \quad \text{lump} \quad \text{$$

$$\begin{array}{c} \underline{\mathcal{E}_{quifibrium}} \\ \underline{\chi_{1}} = 0 \\ \underline{\chi_{1}} = 0 \end{array} \qquad \begin{array}{c} \chi_{2} = 0 \\ \chi_{3} = F \Rightarrow \chi_{1}^{3} = \frac{F}{E_{3}} \Rightarrow \chi_{1} = \left(\frac{F}{E_{3}}\right)^{3} \end{array}$$

$$\frac{3k \cdot c \cdot b \cdot k \cdot x}{2k \cdot c \cdot b \cdot k \cdot x} = \begin{bmatrix} 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$J_{\epsilon}(x^*) = \underbrace{\int}_{\partial X} (x^*) =$$

$$J_{+}(x^{*}) = J_{+}((\frac{F}{F_{5}})^{1/3}, 0)$$

$$X_{1,p,q} \qquad X_{2,p,q}.$$

$$\begin{bmatrix} 0 & \begin{pmatrix} \frac{3k}{m} \left(\frac{F}{k_s} \right)^{2/3} - \frac{k_u}{m} \end{bmatrix}$$

Phase plane analysis

• The phase plane method is the graphical study of second-order autonomous systems:

systems:
$$\begin{aligned} \dot{x}_1 &= f_1(x_1,x_2) \\ \dot{x}_2 &= f_2(x_1,x_2) \\ & & \Rightarrow \frac{\gamma_l(t)}{2} \\ \\ \cdot \text{ Phase plane has } \ x_1 \text{ and } x_2^{\gamma_l(t)} \text{ as coordinates}. \end{aligned}$$

- Phase plane trajectory: a curve of the phase plane representing the solution for initial conditions $x_1(0), x_2(0)$ with time t varied from 0 to infinity
- · Phase portrait: a family of phase plane trajectories from various initial conditions

• Example:
$$\ddot{y} + y = 0 \quad \varkappa_{\iota} = y(\iota) = \mathscr{C} \underbrace{Sin(\iota)}_{\iota = \varphi \circ \downarrow} = \varphi \circ \underbrace{}_{\chi_{\iota} = \chi_{\iota}} \underbrace{}_{\chi_{\iota}} \underbrace$$

A first glimpse on phase portraits

$$\begin{array}{c} \dot{x}_1 = f_1(x_1,x_2) = x_1^2 + x_2 \\ \dot{x}_2 = f_2(x_1,x_2) = -x_1 - x_2 \\ \end{array} \begin{array}{c} \mathcal{E}_{\substack{q \\ \chi_1 + \chi_2 = 0 \\ \chi_1 - \chi_2 = 0 \\ \end{array}} \underbrace{\begin{array}{c} \chi_1 = 2 \\ \chi_1 = 2 \\ \chi_2 = 2 \\ \chi_1 - \chi_2 = 0 \\ \end{array}} \underbrace{\begin{array}{c} \chi_2 = 2 \\ \chi_1 = 2 \\ \chi_2 = 2 \\ \end{array}} \underbrace{\begin{array}{c} \chi_1 = f_1(x_1,x_2) \\ f_2(x_1,x_2) \\ \end{array}} \\ = f_1(x_1,x_2) \\ - \chi_1 + \chi_2 = 0 \\ \Rightarrow \chi_1 - \chi_2 = 0 \\ \Rightarrow \chi_1 - \chi_2 = 0 \\ \Rightarrow \chi_2 - \chi_3 \\ \text{ with stangent at point } (x_1,x_2) \text{ because} \\ \\ \frac{dx_2}{dx_1} = \underbrace{\begin{array}{c} f_1(x_1,x_2) \\ f_2(x_1,x_2) \\ \end{array}} \\ = f_2(x_1,x_2) \\ \end{array}$$

$$\begin{array}{c} \mathcal{E}_{\substack{q \\ \chi_1 + \chi_2 = 0 \\ \chi_1 + \chi_2 = 0 \\ \end{array}} \underbrace{\begin{array}{c} \chi_1 = 2 \\ \chi_1 - \chi_2 = 0 \\ \end{array}} \underbrace{\begin{array}{c} \chi_1 = 2 \\ \chi_2 = 2 \\ \chi_1 - \chi_2 = 0 \\ \end{array}} \\ = \frac{1}{1} \underbrace{\begin{array}{c} \chi_1 = 2 \\ \chi_2 = 2 \\ \chi_1 - \chi_2 = 0 \\ \end{array}} \\ = \frac{1}{1} \underbrace{\begin{array}{c} \chi_1 = 2 \\ \chi_2 = 2 \\ \chi_1 - \chi_2 = 0 \\ \end{array}} \\ = \frac{1}{1} \underbrace{\begin{array}{c} \chi_1 = 2 \\ \chi_2 = 2 \\ \chi_1 - \chi_2 = 0 \\ \end{array}} \\ = \frac{1}{1} \underbrace{\begin{array}{c} \chi_1 = 2 \\ \chi_2 = 2 \\ \chi_1 - \chi_2 = 0 \\ \end{array}} \\ = \frac{1}{1} \underbrace{\begin{array}{c} \chi_1 = 2 \\ \chi_2 = 2 \\ \chi_1 - \chi_2 = 0 \\ \end{array}} \\ = \frac{1}{1} \underbrace{\begin{array}{c} \chi_1 = 2 \\ \chi_2 = 2 \\ \chi_1 - \chi_2 = 0 \\ \end{array}} \\ = \frac{1}{1} \underbrace{\begin{array}{c} \chi_1 = 2 \\ \chi_2 = 2 \\ \chi_1 - \chi_2 = 0 \\ \end{array}} \\ = \frac{1}{1} \underbrace{\begin{array}{c} \chi_1 = 2 \\ \chi_2 = 2 \\ \chi_1 - \chi_2 = 0 \\ \end{array}} \\ = \frac{1}{1} \underbrace{\begin{array}{c} \chi_1 = 2 \\ \chi_2 = 2 \\ \chi_1 - \chi_2 = 0 \\ \end{array}} \\ = \frac{1}{1} \underbrace{\begin{array}{c} \chi_1 = 2 \\ \chi_1 = 2 \\ \chi_2 = 2 \\ \end{array}} \\ = \frac{1}{1} \underbrace{\begin{array}{c} \chi_1 = 2 \\ \chi_1 = 2 \\ \chi_2 = 2 \\ \end{array}} \\ = \frac{1}{1} \underbrace{\begin{array}{c} \chi_1 = 2 \\ \chi_2 = 2 \\ \end{array}} \\ = \frac{1}{1} \underbrace{\begin{array}{c} \chi_1 = 2 \\ \chi_1 = 2 \\ \end{array}} \\ = \frac{1}{1} \underbrace{\begin{array}{c} \chi_1 = 2 \\ \chi_1 = 2 \\ \end{array}} \\ = \frac{1}{1} \underbrace{\begin{array}{c} \chi_1 = 2 \\ \chi_1 = 2 \\ \end{array}} \\ = \frac{1}{1} \underbrace{\begin{array}{c} \chi_1 = 2 \\ \chi_1 = 2 \\ \end{array}} \\ = \frac{1}{1} \underbrace{\begin{array}{c} \chi_1 = 2 \\ \chi_1 = 2 \\ \end{array}} \\ = \frac{1}{1} \underbrace{\begin{array}{c} \chi_1 = 2 \\ \chi_1 = 2 \\ \end{array}} \\ = \frac{1}{1} \underbrace{\begin{array}{c} \chi_1 = 2 \\ \chi_1 = 2 \\ \end{array}} \\ = \frac{1}{1} \underbrace{\begin{array}{c} \chi_1 = 2 \\ \chi_1 = 2 \\ \end{array}} \\ = \frac{1}{1} \underbrace{\begin{array}{c} \chi_1 = 2 \\ \chi_1 = 2 \\ \end{array}} \\ = \frac{1}{1} \underbrace{\begin{array}{c} \chi_1 = 2 \\ \chi_1 = 2 \\ \end{array}} \\ = \frac{1}{1} \underbrace{\begin{array}{c} \chi_1 = 2 \\ \chi_1 = 2 \\ \end{array}} \\ = \frac{1}{1} \underbrace{\begin{array}{c} \chi_1 = 2 \\ \chi_1 = 2 \\ \end{array}} \\ = \frac{1}{1} \underbrace{\begin{array}{c} \chi_1 = 2 \\ \chi_1 = 2 \\ \end{array}} \\ = \frac{1}{1} \underbrace{\begin{array}{c} \chi_1 = 2 \\ \chi_1 = 2 \\ \end{array}} \\ = \frac{1}{1} \underbrace{\begin{array}{c} \chi_1 = 2 \\ \chi_1 = 2 \\ \end{array}} \\ = \frac{1}{1} \underbrace{\begin{array}{c} \chi_1 = 2 \\ \chi_1 = 2 \\ \end{array}} \\ = \frac{1}{1} \underbrace{\begin{array}{c} \chi_1 = 2 \\ \chi_1 = 2 \\ \end{array}} \\ = \frac{1}{1} \underbrace{\begin{array}{c} \chi_1 = 2 \\ \chi$$

In the point $(x_1, x_2) = (1, 2)$

 $(1^2 + 2, -1 - 2) = (3, -3).$

the vector field is pointing in the direction

Solution of Linear Systems of diff. eq.

Real distinct eigenvalues $~\lambda_1,~\lambda_2~$ One double eigenvalue $~\lambda~$ Complex Eigenvalues $~\sigma\pm j\omega$

$$\mathcal{M} = \begin{bmatrix} \sigma & -\omega \\ \omega & \sigma \end{bmatrix}$$

Two real eigenvectors

Solution of Linear Systems of diff. eq.

State space representation after change of variables $\,z=W^{\mbox{\tiny MN}}x\,$:

 $z(t) = e^{Mt} z(0)$ Solution for the new state:

Real distinct eigenvalues $e^{Mt} = \operatorname{diag}(e^{\lambda_1 t} e^{\lambda_2 t})$

One double eigenvalue $e^{Mt}=\mathrm{diag}(e^{\lambda t}+te^{\lambda t},e^{\lambda t})$

Solution of the original state: $x(t) = Wz(t) = We^{Mt}z(0)$

Two real eigenvalues

Two real eigenvalues

$\underbrace{\lambda_1}_{\mathrm{faster}} < \underbrace{\lambda_2}_{\mathrm{slower}} < 0$

$$x(t) = c_1 e^{\lambda_1 t} v_1 + c_2 e^{\lambda_2 t} v_2$$

$$x(t) = c_1 e^{\lambda_1 t} v_1 + c_2 e^{\lambda_2 t} v_2$$
Fast eigenvector

$$x(t) \approx c_1 e^{\lambda_1 t} v_1 + c_2 v_2 \text{ for small } t$$

Slow eigenvector

$$x(t)\approx c_2 e^{\lambda_2 t} v_2$$
 for large t

Some comments

• What if
$$\lambda_1=\lambda_2$$
 ?

Star

•
$$\lambda_1 \lambda_2 = \det(A)$$

$$\lambda_1 + \lambda_2 = \text{Tr}(A)$$

$$\lambda_{1,2} = \frac{1}{2} \left[\text{Tr}(A) \pm \sqrt{\text{Tr}^2(A) - 4\text{det}(A)} \right]$$

One tangent mode

$$\dot{x} = \begin{bmatrix} \lambda & 1 \\ 0 & \lambda \end{bmatrix} x, \qquad \operatorname{rank} \left(\lambda I - A \right) = 1$$

$$x_1(t) = x_1(0)e^{\lambda t} + tx_2(0)e^{\lambda t}$$

$$x_2(t) = x_2(0)e^{\lambda t}$$

Matching quiz 1

$$\dot{x} = \begin{bmatrix} -0.5 & 0.5 \\ -0.5 & -1.5 \end{bmatrix} x \qquad \qquad \dot{x} = \begin{bmatrix} -1 & -10 \\ 0 & -1 \end{bmatrix} x \qquad \qquad \dot{x} \begin{bmatrix} -1 & 0 \\ -2 & -3 \end{bmatrix} x$$
Lumber of the content of the con

$$\dot{x} = \left[\begin{array}{cc} -1 & -10 \\ 0 & -1 \end{array} \right] x$$

Complex eigenvalues

$W = \begin{bmatrix} \Re(v_1) & \Im(v_1) \end{bmatrix}$

Unstable focus

Stable focus

LUND

Matching quiz 2

$$\dot{x} = \frac{1}{2} \begin{bmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{bmatrix} x \qquad \lambda_{1,2} = -\frac{1}{2} \pm \frac{\sqrt{3}}{2} j \qquad \dot{x} = \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix} x$$

Example

$$\dot{x} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} x \qquad \lambda_{1,2} = -\frac{1}{2} \pm \frac{\sqrt{3}}{2} \dot{j}$$

 $\sigma = -1/2 < 0$ Stable focus

How to draw phase portraits

If done by hand then

- 1. Find equilibria (also called singularities)
- 2. Sketch local behavior around equilibria
- 3. Sketch (\dot{x}_1, \dot{x}_2) for some other points. Use that $\frac{dx_1}{dx_2} = \frac{\dot{x}_1}{\dot{x}_2}$.

Summary of phase portraits and their

- 4. Try to find possible limit cycles
- 5. Guess solutions

Matlab: PPTool and some other tools for Matlab is available on Canvas.

Matching quiz 3

$$\dot{x} = \begin{bmatrix} 0 & -1 \\ 4 & 0 \end{bmatrix} x$$

$$\dot{x} = \begin{bmatrix} -1.5 & -2.5 \\ 2.5 & 1.5 \end{bmatrix} x$$

$$\dot{x} = \begin{bmatrix} 0 & -2 \\ 2 & 0 \end{bmatrix} x$$

LUND

Effect of perturbations

Perturbations in $A + \Delta$

 Structurally stable: the qualitative behavior remains the same under arbitrarily small perturbations in A

Examples: a node(with distinct eigenvalues), a saddle or a focus

- A stable node with multiple eigenvalues could become a stable node or a stable focus under arbitrarily small perturbations in A
- A center is not structurally stable

$$\dot{z} = \begin{bmatrix} 0 & -\omega \\ \omega & 0 \end{bmatrix} z$$
 $\dot{z} = \begin{bmatrix} \delta & -\omega \\ \omega & \delta \end{bmatrix} z$ $\delta \pm j\omega$

Back to linearization

Theorem Assume

 $\dot{x} = f(x)$

is linearized at x^\star so that where

 $\dot{\tilde{x}} = A\tilde{x} + g(x)$

• $A = \frac{\partial f}{\partial x}(x^*)$

•
$$g=f(x)-rac{\partial f}{\partial x}(x^\star) \tilde{x} \in C^1$$
 and $\frac{\|g(x)\|}{\|\tilde{x}\|} o 0$ as $\|\tilde{x}\| o 0$

If $\hat{z} = A\hat{x}$ has a focus, node, or saddle point, then $\dot{x} = f(x)$ has the same

type of equilibrium at the origin.

If the linearized system has a center, then the nonlinear system has either a center or a focus.

Back to linearization

Summary

Linearization

$$\dot{x} = f(x) \Rightarrow \dot{\tilde{x}} = A\tilde{x} + g(x),$$

- · Phase portraits of Linear systems
- · Whether the behavior of the Linear system (outcome of linearization) can be inherited to the nonlinear system?

Outline

- · Linearization around trajectory (general case)
- Limit Cycles
- · Definitions of Stability

Material

- Glad& Ljung Ch. 11, 12.1, (Khalil Ch 2.3, part of 4.1, and 4.3)
- · Lecture slides

Summary of phase portraits and their equilibriums

i=Ax

LUND

Effect of perturbations

Perturbations in $A + \triangle$

• Structurally stable: the qualitative behavior remains the same under arbitrarily small perturbations in A

Examples: a node(with distinct eigenvalues), a saddle or a focus

- A stable node with multiple eigenvalues could become a stable node or a stable focus under arbitrarily small perturbations in A
- · A center is not structurally stable

structurally stable
$$\dot{z} = \begin{bmatrix} 0^{\zeta} & -\omega \\ \omega & 0^{\zeta} \end{bmatrix} z$$

LUND

Linearization around an equilibrium point

· Linear approximation of nonlinear systems (Taylor expansion)

Predicting behaviors close to equilibrium

Linearization around a trajectory

Idea: Make Taylor-expansion around a known solution $\{\underline{x^{\star}(t)}, \underline{u^{\star}(t)}\}$ satisfying the differential equation:

Linearization around a trajectory

$$\begin{split} & \underbrace{\dot{\bar{x}}(t) = A(t) \bar{\bar{y}}(t) + B(t) \bar{u}(t)}_{\dot{\bar{x}}(t) = 1} \\ & \text{Example: if } \dim x = 2, \underbrace{\dim u = 1}_{2 \times \mathcal{Z}} \\ & A(t) = \frac{\partial f}{\partial x} (x^*(t), u^*(t)) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{bmatrix} (x^*(t), u^*(t)) \\ & B(t) = \frac{\partial f}{\partial u} (x^*(t), u^*(t)) = \begin{bmatrix} \frac{\partial f_1}{\partial u_1} \\ \frac{\partial f_2}{\partial u_1} \end{bmatrix} (x^*(t), u^*(t)) \\ & 2 \times 1. \end{split}$$

Hence, for small (\tilde{x}, \tilde{u}) , approximately

Linearization around a trajectory

Linearization of the output equation y(t)=h(x(t),u(t)) around the nominal output $y^*(t)=h(x^*(t),u^*(t))$:

Second order system i.e. $\dim y = \dim x = 2$, $\dim u = 1$

$$\begin{split} C(t) &=& \frac{\partial h}{\partial x}(x^{\star}(t), u^{\star}(t)) = \begin{bmatrix} \frac{\partial h_1}{\partial x_1} & \frac{\partial h_2}{\partial x_2} \\ \frac{\partial h_2}{\partial x_1} & \frac{\partial h_2}{\partial x_2} \end{bmatrix} (x^{\star}(t), u^{\star}(t)) \\ D(t) &=& \frac{\partial h}{\partial u}(x^{\star}(t), u^{\star}(t)) = \begin{bmatrix} \frac{\partial h_1}{\partial u_1} \\ \frac{\partial h_2}{\partial u_1} \end{bmatrix} (x^{\star}(t), u^{\star}(t)) \end{split}$$

Time-varying Linear Systems

Time-varying Linear Systems

forall ∀t exists.∃t

Periodic solutions and Limit Cycles

• A system oscillates when it has a nontrivial periodic solution:

· Harmonic oscillator LC circuit

LUND

- Small perturbation will destroy the oscillation (e.g. resistance)

The amplitude depends on the initial conditions

LUND

Periodic solutions and Limit Cycles

- An isolated closed curve in the phase plane
- · Closed: periodic solution

Isolated: limiting nature of the limit cycle, nearby trajectories either converge to or diverge from the limit cycle

Stability of limit cycles

 $t \to \infty$

- Stable limit cycle: all trajectories in the vicinity of the limit cycle converge to it
- Unstable limit cycle: all trajectories in the vicinity of the limit cycle diverge from it 2
- Semi-Stable Limit Cycles: some of the trajectories in the vicinity converge to it, ← while the others diverge from it

Stability of limit cycles – matching quiz

CALCE first the stability of the Calculation of the Fig. 1. $(x) \begin{bmatrix} x_1 = x_2 - x_1(x_1^2 + x_2^2 - 1)^2 \\ x_2 = -x_1 - x_2(x_1^2 + x_2^2 - 1)^2 \\ x_2 = -x_1 + x_2(x_1^2 + x_2^2 - 1) \end{bmatrix} \times \begin{bmatrix} x_1 = x_2 - x_1(x_1^2 + x_2^2 - 1)^2 \\ x_2 = -x_1 - x_2(x_1^2 + x_2^2 - 1) \end{bmatrix} \times \begin{bmatrix} x_1 = x_2 - x_1(x_1^2 + x_2^2 - 1) \\ x_2 = -x_1 - x_2(x_1^2 + x_2^2 - 1) \end{bmatrix} \times \begin{bmatrix} x_1 = x_2 - x_1(x_1^2 + x_2^2 - 1) \\ x_2 = -x_1 - x_2(x_1^2 + x_2^2 - 1) \end{bmatrix} \times \begin{bmatrix} x_1 = x_2 - x_1(x_1^2 + x_2^2 - 1) \\ x_2 = -x_1 - x_2(x_1^2 + x_2^2 - 1) \end{bmatrix} \times \begin{bmatrix} x_1 = x_2 - x_1(x_1^2 + x_2^2 - 1) \\ x_2 = -x_1 - x_2(x_1^2 + x_2^2 - 1) \end{bmatrix} \times \begin{bmatrix} x_1 = x_2 - x_1(x_1^2 + x_2^2 - 1) \\ x_2 = -x_1 - x_2(x_1^2 + x_2^2 - 1) \end{bmatrix} \times \begin{bmatrix} x_1 = x_2 - x_1(x_1^2 + x_2^2 - 1) \\ x_2 = -x_1 - x_2(x_1^2 + x_2^2 - 1) \end{bmatrix} \times \begin{bmatrix} x_1 = x_2 - x_1(x_1^2 + x_2^2 - 1) \\ x_2 = -x_1 - x_2(x_1^2 + x_2^2 - 1) \end{bmatrix} \times \begin{bmatrix} x_1 = x_2 - x_1(x_1^2 + x_2^2 - 1) \\ x_2 = -x_1 - x_2(x_1^2 + x_2^2 - 1) \end{bmatrix} \times \begin{bmatrix} x_1 = x_2 - x_1(x_1^2 + x_2^2 - 1) \\ x_2 = -x_1 - x_2(x_1^2 + x_2^2 - 1) \end{bmatrix} \times \begin{bmatrix} x_1 = x_2 - x_1(x_1^2 + x_2^2 - 1) \\ x_2 = -x_1 - x_2(x_1^2 + x_2^2 - 1) \end{bmatrix} \times \begin{bmatrix} x_1 = x_2 - x_1(x_1^2 + x_2^2 - 1) \\ x_2 = -x_1 - x_2(x_1^2 + x_2^2 - 1) \end{bmatrix} \times \begin{bmatrix} x_1 = x_2 - x_1(x_1^2 + x_2^2 - 1) \\ x_2 = -x_1 - x_2(x_1^2 + x_2^2 - 1) \end{bmatrix} \times \begin{bmatrix} x_1 = x_2 - x_1(x_1^2 + x_2^2 - 1) \\ x_2 = -x_1 - x_2(x_1^2 + x_2^2 - 1) \end{bmatrix} \times \begin{bmatrix} x_1 = x_2 - x_1(x_1^2 + x_2^2 - 1) \\ x_2 = -x_1 - x_2(x_1^2 + x_2^2 - 1) \end{bmatrix} \times \begin{bmatrix} x_1 = x_1 - x_1(x_1^2 + x_2^2 - 1) \\ x_1 = x_1 - x_1(x_1^2 + x_2^2 - 1) \end{bmatrix} \times \begin{bmatrix} x_1 = x_1 - x_1(x_1^2 + x_2^2 - 1) \\ x_1 = x_1 - x_1(x_1^2 + x_2^2 - 1) \end{bmatrix} \times \begin{bmatrix} x_1 = x_1 - x_1(x_1^2 + x_2^2 - 1) \\ x_1 = x_1 - x_1(x_1^2 + x_2^2 - 1) \end{bmatrix} \times \begin{bmatrix} x_1 = x_1 - x_1(x_1^2 + x_2^2 - 1) \\ x_1 = x_1 - x_1(x_1^2 + x_2^2 - 1) \end{bmatrix} \times \begin{bmatrix} x_1 = x_1 - x_1(x_1^2 + x_2^2 - 1) \\ x_1 = x_1 - x_1(x_1^2 + x_2^2 - 1) \end{bmatrix} \times \begin{bmatrix} x_1 = x_1 - x_1(x_1^2 + x_2^2 - 1) \\ x_1 = x_1 - x_1(x_1^2 + x_2^2 - 1) \end{bmatrix} \times \begin{bmatrix} x_1 = x_1 - x_1(x_1^2 + x_2^2 - 1) \\ x_1 = x_1 - x_1(x_1^2 + x_2^2 - 1) \end{bmatrix} \times \begin{bmatrix} x_1 = x_1 - x_1(x_1^2 + x_2^2 - 1) \\ x_1 = x_1 - x_1(x_1^2 + x_2^2 - 1) \end{bmatrix} \times \begin{bmatrix} x_1 = x_1 - x_1(x_1^2 + x_2^2 - 1) \\ x_1 = x_$

$\frac{d}{dt} \left(x_1^2 + x_2^2 \right) = 2x_1 \dot{x}_1 + 2 x_1 \dot{x}_2$ • Change variables $r = \sqrt{x_1^2 + x_2^2}$ $\theta = \arctan x_2/x_1$ $\underline{\dot{x}_1} = x_2 - x_1(x_1^2 + x_2^2 - 1)^2$ $\dot{x}_2 = -x_1 - x_2(x_1^2 + x_2^2 - 1)^2$ $\dot{r} = \frac{1}{\sqrt{x_1^2 + x_2^2}} (\underline{x_1} \dot{x_1} + \underline{x_2} \dot{x_2})$ Otherwise and stay there calculate $\frac{d}{dx}(\sqrt{x}) = \frac{1}{2\sqrt{x}}$ + v10) 21 $\frac{d}{dx} (\arctan x) = \frac{1}{1+x^2}$ is decreasing abitil

Stability of an equilibrium point

Consider $\dot{x} = f(x)$ where $f(x^*) = 0$

Definition The equilibrium x^* is **stable** if for any R > 1

Otherwise the equilibrium point x^* is **unstable**.

• Use the term "stable (unstable) system" only for linear systems

 $\|x(0) - x^\star\| < r \quad \Longrightarrow \quad \|x(t) - x^\star\| < R, \quad \text{for all } t \geq 0$

- A nonlinear system have more than one equilibrium points that each one can be either stable or unstable
- · Unstable equilibrium does not mean unbounded trajectories

Unstable equilibrium does not mean unbounded trajectories

$\dot{x}_2 = (1 - x_1^2)x_2 - x_1$ **(** for R defining cycles in the limit cycle the trajectory will always escape R oven if it starts very close to equilibrium

Local vs Global Stability of Equilibrium

Definition The equilibrium x^* is **locally asymptotically stable (LAS)** if it

2) there exists r>0 so that if $\|x(0)-x^\star\| < r$ then

Definition The equilibrium is said to be globally asymptotically stable (GAS) if it is LAS and for all x(0) one has

$$x(t) \to x^*$$
 as $t \to \infty$.

Convergent but not stable

$$\begin{split} \dot{x}_1 &= \frac{x_1^2(x_2-x_1) + x_2^5}{(x_1^2 + x_2^2)[1 + (x_1^2 + x_2^2)^2]} \\ \dot{x}_2 &= \frac{x_2^2(x_2-2x_1)}{(x_1^2 + x_2^2)[1 + (x_1^2 + x_2^2)^2]} \\ & & \hat{\mathbf{x}}_1^2 \\ & & \hat{\mathbf{x}}_2^2 \\ & \hat$$

Exponential stability

Definition The equilibrium is said to be exponentially stable (ES) if there exists to positive constants \underline{a} and $\underline{\lambda}$ such that:

$$\|x(t) - x^\star\| \le a \|x(0) - x^\star\| e^{-\lambda t}, \quad \text{for all } t \ge 0$$

Global: For all x(0)

Local: For $||x(0) - x^*|| < r$

Outline

- · How to obtain a describing function for a nonlinear element in an "almost" linear system
- · Prediction of oscillations based on extended Nyquist Criterion and the describing function of the nonlinearity

Motivation: Nonlinearities in the control system

Nonlinear element

Motivation: Nonlinearities

· The physical system (the plant) may contain nonlinearities

Motivation: prediction of persistent oscillations (limit cycles)

Oscillations can be desirable: electronic oscillators used in laboratories.

- Oscillations are undesirable
- Oscillations are a sign of instability, tend to cause poor control accuracy
- Constant oscillations can increase wear or even cause mechanical failure

Nonlinearities: Single-valued nonlinearities

Nonlinearities: Backlash

The input gear started output angle rotating to different direction slope 1 input angle Multi-valued Contact is The output depends on the The output gear does not achieved move until contact is input and the history of the LUND (re)established

Odd and even functions

Describing function analysis

Assumptions

input

- Single, odd, time-invariant nonlinear element $f(\cdot)$ Low-pass transfer function G(s)
- Replace the nonlinearity with a quasi-linear component
- Use tools from linear control systems design to examine the existence of oscillations

Describing function analysis

· Form of the nonlinear system

- Reference is set zero to study self-sustained oscillations
- "almost" linear system or genuinely nonlinear system (written as shown in the block diagram)

"Almost" linear systems

- · Linear Control Design and linear system
- Implementation involves hard nonlinearities, e.g. actuator saturation or sensor dead-zones
- Contain hard nonlinearities in the control loop but are otherwise

Quiz: Write the nonlinear system in a feedback form where the nonlinearity is in a block

Fourier Transformation

Input $e(t) = A \sin(\omega t)$ Output $w(t) = f(e) = f(A\sin(\omega t))$

Output – Periodic function w(t+T) = w(t)

Fourier Transformation
$$w(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos(n\omega t) + b_n \sin(n\omega t) \right]$$

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} w(t) d(\omega t)$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} w(t) \cos(n\omega t) d(\omega t)$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} w(t) \cos(n\omega t) d(\omega t)$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} w(t) \sin(n\omega t) d(\omega t)$$

The linear transfer function as a low-pass filter

• If the transfer function is acting as a low pass filter the output y will be mainly affected by the first harmonic of \boldsymbol{w}

$$w(t) = w_1(t) = a_1 \cos(\omega t) + b_1 \sin(\omega t)$$

• The method is based on approximations (heuristic)

The linear transfer function as a low-pass filter

· "Filtering" Assumption: the first harmonic is taken as output of the nonlinear block

Describing Function

Input of the nonlinear element

 $Ae^{j\omega t}$

Output of the nonlinear element

$$w_1(t) = Me^{(j\omega t + \phi)}$$

$$w_1(t) = (b_1 + ja_1)e^{j\omega t}$$

· Describing function definition

$$N(A,\omega) = \frac{\text{Output}}{\text{Input}} \longrightarrow N(A,\omega) = \frac{Me^{(j\omega t + j\phi)}}{Ae^{j\omega t}} = \frac{Me^{(j\omega t + j\phi)}}{Ae^{j\phi}} = \frac{Me^{(j\omega t + j$$

Describing Function (cont.)

$$N(A,\omega) = \frac{M}{A}e^{j\phi} \qquad r = 0 \qquad w = f(\cdot) \qquad G(s) \qquad y \qquad M(A,\omega) = \frac{1}{A}(b_1 + ja_1)$$

- Extension of the notion of frequency response for systems with
- · Depends on the amplitude of the input signal in contrast to the frequency response for linear systems

Describing Function -special cases

$$N(A,\omega) = \frac{M}{A}e^{j\phi} \qquad r = \underbrace{0}_{w = f(\cdot)} \underbrace{w = f(\cdot)}_{G(s)} \underbrace{y}_{W(A,\omega)}$$

$$N(A,\omega) = \frac{1}{A}(b_1 + ja_1)$$

- It is real and independent of the frequency when the nonlinearity is single-valued
- Why? $a_1 = \frac{1}{\pi} \int_{-\pi}^{\pi} w(t) \cos(\omega t) d(\omega t) \longrightarrow$ Imaginary part $b_1 = \frac{1}{\pi} \int_{-\pi}^{\pi} w(t) \sin(\omega t) d(\omega t) \longrightarrow \cdot \text{Real part}$

Describing Function – Example

$$N(A,\omega) = \frac{1}{A}(\underline{b_1} + j\underline{a_1})$$

$$a_1 = \frac{1}{\pi} \int_{-\pi}^{\pi} \underline{w}(t) \cos(\omega t) d(\omega t)$$

$$b_1 = \frac{1}{\pi} \int_{-\pi}^{\pi} w(t) \sin(\omega t) d(\omega t)$$

Zeros of $\Delta(s)$ \rightarrow poles of the CLS system

• Example: $G(s)H(s) = \frac{s+1}{(s-1)(s-2)}$

LUND

Example:

Describing Function – Example

$$N(A,\omega) = \frac{1}{A}(b_1 + ja_1)$$

$$N(A,\omega) = \frac{1}{A}(b_1 + ja_1) \qquad a_1 = \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{w(t) \cos(\omega t) d(\omega t)}{(\omega t)^{\frac{1}{2}}}$$

$$b_1 = \frac{1}{\pi} \int_{-\pi}^{\pi} w(t) \sin(\omega t) d(\omega t)$$

$$a_1 = \frac{1}{\pi} \int_{-\pi}^{\pi} \operatorname{sign}[\sin(\omega t)] \cos(\omega t) d(\omega t) = 0$$

$$a_1 = \frac{1}{\pi} \int_{-\pi}^{\pi} \cos \sigma d\sigma = -\frac{1}{\pi} \int_{-\pi}^{0} \cos \sigma d\sigma + \frac{1}{\pi} \int_{0}^{\pi} \cos \sigma d\sigma = 0$$

$$N(A_1 \omega) = \frac{1}{A_1}$$

$$b_1 = \frac{1}{\pi} \int_{-\pi}^{\pi} \operatorname{sign}[\sin(\omega t)] \sin(\omega t) d(\omega t)$$

$$b_1 = \frac{1}{\pi} \int_{-\pi}^{\pi} \operatorname{sign}[\sin(\omega t)] \sin(\omega t) d(\omega t)$$
$$b_1 = \frac{2}{\pi} \int_{0}^{\pi} \sin \sigma d\sigma = \frac{2}{\pi} [-\cos \sigma]_0^{\pi} = \boxed{\frac{4}{\pi}}$$

Nyquist criterion: Definitions

Closed loop Transfer Function

1+G(s)H(s)Open loop Transfer Function

 $b_n s^n + \dots + b_1 s + b_0$

m < n for proper/strictly proper transfer function

Nyquist contour and plot

Nyquist Criterion

 The number of unstable Closed Loop Poles is equal to the number of open loop poles with positive real part plus the number of clockwise encirclements of the point (-1,0)

$$P_{CL} = N(-1,0) + P_{OL}$$

· Given a stable open loop system, the closed loop is stable if the Nyquist plot of the open loop system does not encircle the point (-1,0).

Nyquist Criterion: Quiz

Stable or Unstable?

Nyquist Criterion

Necessary and sufficient condition stability condition for systems for stable open-loop systems:

The Nyquist plot does not encircle the point -1/k

Extension of Nyquist Criterion for Describing Function Analysis (Existence of oscillations)

• Assume that there exists self-sustained oscillations $(1 + \zeta_{i}(j\omega)) N(A_{i}\omega) y = 0$

- The amplitude and frequency must satisfy (*) Harmonic balance
- If (*) has no solutions then there are no oscillations in the system Lund

Extension of Nyquist Criterion for Describing Function Analysis (Stability of oscillations)

Necessary and sufficient condition stability condition for systems for systems with stable (open-loop) linear part: The Nyquist plot does not encircle the point $\frac{-1}{N(A,\omega)}$

LUND

Stability of oscillations

- Permanent oscillation: Common point of the Nyquist diagram $G(j\omega)$ and the plot -1
- Stability of the oscillation: Does the oscillation continue after a small perturbation in A?

Stability of oscillations Point is encircled Oscillation amplitude Im Imincreases $G(j\omega)$ Oscillation unstable $G(j\omega)$ Re Re $-1/N(A,\omega)$ $-1/N(A,\omega)$ Oscillation stable Oscillation stable Point is encircled Point is not encircled Oscillation amplitude Point is not encircled increase Oscillation amplitude decrease decreases

Stability of the oscillation: Does the oscillation continue after a small perturbation in A?

Example – Prediction and stability of persistent oscillations

Example – Prediction of oscillations

Describing function analysis: pitfalls

- DF analysis may predict a limit cycle, even if it does not exist.
- A limit cycle may exist, even if DF analysis does not predict it.
- The predicted amplitude and frequency are only approximations and can be far from the true values.

FRNT05 Nonlinear Control Systems and Servo Systems

Lecture 5: Lyapunov stability I

YIANNIS KARAYIANNIDIS, ASSOCIATE PROFESSOR AUTOMATIC CONTROL, FACULTY OF ENGINEERING www.yiannis.in

Outline

- · Physics based motivation
- · Lyapunov function candidates
- · Local Lyapunov Stability
- Global Lyapunov Stability
- Lyapunov stability for linear systems
- Lyapunov stability with linearization

Example (nonlinear spring with external force)

Lyapunov function candidates

Lyapunov function candidates – positive definite functions

definite functions
$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \quad x^{\sharp} = \begin{bmatrix} x_1 \\ x_3 \end{bmatrix} \quad x^{\sharp} = \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} \quad x^{\sharp} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \quad x^{\sharp} = \begin{bmatrix} x_1 \\ x_3 \end{bmatrix} \quad x^{\sharp} = \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} \quad x^{\sharp} = \begin{bmatrix} x_$$

Lyapunov function candidates – quadratic

Differentiating Lyapunon function candidates along trajectories

Energy conservation and dissipation

• Energy dissipation: $\dot{V}(x)=\frac{\partial V}{\partial x}f(x)\leq 0$, i.e., f(x) $\frac{\partial V}{\partial x}$ forms an angle bigger than $\pi/2$ smaller than π

Energy conservation and dissipation (pendulum)

$$m\ell^2\ddot{\theta} + k\ell\dot{\theta} + mg\ell\sin\theta = 0$$

$$\begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = -\frac{b}{m}x_2 - \frac{g}{\ell}\sin x_1, \quad b = \frac{k}{\ell} \end{cases}$$

$$\begin{split} V(x_1,x_2) &= E(\theta,\dot{\theta}) = \underbrace{\frac{1}{2}m\ell^2\dot{\theta}^2 + mg\ell(1-\cos\theta)}_{\text{potential}} \\ &\leftarrow \text{No friction } b = 0 \text{, lossless mechanical system} \\ &\stackrel{\stackrel{\circ}{E}}{=} (\theta_1\dot{\theta}) = m\,\ell^2\dot{\theta}\,\dot{\theta} + mg\,\ell\sin\theta\,\dot{\theta} = \dots = -b\ell^2\dot{\theta}^2 \end{split}$$
 Friction $b > 0$, damping
$$\stackrel{\circ}{E}(\theta_1\dot{\theta}) = m\,\ell^2\dot{\theta}\,\dot{\theta} + mg\,\ell\sin\theta\,\dot{\theta} = \dots = -b\ell^2\dot{\theta}^2 \end{split}$$

Local stability of an equilibrium point of a nonlinear system – Lyapunov's Direct Method

$$\dot{x} = f(x), f(x^*) = 0$$
 $x^* = 0 \in \Omega \subset \Re^n$

Sketchy proof of the basic Lyapunov Theorem on stability

$$x^{\star} = 0 \qquad \forall R, \ \exists \ r(R), \ x(t) \ \text{starts in} \quad B_r = \{x \in \Re : \|x\| \leq r\}$$
 remains in $B_R = \{x \in \Re : \|x\| \leq R\} \subset \Omega$
$$\Omega_{\gamma} = \{x \in \Re : V(x) \leq \gamma\} \subset B_R$$
 Choose
$$\Omega_{\gamma} = \{x \in \Re : V(x) \leq \gamma\} \subset B_R$$
 Choose
$$B_r = \{x \in \Re : \|x\| \leq r\} \subset \Omega_{\gamma}$$

$$\dot{V}(x(t)) \leq 0$$

$$0 \qquad \dot{V}(x(t)) \leq 0$$
 When you slowed the part is to
$$V(x(t)) \leq V(x(0)) := a, \ \forall t \geq 0$$
 Shape in
$$V(x) \neq V(x(s)) = \alpha \leq \delta$$
 Shape in
$$V(x) \neq V(x(s)) = \alpha \leq \delta$$
 Shape in
$$V(x) \neq V(x(s)) = \alpha \leq \delta$$
 Shape in
$$V(x) \neq V(x(s)) = \alpha \leq \delta$$
 Shape in
$$V(x) \neq V(x(s)) = \alpha \leq \delta$$
 Shape in
$$V(x) \neq V(x(s)) = \alpha \leq \delta$$
 Shape in
$$V(x) \neq V(x(s)) = \alpha \leq \delta$$
 Shape in
$$V(x) \neq V(x(s)) = \alpha \leq \delta$$
 Shape in
$$V(x) \neq V(x(s)) = \alpha \leq \delta$$
 Shape in
$$V(x) \neq V(x(s)) = \alpha \leq \delta$$
 Shape in
$$V(x) \neq V(x(s)) = \alpha \leq \delta$$
 Shape in
$$V(x) \neq V(x(s)) = \alpha \leq \delta$$
 Shape in
$$V(x) \neq V(x(s)) = \alpha \leq \delta$$
 Shape in
$$V(x) \neq V(x(s)) = \alpha \leq \delta$$
 Shape in
$$V(x) \neq V(x(s)) = \alpha \leq \delta$$
 Shape in
$$V(x) \neq V(x(s)) = \alpha \leq \delta$$
 Shape in
$$V(x) \neq V(x(s)) = \alpha \leq \delta$$
 Shape in
$$V(x) \neq V(x(s)) = \alpha \leq \delta$$
 Shape in
$$V(x) \neq V(x(s)) = \alpha \leq \delta$$
 Shape in
$$V(x) \neq V(x(s)) = \alpha \leq \delta$$
 Shape in
$$V(x) \neq V(x(s)) = \alpha \leq \delta$$
 Shape in
$$V(x) \neq V(x(s)) = \alpha \leq \delta$$
 Shape in
$$V(x) \neq V(x(s)) = \alpha \leq \delta$$
 Shape in
$$V(x) \neq V(x(s)) = \alpha \leq \delta$$
 Shape in
$$V(x) \neq V(x(s)) = \alpha \leq \delta$$
 Shape in
$$V(x) \neq V(x(s)) = \alpha \leq \delta$$
 Shape in
$$V(x) \neq V(x(s)) = \alpha \leq \delta$$
 Shape in
$$V(x) \neq V(x(s)) = \alpha \leq \delta$$
 Shape in
$$V(x) \neq V(x(s)) = \alpha \leq \delta$$
 Shape in
$$V(x) \neq V(x(s)) = \alpha \leq \delta$$
 Shape in
$$V(x) \neq V(x(s)) = \alpha \leq \delta$$
 Shape in
$$V(x) \neq V(x(s)) = \alpha \leq \delta$$
 Shape in
$$V(x) \neq V(x(s)) = \alpha \leq \delta$$
 Shape in
$$V(x) \neq V(x(s)) = \alpha \leq \delta$$
 Shape in
$$V(x) \neq V(x(s)) = \alpha \leq \delta$$

LUND

Stability analysis of eq. for the pendulum

Stability analysis of eq. for the pendulum

The trajectory is in SLYC BR $x(t) \in B_R, \ orall t \geq 0$

LUND

Stability analysis of eq. for the pendulum

Stability analysis of eq. for the pendulum

Stability analysis of eq. for the pendulum

Global stability of an equilibrium point of a nonlinear system – Lyapunov's Direct Method

 $\dot{x} = f(x), f(x^*) = 0 \qquad x^* = 0 \in \Re^n$

Is it enough to consider $\Omega = \Re^n$?

Study the stability of the eq. point

Example:

$$\begin{cases} \dot{x}_1 = \frac{-6x_1}{(1+x_1^2)^2} + 2x_2 \\ \dot{x}_2 = \frac{-2(x_1+x_2)}{(1+x_1^2)^2} \end{cases}$$

$$V = \frac{1}{2} \frac{x_1^2}{1+x_1^2} + \frac{1}{2} x_2^2 \qquad \text{p. d}$$

$$\ddot{V} = \frac{x_1 \dot{x}_1}{(1+x_1^2)^2} + x_2 \dot{x}_2^2 = -\frac{6 x_1^2}{(1+x_1^2)^2} - \frac{2 x_2^2}{(1+x_1^2)^2} - \ddot{V} \quad \text{pd} \quad \Rightarrow \quad \text{check} \quad \text{the next}$$

$$\Rightarrow \quad \text{check} \quad \text{the next}$$

$$\Rightarrow \quad \text{check} \quad \text{the next}$$

Radially unbounded functions

Example:

Radially unbounded function: $V(x) \to \infty$ as $||x|| \to \infty$

Is
$$V=\frac{1}{2}\frac{x_1^2}{1+x_1^2}+\frac{1}{2}x_2^2$$
 radially unbounded? $V=\frac{1}{2}\frac{x_1^2}{1+x_1^2}+\frac{1}{2}x_2^2$ radially unbounded? $V=\frac{1}{2}\frac{x_1^2}{1+x_1^2}+\frac{1}{2}x_2^2$ radially unbounded? $V=\frac{1}{2}\frac{x_1^2}{1+x_1^2}+\frac{1}{2}x_1^2$ radially unbounded? $V=\frac{1}{2}\frac{x_1^2}{1+x_1^2}+\frac{1}{2}\frac{x_1^2}{1+x_1^2$

Lyapunov function candidates for global stability – radially unbounded functions

$$\begin{array}{l} V(x) = x_1^2 + ax_2^2 \\ \\ V(x) = x_1^2 + (x_1 - x_2)^2 \\ \\ V(x) = \int_0^{x_1} h(y) dy + x_2^2 \\ \\ V(x) = h^2(x_1) + x_2^2 \end{array} \right\} \; h(y) \quad \mbox{increasing function with} \\ h(0) = 0 \end{array}$$

Lyapunov function candidates – radially unbounded functions functions

$$V(x)=\int_0^{x_1}h(y)dy+x_2^2$$

$$V(x)=h^2(x_1)+x_2^2$$

$$h(y)$$
 increasing function with
$$h(0)=0$$

Global stability of an equilibrium point of a nonlinear system – Lyapunov's Direct Method

$$\dot{x} = f(x), f(x^*) = 0 \quad x^* = 0 \in \Re^n$$

$$\Omega = \Re^n$$

Stability of an equilibrium point of a nonlinear system - Lyapunov's Direct Method

 $x^* = 0 \in \Re^n$

Lyapunov stability analysis - comments

• The conditions of the Theorem are only sufficient

If conditions are not satisfied:

It does not mean that the equilibrium is unstable

It means that the chosen Lyapunov function does not allow to make a conclusion

It requires further investigation

- ✓ try to find another Lyapunov function
- ✓ Use other Theorems
 ②

Lyapunov analysis for Linear systems

Linear system: $\dot{x} = Ax$

 $\dot{x} = f(x), f(x^*) = 0$

$$\dot{x} = Ax = \begin{bmatrix} -1 & 4 \\ 0 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

To check stability:

1. Find the eigenvalues of A, λ_i .

Eigenvalues of $A: \{-1, -3\}$

2. Verify that they are negative.

⇒ (global) asymptotic stability.

Try to prove stability with:

$$\begin{split} V(x) &= \|x\|^2 = x^T x = x_1^2 + x_2^2 \\ \mathring{\mathcal{V}} &= |X_1 \mathring{X_1} + X_2 \mathring{X_2} \\ &= -X_1^2 + \mathring{A} |X_1 X_2 - 3| X_2^2 \\ &= - \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^7 \begin{bmatrix} 1 & -2 \\ -2 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \qquad \text{dot} (M) = 3 - \mathring{A} = -1 \\ &-\mathring{\mathcal{V}} \text{ is not p.d.} \end{split}$$

LUND

FRNT05 Nonlinear Control Systems and Servo Systems

Lecture 6: Lyapunov stability II

YIANNIS KARAYIANNIDIS, ASSOCIATE PROFESSOR AUTOMATIC CONTROL, FACULTY OF ENGINEERING.

www.yiannis.info

Stability of an equilibrium point of a nonlinear system – Lyapunov's Direct Method

$$\dot{x} = f(x), f(x^*) = 0 \qquad x^*$$

$$x^* = 0 \in \Re^n$$

$$\Omega(\Re^n)$$

Lyapunov stability analysis - comments

• The conditions of the Theorem are only sufficient

If conditions are not satisfied:

It does not mean that the equilibrium is unstable.

It means that the chosen Lyapunov function does not allow to make a conclusion

It requires further investigation

- ✓ try to find another Lyapunov function
- ✓ Use other Theorems ②

Outline

- Softer conditions
- · Convergence rate (exponential stability)
- Invariant Sets
- · Region of attraction
- · Asymptotic stability of invariant sets
- · Lyapunov stability for linear systems

LUND

Asymptotic Stability (softer condition on V)

Barbashin, Krasovskii Theorem (LaSalle Invariance Principle is more general and proved afterwards, we can call this LaSalle Theorem)

Theorem: Let $\dot{x} = f(x)$ and $f(x^*) = 0$. If there exists a \mathcal{C}^1 function $V: \Re^n \to \Re$ such that

We call -this

(1) V(x)>0 for all $x\neq x^{\star}$ and $V(x^{\star})=0$ (2) $V(x) \to \infty$ as $\|x\| \to \infty$

Lasalle Theorem

(3) $\dot{V}(x) \leq 0$ for all x

1. Find the solution arresponding to V=0
2. Substitute in x=fcx)

and we (4) No solution of $\dot{x}=f(x)$ can stay identically in $E=\left\{x\in\Re^n:\dot{V}=0\right\}$ and show use it except of $x=x^*$

when then x^* is globally **asymptotically** stable.

is not positive definite

Example (revisited)

$$V(x, \dot{x}) = \underbrace{(2)}_{W\ddot{x} = -b\dot{x}|\dot{x}| - k_0 x - k_1 x^3} V(x, \dot{x}) = \underbrace{(2)}_{V(x, \dot{x}) = -b\dot{x}|\dot{x}| - k_0 x - k_1 x^3} V(x, \dot{x}) = \underbrace{(2)}_{V(x, \dot{x}) = -b\dot{x}|\dot{x}|} V(x, \dot{x}) = \underbrace{(2)}_{V(x, \dot{x}) = -b\dot{x}|} V(x, \dot{x$$

$$\begin{split} V(x,\dot{x}) &= \underbrace{(2m\dot{x}^2)}_{\text{Linetic}} + \underbrace{(2k_0x^2 + k_1x^4)/4}_{\text{potential}} + 0, \quad V(0,0) = 0 \\ \dot{V}(x,\dot{x}) &= -b|\dot{x}|^3 \text{ gives } E = \{(x,\dot{x}): \dot{x} = 0\}. \end{split}$$

Barbashin, Krasovskii or LaSalle

χ=0. substituting in (*) we get \times Global asymptotic stability of $(x, \dot{x}) = (0, 0)$

Exponential stability

Invariants Sets

Invariant set M for the system $\dot{x} = f(x)$.

$$x(0) \in M \Longrightarrow x(t) \in M \ \forall t \ge 0.$$

Lyapunov sets as invariant sets

• Notice that the condition $\dot{V} \leq 0$ implies that if a trajectory

 $\dot{V} \le 0 \Longrightarrow V(x(t)) \le V(x(0)) \le \gamma$

• If $V(x) \in \mathcal{C}^1$ and satisfies $\dot{V}(x) \leq 0$ along the solutions of $\dot{x} = f(x)$, then the set:

 $V(\mathsf{X}(\mathsf{o})) \stackrel{?}{\leq} \chi' x(t) \in \Omega_{\gamma} = \{x \in \Re: \ V(x) \leq \gamma\}, \forall t \geq 0$

 $\Omega_{\gamma} = \{ x \in \Re : V(x) \le \gamma \} \subset \Omega$

is an invariant set.

see next slides

Region of Attraction

· Local asymptotic stability theorems guarantee existence of a possibly small neighborhood of the equilibrium point where such an attraction takes place

• The region of attraction to the equilibrium point x^* of the system $\dot{x}=f(x)$ is defined by $\mathcal{R}_A = \{x(0) \in \Omega : x(t) \to x^* \text{ as } t \to \infty\}.$

• If $V(x) \in \mathcal{C}^1$ and satisfies $\dot{V}(x) \leq 0$ along the solutions of $\dot{x} = f(x)$, then the set:

$$\Omega_{\gamma} = \{ x \in \Re : \ V(x) \le \gamma \} \subset \Omega$$

is an invariant set and can be used as an estimate of region of attraction.

· The estimate of the region of attraction based on Lyapunov level sets is conservative $\Omega_{\gamma} \subset \mathcal{R}_{\mathcal{A}}$

Discussion

Why we cannot claim that Ω is an estimate of region of attraction?

 $\Omega = \{ x \in \Re^n : \dot{V} \le 0 \}$ Van der Pol equation in reverse time

$$\dot{x}_1 = -x_2$$

$$\dot{x}_1 = x_1 - (1 - x_1^2)x_2$$

 $V=\frac{1}{2}(x_1^2+x_2^2)$ positive definite for all x

 $\dot{V} = -(1-x_1^2)x_2^2$ negative semidefinite for $|x_2| < 1$

The conditions for applying LaSalle Theorem for asymptotic stability are satisfied in $\Omega = \{|x_1| < 1\}$ $1, |x_2| < L$ L arbitrarily large constant.

Thus, the origin is local asymptotically stable. However Ω is not invariant. Starting within Ω the trajectory can move to Lyapunov surfaces $V(x) = \gamma$ with smaller γ s but there is no guarantee that the trajectory will remain in Ω . See the blue trajectories. Once leaving Ω , \dot{V} could be positive and the trajectory may move to Lyapunov surfaces with higher γ . Observe that one of the blue trajectories is a limit cycle. Charecterize its stability.

Example 1

Example:

$$\begin{array}{c} \begin{cases} \varkappa_1 = \wp \\ \frac{1}{2} \frac{\mathscr{A}_1^2}{\mathcal{H} \mathscr{A}_2^2} \neq \frac{1}{2} \varkappa_2^2 = \wp \end{cases} \stackrel{\mathcal{D}}{=} \begin{cases} \frac{l}{2} \frac{\mathscr{A}_1^2}{\mathcal{H} \mathscr{A}_1^2} = \wp \\ \frac{l}{2} \frac{1}{\mathcal{H} \mathscr{A}_1^2} + \frac{1}{2} \varkappa_2^2 > 0 \text{ and } V(0) = 0 \end{cases} \stackrel{\mathcal{D}}{=} \frac{l}{2} \frac{l}{2} \frac{1}{2} \frac{1}{2} \frac{2}{2} \wp \cdot V \stackrel{\mathcal{D}}{=} \frac{2}{2} \wp \cdot V \stackrel{\mathcal{D}}{=} \frac{2}{2} \frac{2}{2} \frac{2}{2} \stackrel{\mathcal{D}}{=} \frac{2}{2} \frac{2}{2} \frac{2}{2} \stackrel{\mathcal{D}}{=} \frac{2}{2} \frac{2}{2} \frac{2}{2} \frac{2}{2} \frac{2}{2} \stackrel{\mathcal{D}}{=} \frac{2}{2} \frac{$$

•
$$V=\frac{1}{2}\frac{x_1^2}{1+x_1^2}+\frac{1}{2}x_2^2$$
 is radially unbounded for $V(x)<1$

•
$$\dot{V} = \frac{x_1 \dot{x}_1}{(1+x_1^2)^2} + x_2 \dot{x}_2 = -6 \frac{x_1^2}{(1+x_1^2)^4} - 2 \frac{x_2^2}{(1+x_1^2)^2} < 0, \, \dot{V}(0) = 0$$

The axis X2=0 intersets with a syspanse • Local asymptotic stability

 $\frac{(\text{VC})^{-2}}{\text{whe n}} < \frac{\bullet}{2} \text{ Estimate of region of attraction}$ $\Omega_{\text{VZ}} = x \in \Re^2: V(x) < 1/2$ o V(x) = c is closed

Example 2

$$\begin{cases} \dot{x}_1 = -x_2 & \begin{cases} \dot{x}_1 \cdot \mathbf{Po}(\mathbf{x}) \\ \dot{x}_2 \cdot \mathbf{Po}(\mathbf{x}) \\ \dot{x}_2 = \frac{x_1}{2} + x_2^3 - x_2 \end{cases} & \mathbf{V} = \frac{x_1^2}{2} + x_2^2 > 0 \text{ and } V(0) = 0 \end{cases} \quad \overset{\bullet}{\sim} \begin{bmatrix} \frac{\nabla V}{\nabla x_1} & \frac{\nabla V}{\partial x_2} \end{bmatrix} \overset{\bullet}{\sim} \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} \\ & = \frac{x_1}{2} + x_2^3 - x_2 \overset{\bullet}{\sim} \begin{bmatrix} \dot{x}_2 \\ \dot{x}_2 \\ \dot{x}_2 \end{bmatrix} & \overset{\bullet}{\sim} \begin{bmatrix} \dot{x}_2 \\ \dot{x}_2 \\ \dot{x}_2 \end{bmatrix} & \overset{\bullet}{\sim} \begin{bmatrix} \dot{x}_2 \\ \dot{x}_2 \\ \dot{x}_2 \end{bmatrix} & \overset{\bullet}{\sim} \begin{bmatrix} \dot{x}_2 \\ \dot{x}_2 \\ \dot{x}_2 \end{bmatrix} & \overset{\bullet}{\sim} \begin{bmatrix} \dot{x}_2 \\ \dot{x}_2 \\ \dot{x}_2 \end{bmatrix} & \overset{\bullet}{\sim} \begin{bmatrix} \dot{x}_2 \\ \dot{x}_2 \\ \dot{x}_2 \end{bmatrix} & \overset{\bullet}{\sim} \begin{bmatrix} \dot{x}_2 \\ \dot{x}_2 \\ \dot{x}_2 \end{bmatrix} & \overset{\bullet}{\sim} \begin{bmatrix} \dot{x}_2 \\ \dot{x}_2 \\ \dot{x}_2 \end{bmatrix} & \overset{\bullet}{\sim} \begin{bmatrix} \dot{x}_2 \\ \dot{x}_2 \\ \dot{x}_2 \end{bmatrix} & \overset{\bullet}{\sim} \begin{bmatrix} \dot{x}_2 \\ \dot{x}_2 \\ \dot{x}_2 \end{bmatrix} & \overset{\bullet}{\sim} \begin{bmatrix} \dot{x}_2 \\ \dot{x}_2 \\ \dot{x}_2 \end{bmatrix} & \overset{\bullet}{\sim} \begin{bmatrix} \dot{x}_2 \\ \dot{x}_2 \\ \dot{x}_2 \end{bmatrix} & \overset{\bullet}{\sim} \begin{bmatrix} \dot{x}_2 \\ \dot{x}_2 \\ \dot{x}_2 \end{bmatrix} & \overset{\bullet}{\sim} \begin{bmatrix} \dot{x}_2 \\ \dot{x}_2 \\ \dot{x}_2 \end{bmatrix} & \overset{\bullet}{\sim} \begin{bmatrix} \dot{x}_2 \\ \dot{x}_2 \\ \dot{x}_2 \end{bmatrix} & \overset{\bullet}{\sim} \begin{bmatrix} \dot{x}_2 \\ \dot{x}_2 \\ \dot{x}_2 \end{bmatrix} & \overset{\bullet}{\sim} \begin{bmatrix} \dot{x}_2 \\ \dot{x}_2 \\ \dot{x}_2 \end{bmatrix} & \overset{\bullet}{\sim} \begin{bmatrix} \dot{x}_2 \\ \dot{x}_2 \\ \dot{x}_2 \end{bmatrix} & \overset{\bullet}{\sim} \begin{bmatrix} \dot{x}_2 \\ \dot{x}_2 \\ \dot{x}_2 \end{bmatrix} & \overset{\bullet}{\sim} \begin{bmatrix} \dot{x}_2 \\ \dot{x}_2 \\ \dot{x}_2 \end{bmatrix} & \overset{\bullet}{\sim} \begin{bmatrix} \dot{x}_2 \\ \dot{x}_2 \\ \dot{x}_2 \end{bmatrix} & \overset{\bullet}{\sim} \begin{bmatrix} \dot{x}_2 \\ \dot{x}_2 \\ \dot{x}_2 \end{bmatrix} & \overset{\bullet}{\sim} \begin{bmatrix} \dot{x}_2 \\ \dot{x}_2 \\ \dot{x}_2 \end{bmatrix} & \overset{\bullet}{\sim} \begin{bmatrix} \dot{x}_2 \\ \dot{x}_2 \\ \dot{x}_2 \end{bmatrix} & \overset{\bullet}{\sim} \begin{bmatrix} \dot{x}_2 \\ \dot{x}_2 \\ \dot{x}_2 \end{bmatrix} & \overset{\bullet}{\sim} \begin{bmatrix} \dot{x}_2 \\ \dot{x}_2 \\ \dot{x}_2 \end{bmatrix} & \overset{\bullet}{\sim} \begin{bmatrix} \dot{x}_2 \\ \dot{x}_2 \\ \dot{x}_2 \end{bmatrix} & \overset{\bullet}{\sim} \begin{bmatrix} \dot{x}_2 \\ \dot{x}_2 \\ \dot{x}_2 \end{bmatrix} & \overset{\bullet}{\sim} \begin{bmatrix} \dot{x}_2 \\ \dot{x}_2 \\ \dot{x}_2 \end{bmatrix} & \overset{\bullet}{\sim} \begin{bmatrix} \dot{x}_2 \\ \dot{x}_2 \\ \dot{x}_2 \end{bmatrix} & \overset{\bullet}{\sim} \begin{bmatrix} \dot{x}_2 \\ \dot{x}_2 \\ \dot{x}_2 \end{bmatrix} & \overset{\bullet}{\sim} \begin{bmatrix} \dot{x}_2 \\ \dot{x}_2 \\ \dot{x}_2 \end{bmatrix} & \overset{\bullet}{\sim} \begin{bmatrix} \dot{x}_2 \\ \dot{x}_2 \\ \dot{x}_2 \end{bmatrix} & \overset{\bullet}{\sim} \begin{bmatrix} \dot{x}_2 \\ \dot{x}_2 \\ \dot{x}_2 \end{bmatrix} & \overset{\bullet}{\sim} \begin{bmatrix} \dot{x}_2 \\ \dot{x}_2 \\ \dot{x}_2 \end{bmatrix} & \overset{\bullet}{\sim} \begin{bmatrix} \dot{x}_2 \\ \dot{x}_2 \\ \dot{x}_2 \end{bmatrix} & \overset{\bullet}{\sim} \begin{bmatrix} \dot{x}_2 \\ \dot{x}_2 \\ \dot{x}_2 \end{bmatrix} & \overset{\bullet}{\sim} \begin{bmatrix} \dot{x}_2 \\ \dot{x}_2 \\ \dot{x}_2 \end{bmatrix} & \overset{\bullet}{\sim} \begin{bmatrix} \dot{x}_2 \\ \dot{x}_2 \\ \dot{x}_2 \end{bmatrix} & \overset{\bullet}{\sim} \begin{bmatrix} \dot{x}_2 \\ \dot{x}_2 \\ \dot{x}_2 \end{bmatrix} & \overset{\bullet}{\sim} \begin{bmatrix} \dot{x}_2 \\ \dot{x}_2 \\ \dot{x}_2 \end{bmatrix} & \overset{\bullet}{\sim} \begin{bmatrix} \dot{x}_2 \\ \dot{x}_2 \\ \dot{x}_2 \end{bmatrix} & \overset{\bullet}{\sim} \begin{bmatrix} \dot{x}_2 \\ \dot{x}_2 \\ \dot{x}_2 \end{bmatrix} & \overset{\bullet}{\sim} \begin{bmatrix} \dot{x}_2 \\ \dot{x}_2 \\ \dot{x}_2 \end{bmatrix} & \overset{\bullet}{\sim} \begin{bmatrix} \dot{x}_2 \\ \dot{x}_2 \\ \dot{x}_2 \end{bmatrix} & \overset{\bullet}{\sim} \begin{bmatrix} \dot{x}_2 \\ \dot{x}_2 \end{bmatrix} & \overset{\bullet$$

• $\dot{V} = x_1 \dot{x}_1 + 2x_2 \dot{x}_2 = \dots = 2x_2^2 (x_2^2 - 1)^{-1/2}$ • $\dot{V} \leq 0$ for $|x_2| < 1$

· Local asymptotic stability

· Estimate of region of attraction $\Omega_1 = x \in \Re^2 : V(x) < 1$

Example 3

Van der Pol equation in reverse time

$$\dot{x}_1 = -x_2$$

 $\dot{x}_1 = x_1 - (1 - x_1^2)x_2$

 $V=\frac{1}{2}(x_1^2+x_2^2)$ positive definite for all x

 $\dot{V} = -(1-x_1^2)x_2^2$ negative semidefinite for $|x_1| < 1$

The conditions for applying LaSalle Theorem for asymptotic stability are satisfied in $\Omega = \{|x_1| <$ $1, |x_2| < L\}$ L arbitrarily large constant. Thus, the origin is local asymptotically stable.

- · Derive an estimate of the region of attraction.
- · Which is the actual region of attraction?

LaSalle's invariance principle

- Let $\Omega \subset \Re^n$ compact invariant set for $\dot{x} = f(x)$.
- Let $V:\Omega \to \Re$ be a \mathcal{C}^1 function such that $\dot{V}(x) \leq 0, \ \forall x \in \Omega.$
- $E:=\{x\in\Omega:\,\dot{V}(x)=0\},\,M:=$ largest invariant subset of E

 $\forall x(0) \in \Omega, x(t) \text{ approaches } M \text{ as } t \to +\infty$

Note that Ω can be defined indepednent of V. In many cases, it is easier to construct Ω based on V as $\Omega = \Omega_{\gamma} = V(x) \leq \gamma$.

LUND

Example – Limit Cycle

Show that $M=\{x: \|x\|=1\}$ is a asymptotically stable limit cycle for (almost globally, except for starting at x=0) $\|x\|^2=x_1^2+x_2^2.$

 $\dot{x}_1 = x_2 - x_1(x_1^2 + x_2^2 - 1)$ $\begin{array}{ll} \dot{x}_1=x_2-x_1(x_1^2+x_2^2-1) & \text{The system has one equilibrium at the origin and one limit cycle. Thus the set of trajectories}\\ \dot{x}_2=-x_1-x_2(x_1^2+x_2^2-1) & \text{that are invariant for the system are in the set } E=\{x:\|x\|=0 \text{ or } \|x\|=1\}. \text{ We can actually show this by calculating the derivative } \frac{d}{dt}(\|x\|^2)=-\|x\|^2(\|x\|^2-1): \end{array}$

- If $\|x(0)\|=0$ or $\|x(0)\|=1$ the derivative is zero $\frac{d}{dt}(\|x\|^2-1)$: not change.
- $\|x(t)\|=0$ corresponds to the equilibrium point at the origin $\dot{x}_1=\dot{x}_2$ while $\|x(t)\|=1$ corresponds to $\left\{ egin{array}{ll} \dot{x}_1=&x_2\\ \dot{x}_2=&-x_1 \end{array}
 ight.$ defining a limit cycle moving clockwise
- Remark: From the derivative $\frac{d}{dt}(\|x\|^2)=-2\|x\|^2(\|x\|^2-1)$ and if we consider a Lyapunov-like function $V_0=\frac{1}{2}$ we can see that $\Omega'=\{\|x\|<1\}$ cannot be proved invariant since

Example – Limit Cycle

$$\dot{x}_1 = x_2 - x_1(x_1^2 + x_2^2 - 1)$$
$$\dot{x}_2 = -x_1 - x_2(x_1^2 + x_2^2 - 1)$$

- Take the Lyapunov-like $V=(x_1^2+x_2^2-1)^2$, that is positive but not positive definite. It encodes some dinstance metric from the limit cycle $x_1^2+x_2^2=1$.
- Differentiating V along the system trajectories, we get: $\dot{V}=-4(x_1^2+x_2^2)(x_1^2+x_2^2-1)^2\leq 0.$

Choose $\Omega=\{x\in\Re^2:0<\|x\|\le1\}$ to exclude $\|x\|=0$. Note that Ω is invariant as it is subset of $\Omega_1=\{V<1\}$. Check this. By excluding x=0, the maximum invariant set is $M=\{x\in\Omega:\|x\|=1\}$.

LaSalle's Invariance Principle

x o M as $t o \infty$ almost globally

Example – Set of equilibriums

$\int \dot{x}_1 = \lambda x_1 - x_1 x_2$

$$\begin{cases} \dot{x}_1 = \lambda x_1 - x_1 x_2 = 0\\ \dot{x}_2 = a x_1^2 = 0 \end{cases}$$

- $\dot{V} = -(c-\lambda)x_1^2 \le 0$ for $c > \lambda$
- $E := \{x \in \Re^2 : \dot{V}(x) = 0\} \equiv M := \{x \in \Re^2 : x_1 = 0\}$

LaSalle's Invariance Theorem

• $x \to M$ as $t \to \infty$

Lyapunov analysis for Linear systems

Linear system: $\dot{x} = Ax$

 $\dot{x} = Ax = \begin{bmatrix} -1 & 4 \\ 0 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$

To check stability:

- 1. Find the eigenvalues of A, λ_i .
- 2. Verify that they are negative.
- Eigenvalues of $A: \{-1, -3\}$
- ⇒ (global) asymptotic stability.

Try to prove stability with:

$$V(x) \stackrel{4}{=} ||x||^2 \stackrel{1}{=} x^T x = \frac{1}{2} C x_1^2 + x_2^2$$

$$\dot{V} = x_1 \dot{x}_1 + x_2 \dot{x}_2$$

$$= -x_1^2 + 4x_1 x_2 - 3x_2^2$$

$$= -x_1^2 + 4x_1 x_2 - 5x_1^2$$

$$= -\left[\frac{x_1}{x_2} \right]^3 \begin{bmatrix} 1 & -2 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} - \mathring{V} \text{ is not p.d.}$$

Lyapunov analysis for Linear systems

Linear system: $\dot{x} = Ax$

To check stability:

- 1. Find the eigenvalues of A, λ_i .
- 2. Verify that they are negative.

Try to prove stability with:
$$P = \begin{bmatrix} Pri & \mathcal{P}_{\mathcal{C}_2} \\ Pr_{\mathcal{C}_2} & \mathcal{P}_{\mathcal{C}_2} \end{bmatrix}$$

$$V(x) = \|x\|^2 = x^T P x$$
 Parametric Lyapunov function in a quadratic form

$$\dot{V}(x) = x^T P \dot{x} + \dot{x}^T P x = x^T (PA + A^T P) x$$
 Choose parameters for P such that $-\dot{V}(x)$ p.d.

Lyapunov analysis for Linear systems

1. Let $Q = I_2$

2. Solve *P* from the Lyapunov equation

$$\dot{x} = Ax = \begin{bmatrix} -1 & 4 \\ 0 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$A^TP + PA = -I$$

$$\begin{bmatrix} -1 & 0 \\ 4 & -3 \end{bmatrix} \begin{bmatrix} p_{11} & p_{12} \\ p_{12} & p_{22} \end{bmatrix} + \begin{bmatrix} p_{11} & p_{12} \\ p_{12} & p_{22} \end{bmatrix} \begin{bmatrix} -1 & 4 \\ 0 & -3 \end{bmatrix} = \begin{bmatrix} -2p_{11} & -4p_{12} + 4p_{11} \\ -4p_{12} + 4p_{11} & 8p_{12} - 6p_{22} \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

Solving for p_{11} , p_{12} and p_{22} gives

$$\begin{array}{ccc}
2p_{11} = -1 \\
-4p_{12} + 4p_{11} = 0 \\
8p_{12} - 6p_{22} = -1
\end{array} \implies \begin{bmatrix} p_{11} & p_{12} \\ p_{12} & p_{22} \end{bmatrix} = \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & 5/6 \end{bmatrix} > 0$$

Lyapunov analysis for Linear systems

Linear system: $\dot{x} = Ax$

To check stability:

- 1. Find the eigenvalues of A, λ_i .
- 2. Verify that they are negative.

- 1. Choose an arbitrary symmetric, positive definite matrix ${\it Q}.$
- *Lyapunov function:* $V(x) = x^T P x$
- $\dot{V}(x) = x^T P \dot{x} + \dot{x}^T P x = -x^T Q x$

$$PA + A^T P = -Q$$

and verify that it is positive definite.

2. Find ${\it P}$ that satisfies Lyapunov equation

-Lab / today

FRNT05 Nonlinear Control Systems and Servo Systems

Lecture 7: Indirect Lyapunov's method and Input-Output Stability

- Lecture 28 Nov Honday YIANNIS KARAYIANNIDIS, ASSOCIATE PROFESSOR AUTOMATIC CONTROL, FACULTY OF ENGINEERING.

Outline

- Indirect Lyapunov method · Lyapunov Analysis for Linearized systems
- · Indirect Lyapunov's Method
- · Small-gain theorem
- Circle Criterion (the point -1/k is replaced by a cycle)

Lyapunov analysis for Linear systems

Linear system: $\dot{x} = Ax$

Ax=5

To check stability:

- 1. Find the eigenvalues of A, λ_i
- 2. Verify that they are negative.

- 1. Choose an arbitrary symmetric, positive definite matrix ${\it Q}.$
- $\textit{Lyapunov function: } V(x) = x^T P x$
- 2. Find P that satisfies Lyapunov equation

 $\dot{V}(x) = x^T P \dot{x} + \dot{x}^T P x = -x^T Q x$

and verify that it is positive definite.

Lyapunov analysis for Linear systems

1. Let
$$Q=I_2$$

$$\dot{x} = Ax = \begin{bmatrix} -1 & 4 \\ 0 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$A^T P + PA = -I$$

$$\begin{bmatrix} -1 & 0 \\ 4 & -3 \end{bmatrix} \begin{bmatrix} p_{11} & p_{12} \\ p_{12} & p_{22} \end{bmatrix} + \begin{bmatrix} p_{11} & p_{12} \\ p_{12} & p_{22} \end{bmatrix} \begin{bmatrix} -1 & 4 \\ 0 & -3 \end{bmatrix} = \begin{bmatrix} -2p_{11} & -4p_{12} + 4p_{11} \\ -4p_{12} + 4p_{11} & 8p_{12} - 6p_{22} \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

Solving for p_{11} , p_{12} and p_{22} gives

2. Solve P from the Lyapunov equation

$$\begin{array}{c} \text{Solving for } p_{11}, \; p_{12} \; \text{and} \; p_{22} \; \text{gives} \\ \sqrt[4]{\varsigma} \sim \kappa^7 \; \mathbb{Q} \times \\ \sqrt[4]{\varsigma} \sim \lambda_{\text{min}}(\mathbb{Q}) \; \|\mathbf{X}\|^2 \\ \sqrt[4]{\varsigma} \sim \lambda_{\text{min}}(\mathbb{Q}) \;$$

$$\implies \begin{bmatrix} p_{11} & p_{12} \\ p_{12} & p_{22} \end{bmatrix} = \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & 5/6 \end{bmatrix} > 0$$

Lyapunov's indirect method

Theorem Consider

$$\dot{x} = f(x)$$

Assume that f(0) = 0. Linearization

$$\dot{x} = Ax + g(x)$$
, $\langle |g(x)|| = o(||x||)$ as $x \to 0$.

Lyapunov's indirect method

Lyapunov function candidate: $V(x) = x^T P x$

Differentiating $\dot{V}(x)$ along system's trajectories $\dot{x} = Ax + g(x) = +(x)$

 $\dot{V}(x) = x^T P f(x) + f^T(x) P x$

and for all $\gamma>0$ there exists $\overline{r>0}$ such that

 γ negative $\|g(x)\|$ ||g(x)||, ||g(x)||V < - 9 11x113

Thus, choosing γ sufficiently small gives

$$\sqrt{\frac{\left(\dot{\mathbb{Q}} \right) - 2\gamma \lambda_{\max} \rho}{\chi}} \sim \sqrt{\frac{\dot{V}(x) \leq \sqrt{\left(\lambda_{\min}(Q) - 2\gamma \lambda_{\max}(P) \right)} \|x\|^2}{2 \sim 2 \sqrt{2} \sqrt{2}}} < 0$$

Feedback form where the nonlinearity is in a block

Sector nonlinearity

Bound in sector function $h \in \operatorname{sector}[k_1, k_1]$

- h(y) continuous wrt y
- h(0) = 0

• (k_1) (k_2) (k_2) (k_3) (k_2) (k_3) (k_2) (k_3) (k_3) (k_3) (k_3) (k_3)

Other cases:

- $h \in \operatorname{sector}(k_1, k_2]$ \Rightarrow
- $h \in \operatorname{sector}[k_1, \infty)$
- $h \in \operatorname{sector}[0, \infty)$ (first and third quadrant)

Signal norms and spaces

- $||x|| = \sqrt{x_1^2 + -tx_1^2}$ • A signal $\underline{x(t)}$ is a function from \mathbf{R}^+ to $\mathbf{R}^{\textcircled{d}}$.
- A signal norm is a way to measure the size of x(t) in long run:

2-norm (energy norm): $||x||_2 = \sqrt{\int_0^\infty ||x(t)||^2} dt$ $\text{sup-norm: } \|x\|_{\infty} = \sup\nolimits_{t \in \mathbf{R}^{+}} |x(t)|$

- The space of signals with $\|x\|_2 < \infty$ is denoted \mathcal{L}_2 . $\times_{\mathcal{H}} \in \mathcal{L}_2$
- The space of signals with $\overline{\|x\|_{\infty}} < \infty$ is denoted $\mathcal{L}_{\infty}.$
- $x(t) \in \mathcal{L}_2$ corresponds to bounded energy signals.
- $x(t) \in \mathcal{L}_{\infty}$ corresponds to bounded signals.

Equivalent expression in frequency domain

Gain of a system \mathcal{L}_2

$$\underline{\gamma(\alpha)} = \sup_{u \in \mathcal{L}_2} \frac{\|\alpha u\|_2}{\|u\|_2} = \sup_{u \in \mathcal{L}_2} \frac{|\alpha| \|u\|_2}{\|u\|_2} = \underline{|\alpha|}$$

$$\gamma(G) = \sup_{n \in G} \frac{\|g\|_2}{\|u\|_2} = \sup_{n \in G} |G(j\omega)|$$

$$C(sI - A)^{-1}B + D$$

$$\gamma(h) = \sup_{u \in \mathcal{L}_2} \frac{\|y\|_2}{\|u\|_2} = K$$

The Small-Gain Theorem

Small-Gain Theorem is conservative

$G(s) = \frac{2}{(s+1)^2}$ $\int_{a_0}^{a_0} \frac{1}{a_0} \frac{1}{a_$

Nyquist criterion

•
$$P_{CL_{Re}>0} = N(-1/k, 0) + P_{OL_{Re}>0}$$

LUND

 Given a stable open loop system, the closed loop is stable if the Nyquist plot of the open loop system does not encircle the point (-1/k,0) in the clockwise direction.

$$k_{1} \leq \frac{h(y)}{y} \leq k_{1} \implies k_{1} = k_{2}$$

Circle criterion

Circle criterion – Example 1

Circle criterion – Example 2

Circle criterion – Example 3

FRNT05 Nonlinear Control Systems and Servo Systems

Lecture 8: Input-Output Stability Intro to Control-design

YIANNIS KARAYIANNIDIS, ASSOCIATE PROFESSOR AUTOMATIC CONTROL, FACULTY OF ENGINEERING.

Outline

- · Circle criterion and positive real functions (passivity)
- · Control design based on linearization
- · Lyapunov-based control design

(Strictly) Positive Real Transfer Functions

A proper rational transfer function matrix G(s) is positive real if:

G(s) is called <u>strictly</u> positive real if $G(s-\varepsilon)$ is positive real for some $\varepsilon>0$ It is easier to check directly the following conditions:

• $\operatorname{Re}[G(j\omega)] > 0$. $\forall \omega \in [0,\infty)$ and $G(\infty) > 0$ of $\lim_{\omega \to \infty} \omega^2 \operatorname{Re}[G(j\omega)] > 0$. \to Nyquist plot of $G(j\omega)$ lies in the closed right-half complex plane and does not touch the Imaginery axis.

positive real

Stridly

LUND

positive real

(losed open [0,] (0,1)

Quiz

•
$$G(s) = \frac{1}{s}$$
 => $a(j\omega) = \frac{1}{j\omega} = -j\frac{1}{\omega}$ Recally $\omega = 0$
• $G(s) = \frac{1}{s+1}$ => $a(j\omega) = \frac{1}{j\omega+1} = \frac{1-j\omega}{1+\omega^2}$ Recally $\omega = 0$
• $G(s) = \frac{1}{s^2+2s+1}$
$$a(j\omega) = \frac{1}{-\omega^2+2j\omega+1} = \frac{1}{(1-\omega^2)+2j\omega} = \frac{1}{(1-\omega^2)^2+2j\omega}$$
 Code = $\omega^2 = \frac{1}{(1-\omega^2)^2+2j\omega}$ The solution of ω and ω are positive real summary ω .

Matching Quiz

Kalman Yakubovich Popov Lemma

$$\beta P = P^T > 0, Q = Q^T \geq 0 \text{ s.t. } \left\{ \begin{array}{cc} PA + A^T P & = -Q \\ PB & = C^T \end{array} \right.$$

Passivity Theorem(s)

Passive Linear System • Feedback interconnection of passive systems is passive • A passive system is BIBO • If the input r=0, the origin of minimum realization of G(s) is gas $h \in [0,\infty] \text{ and } Z(s) = G(s) \text{ is strictly positive real}$ The feedback system is BIBO wer inflow v = vi v = vi

Passivity theorem – Circle criterion

Circle criterion – Strictly positive real functions

Linear control design based on linearization

Example (Linearization)

An inverted pendulum controlled by a motor torque \boldsymbol{u} at the joint:

$$\ddot{\phi}(t) = \frac{g}{l}\sin(\phi(t)) + \frac{1}{ml^2}u,$$

where $\boldsymbol{u}(t)$ is acceleration, can be written as

$$\begin{array}{lll} \dot{x}_1 &=& x_2 \\ & \dot{x}_2 &=& \frac{g}{l}\sin(x_1) - \frac{1}{ml^2}u \equiv 0 \end{array} \quad \text{with any length}$$

Linearize the system and find a control input that can stabilize the system at angle δ ? Is the linear system controllable for all δ ?

$$A = \begin{bmatrix} 0 & 1 \\ \frac{1}{2} \cos (x_1) & 0 \end{bmatrix} \Big|_{X = X^{*}} = \begin{bmatrix} 0 & 1 \\ \frac{1}{2} \cos \delta & 0 \end{bmatrix} R = \begin{bmatrix} 0 & -\frac{1}{m} \cos \delta \\ -\frac{1}{m} \cos \delta & 0 \end{bmatrix}$$

$$u = mg \, l \sin \delta - k_1 \, \phi - k_2 \, (\phi - \delta)$$

Example (Linearization)

An inverted pendulum with vertically moving pivot point

$$\ddot{\phi}(t) = \frac{1}{I} \left(g + u(t) \right) \sin(\phi(t)),$$

where u(t) is acceleration, can be written as

$$\begin{array}{rcl} \dot{x}_1 & = & x_2 \\ \dot{x}_2 & = & \frac{1}{I} \left(g + u \right) \sin(x_1) \end{array}$$

Try this home - See lecture notes 2.

Lyapunov-based design

Steps of Lyapunov-based design:

1. Select a positive definite V(x). $\times = f(x, u)$

2. Calculate
$$\dot{V}(x) = \frac{\partial V}{\partial x} f(x, u)$$
.

3. Find a (possibly) nonlinear feedback control law that makes \dot{V} negative.

• $\dot{V} \leq 0 \longrightarrow x = 0$ may be asymptotically stable (check LaSalle)

•
$$\dot{V} < 0$$
 for all $x \neq 0 \longrightarrow x = 0$ asymptotically stable

•
$$\dot{V} \leq -\lambda V \longrightarrow x = 0$$
 exponentially stable if additionally $V \geq c \|x\|^2$

Comments:

- Selection of V(x)
- Depends on the system dynamics $\dot{x} = f(x,u)$

Example 1 (Lyapunov-based design)

Consider the nonlinear system

Find a nonlinear feedback control law which makes the origin globally asymptotically stable.

Totally stable.

$$V = \frac{1}{2} (x_1^2 + x_2^2)$$

$$\tilde{V} = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} -3x_1 + 2x_1x_2^2 + u \\ -x_2^3 - x_2 \end{bmatrix} = -\frac{3x_1^2 + 2x_1^2x_2^2 + x_1u}{< > 0} = -\frac{3x_$$

Example 2 (Lyapunov-based design)

Consider the nonlinear system

$$\dot{x}_1 = -3x_1 + 2x_1x_2^2 + u$$
$$\dot{x}_2 = -x_2^3 - x_2,$$

Find a nonlinear feedback control law which makes the origin globally exponentially stable.

Example 3 (Lyapunov-based design)

Consider the system

$$\dot{x}_1 = x_2^3$$

$$\dot{x}_2 = u$$

Find a globally asymptotically stabilizing control law $\boldsymbol{u}=\boldsymbol{u}(\boldsymbol{x})$

LUND

LUND

FRNT05 Nonlinear Control Systems and Servo Systems

Lecture 9: Control design for nonlinear systems

YIANNIS KARAYIANNIDIS, ASSOCIATE PROFESSOR WENT, VIANNIS, info
AUTOMATIC CONTROL, FACULTY OF ENGINEERING. VIANNIS@control.lth.se

Outline

- Lyapunov-based control design
- Exact feedback linearization

Lyapunov-based design

Steps of Lyapunov-based design:

- 1. Select a positive definite V(x).
- 2. Calculate $\dot{V}(x) = \frac{\partial V}{\partial x} f(x(y))$.
- 3. Find a (possibly) nonlinear feedback control law that makes \dot{V} negative.

• $\dot{V} \le 0 \longrightarrow x = 0$ may be asymptotically stable (check LaSalle)

• $\dot{V} < 0$ for all $x \neq 0 \longrightarrow x = 0$ asymptotically stable

• $\dot{V} \le -\lambda V \longrightarrow x = 0$ exponentially stable if additionally $V \ge c||x||^2$

Comments:

- Selection of V(x)
- Depends on the system dynamics $\dot{x} = f(x,u)$

Example 3 (Lyapunov-based design)

Energy shaping (nonlinear spring)

$$\mathbf{Z}(\mathbf{x}) = k\mathbf{x}^{3} \qquad \mathbf{Z}(\mathbf{x}) \in [0, \infty]$$

$$\mathbf{Z}(\mathbf{x}) = k\mathbf{x}^{3} \qquad \mathbf{Z}(\mathbf{x}) \in [0, \infty]$$

$$\mathbf{Z}(\mathbf{x}) = k\mathbf{x}^{3} \qquad \mathbf{Z}(\mathbf{x}) \in [0, \infty]$$

Total energy:

$$\dot{E} = \dot{x}u$$

Energy derivative along trajectories: Control the energy to some desired level E_d

New Lyapunov function:
$$\begin{aligned} u &= -(E - E a) \\ \mathring{\nabla} &= - \overset{.}{\times} (E - E a) \end{aligned}$$

$$\mathring{\nabla} &= - \overset{.}{\times} (E - E a)$$

$$\mathring{\nabla} &= - \overset{.}{\times} (E - E a)$$

$$\mathring{\nabla} &= - \overset{.}{\times}^2 (E - E a)$$

$$V = \frac{1}{2}(E - E_d)^2 \qquad \dot{V} = \dot{E}(E - E_d)$$

$$\dot{V} = \dot{E}(E - E_d) \cdot \dot{V} = \dot{V} \cdot \dot{V} + \dot{V} \cdot \dot{V} = \dot{V} \cdot \dot{V} = \dot{V} \cdot \dot{V} = \dot{V} \cdot \dot{V} = \dot{V} \cdot$$

$$\dot{V} = \dot{E}(E - E_d)$$

$$= \ddot{X} (E - E_d) \cdot Z$$

LUND

Energy shaping (swing-up control)

Rough outline of method to get the pendulum to the upright position

- ullet Find expression for total energy E of the pendulum (potential energy ullet
- Let E_n be energy in upright position.
- Look at deviation $V = \frac{1}{2}(E E_n)^2 \ge 0$
- Find "swing strategy" of control torque u such that $\dot{V} \leq 0$

Exact feedback linearization

- Find state feedback $\boldsymbol{u}=\boldsymbol{u}(\boldsymbol{x},\boldsymbol{v})$ so that the nonlinear affine in the control system

$$\dot{x} = f(x) + g(x)\underline{u}$$

turns into the linear system

$$\dot{x} = Ax + Bv$$

and then apply linear control design method.

- · Not all system can be exactly linearized. There are systems that their state needs to transformed to become linearizable:
 - first find z = T(x) such that $\dot{z} = F(z) + G(z)u$
 - then find u that $\dot{z} = Az + Bv$
 - Design v as linear feedback controller with feedback of z.

Exact feedback linearization

• Find state feedback u=u(x,v) so that the nonlinear affine in the control system

$$\dot{x} = f(x) + g(x)u$$

turns into the linear system

$$\dot{x} = Ax + Bv$$

and then apply linear control design method.

- · Ax can be:
 - The linear part of the nonlinear system, e.g. $f(x) = Ax + \bar{f}(x)$
 - The linearized nonlinear system, e.g $f(x)=Ax+\bar{f}(x)$ where $\bar{f}(x)$ –
 - A desired linear dynamics specification.

Exact feedback linearization

• Relative degree 1: For g(x) square and invertible

$$u = \underbrace{g^{-1}(x)}_{} [\underbrace{-f(x)}_{} + \underbrace{v}_{}]$$

First order integrator $\dot{x} = v$

• Relative degree n

$$\begin{array}{lll} \text{Relative degree } n & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$$

Exact feedback linearization

An inverted pendulum controlled by a motor torque \boldsymbol{u} at the joint:

$$\phi(t) = \frac{g}{l}\sin(\phi(t)) + \frac{1}{ml^2}v$$

$$x_1 = \phi, \qquad \qquad \begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = \dot{\phi} \end{cases}$$

$$x_2 = \phi, \qquad \qquad \begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = \frac{g}{l}\sin(x_1) - \frac{1}{ml^2}u \end{cases}$$

Control structure for exact feedback linearization:
$$u = \underbrace{ml^2 \left[\frac{q}{i} \sin(x_1) - v \right]}_{X_1 = X_2}$$

$$x_2 = \underbrace{\frac{d}{d}}_{S} \text{Sin}(X_1) - \underbrace{\left[\frac{q}{d} \text{Sin}(x_1) - v \right]}_{Q} = \mathbf{V}$$
Then v is dosen a s $v = -k_1(f^2) - k_2$ ϕ

Exact feedback linearization and controldesign based on linearization

An inverted pendulum controlled by a motor torque \boldsymbol{u} at the joint:

$$\ddot{\phi}(t) = \frac{g}{l}\sin(\phi(t)) + \frac{1}{ml^2}u,$$

$$\dot{x}_1 = x_2
\dot{x}_2 = \frac{g}{4}\sin(x_1) - \frac{1}{4}\frac{1}{x_2}u$$

Multi-joint robot control with exact feedback linearization

Dynamic model of the robotic arm:

$$\overbrace{M(\theta) \ddot{\theta} + C(\theta, \dot{\theta}) \dot{\theta} + G(\theta) = u, } \quad \theta \in R^n$$

Called *fully* actuated if n indep. actuators,

 $\begin{array}{ll} \underbrace{M(\theta)}_{C(\dot{\theta},\,\theta)\dot{\theta}} & n\times n \text{ incrtial matrix}, \ M=M^T>0 \\ \underbrace{C(\dot{\theta},\,\theta)\dot{\theta}}_{n\times 1} & n\times 1 \text{ vector of centrifugal and Coriolis forces} \\ G(\theta) & n\times 1 \text{ vector of gravitation terms} \end{array}$

Should I cancel or not?

Energy derivative along trajectories: $\dot{V} = -\dot{x}h(\dot{x}) + \dot{x}u$

Should I cancel or not?

Total energy as Lyapunov function: $V = \frac{1}{2}\dot{x}^2 + \int_0^x z(\sigma)\sigma$ $\varphi_D(\dot{x}) \in (0 \quad \infty)$ $u = -\varphi_D(\dot{x})$ $\dot{V} = -\dot{x}h(\dot{x}) - \dot{x}\varphi_D(\dot{x})$ Energy derivative along trajectories: $\dot{V} = -\dot{x}h(\dot{x}) + \dot{x}u$

LaSalle: V p.d., $\dot{V} \leq 0 \Longrightarrow M = \{x = 0, \dot{x} = 0\}$ is maximum invariant set.

What if I choose: $u = -\varphi_P(x)$

Robot manipulator – Example revisited with Lyapunov-based design

Dynamic model of the robotic arm:

$$M(\theta)\ddot{\theta} + C(\theta, \dot{\theta})\dot{\theta} + G(\theta) = u, \qquad \theta \in R'$$

Called *fully* actuated if n indep. actuators, $M(\theta) \qquad n \times n \text{ inertia matrix, } M = M^T > 0$

 $C(\dot{\theta}, \theta)\dot{\theta} = n \times 1$ vector of centrifugal and Coriolis forces

 $n \times 1$ vector of gravitation terms

Design a controller so that $\theta \longrightarrow \theta_r$.

Inverse dynamics approach.

Another notable property:

$$S(\theta, \dot{\theta}) := \dot{M}(\theta) - 2C(\dot{\theta}, \theta) = -S^{T}(\theta, \dot{\theta})$$

Adaptive noise cancellation

$$\begin{cases} \dot{x}+ax &=bu\\ \dot{\hat{x}}+\widehat{a}\widehat{x} &=\widehat{b}u \end{cases}. \text{ Design adaptation law so that } \widetilde{x}:=x-\widehat{x}\to 0$$

Adaptation laws or update laws: $\hat{a}=...,\hat{b}=...$

Introduce $\widetilde{x} = x - \widehat{x}, \ \ \widetilde{a} = a - \widehat{a}, \ \ \widetilde{b} = b - \widehat{b}.$ What are the dynamics of the error?

Let us try the Lyapunov function $\begin{cases} V = \frac{1}{2}(\widetilde{x}^2 + \gamma_a\widetilde{a}^2 + \gamma_b\widetilde{b}^2) \\ \dot{V} = \end{cases}$

What do we prove if $\dot{V} \leq 0$?

Are \widetilde{a} and \widetilde{b} proved to converge?

Simplified Adaptive control

$$\begin{cases} \dot{x} = \theta x^2 + u \\ u = -\hat{\theta}(t)x^2 + v \end{cases}$$

Design:

Set $\hat{\theta}(t) = \theta$ What principle of design is used?

• an update law for $\hat{\theta}$, $\dot{\hat{\theta}} = ...$

• a control signal v(x)

such that $x \to 0$

Introduce the new state $\tilde{\theta} = \theta - \hat{\theta}$.

Find $\dot{x} = f(x, \tilde{\theta}, v)$

Let us try the Lyapunov function $\begin{cases} V=\frac{1}{2}(x^2+\gamma\tilde{\theta}^2)\\ \dot{V}=\end{cases}$

What do we prove if $\dot{V} \leq 0$?

LUND

FRNT05 Nonlinear Control Systems and Servo Systems

Lecture 10: Optimal control I

YIANNIS KARAYIANNIDIS, ASSOCIATE PROFESSOR AUTOMATIC CONTROL, FACULTY OF ENGINEERING.

Simplified Adaptive control

$\begin{cases} \dot{x} &= \theta x^2 + u \\ \underline{u} &= - \underbrace{\rho(t)} x^2 + \underline{v} \Rightarrow \dot{\mathbf{x}} = \overset{\sim}{\Theta} \times^2 + \vee \\ \text{Design:} \end{cases}$ What principle of design is used? $\lambda = 0 x^2 + U \int such that x=0$ u = -0x2+v (=) where O is • (an update law for $\hat{\theta}/\hat{\theta} = ...$ d constant v=- kx , k>0 $\boxed{ \text{a control signal } v(x) } = - \cancel{k} \cancel{x}$ $\frac{2}{2 \Rightarrow 0} \stackrel{\text{exponentially}}{= 0}$ $\int_{0}^{\infty} \frac{1}{2} = \stackrel{\text{o}}{=} \times^{2} + v$ 0 = -wsuch that $x \to 0$ Introduce the new state $\widehat{\theta} = \widehat{\theta} - \widehat{\theta}$. $\widehat{\theta} = \widehat{\theta} - \widehat{\theta}$. $\widehat{\theta} = \widehat{\theta} - \widehat{\theta}$ Let us try the Lyapunov function $\begin{cases} \frac{V = \frac{1}{2}(x^2 + \gamma \hat{\theta}^2)}{\dot{V} = \varkappa \dot{z} + \gamma \ddot{\theta}} & \dot{\theta} = \varkappa (\tilde{\theta} \varkappa^3 + v) & \forall \chi \tilde{\theta} \text{ w} \\ \frac{V = \frac{1}{2}(x^2 + \gamma \hat{\theta}^2)}{\dot{V} = \varkappa \dot{z} + \gamma \ddot{\theta}} & \dot{\theta} = \varkappa (\tilde{\theta} \varkappa^3 + v) & \forall \chi \tilde{\theta} \text{ w} \end{cases}$ $\text{What do we prove if } \dot{V} \leq 0?$ $\text{What do we prove if } \dot{V} \leq 0?$

Outline

- · Static optimization
- · Problem formulation
- · Maximum principle
- Examples

Optimal Control

Idea: Formulate the design problem as optimization problem

- + Gives systematic design procedure
- + Can use on nonlinear models
- Can capture limitations etc as constraints
- Hard to find suitable criterium?!
- Can be hard to find the optimal controller

Recap static optimization

Necessary conditions for optimality:

- ∇g_1 points in the same direction as ∇g_2

$$(\lambda) = \underbrace{g_1(x, u)}_{\text{const}} + \lambda^2 \underbrace{g_2(x, u)}_{\text{const}}$$

$$\frac{\partial \mathcal{L}}{\partial u} =$$

$$\begin{bmatrix} \frac{\partial g_1(x,u)}{\partial x} + \lambda \frac{\partial g_2(x,u)}{\partial x} \\ \frac{\partial g_1(x,u)}{\partial u} + \lambda \frac{\partial g_2(x,u)}{\partial u} \end{bmatrix} = 0$$

$$g_2(x,u) = 0$$

Static optimization

Maximum principle – no final time constraint

 $\frac{d\lambda}{dt} = - H_x^T \overline{(x^*(t), u^*(t), \lambda(t))}, \quad \text{with} \quad \lambda(t_f) = \phi_x^T (x^*(t_f))$

with
$$\lambda(t_f) = \phi_x^T(x^*(t_f))$$

Sketchy proof (Hamiltonian)

Optimal Control Problem

$$\begin{aligned} & \min_{u} J = \min_{u} \left\{ \phi(x(t_f)) + \int_{t_0}^{t_f} L(x, u) \, dt \right\} \\ & \text{subject to} \quad \dot{x} = f(x, u), \quad x(t_0) = x_0 \end{aligned}$$

$$\mathbf{J} = \underbrace{\phi(x(t_f))}_{t_0} + \underbrace{\int_{t_0}^{t_f} \underbrace{\left(\underline{L(x,u)} \cdot \left(\lambda^T\right) f - \dot{x}\right)}_{t_0} dt}_{t_0}$$

Sketchy proof (Calculus of variation)

$$\widehat{ \delta J} = \left[\left(\frac{\partial \phi}{\partial x} - \lambda^T \right) \delta x \right]_{t=t_f} + \int_{t_0}^{t_f} \left[\left(\frac{\partial H}{\partial x} + \lambda^T \right) \delta x + \frac{\partial H}{\partial u} \delta u \right] dt$$

Necessary conditions for local minimum ($\delta J=0$)

$$\boxed{\lambda(t_f)^T} = \boxed{\frac{\partial \phi}{\partial x}}\Big|_{t=t_f} \qquad \boxed{\dot{\lambda}^T = -\frac{\partial H}{\partial x}} \qquad \frac{\partial H}{\partial u} = 0$$

- λ specified at $\underline{t}=t_f$ and x at $t=t_0$
- Two Point Boundary Value Problem (TPBV)
- For sufficiency $\frac{\partial^2 H}{\partial u^2} \geq 0$

Summary of the approach

 $J(x_0) = \int \phi(x(t_f)) + \int_{t_h}^{t_f} L(x, u) dt$ Performance, cost function $\dot{x} = f(x, u), x(t_0) = x_0$ System dynamics

No final-time constraint but final time is a free variable

Hamiltonian minimization with respect to u

Hamiltonian $H(x, u, \lambda) = L(x, u) + \lambda^T f(x, u)$ $\dot{x} = f(x, u), \quad x(t_0) = x_0$ State equation

 $\dot{\lambda} = H_x^T(x, u, \lambda), \quad \lambda(t_f) = \phi_x^T[x(t_f)]$ Co-state, adjoint equation

We can often first eliminate the control input u(t) by (3)

Remarks

- · The Maximum Principle gives necessary conditions
- A pair $(u^*(\cdot), x^*(\cdot))$ is called **extremal** the conditions of the Maximum Principle are satisfied.
- · Many extremals can exist.
- · The maximum principle gives all possible candidates.
- · However, there might not exist a minimum!

Example

Minimize x(1) when $\dot{x}(t)=u(t)$, x(0)=0 and u(t) is free

Why doesn't there exist a minimum?

Example 1 $\min_{x \in \mathcal{X}} -x_1(T)$ $|\underline{x}_1| = (\underline{x}_2) + u_1$ $x_2(0) = 0$ $u_1^2 + u_2^2 = 1$ • Speed of water $v(x_2)$ in x_1 direction with $\cfrac{\partial v(x_2)}{\partial x_2}=1$

- Move (sail) maximum distance in x_1 -direction in fixed time T
- Rudder angle control: $u \in U := \{(u_1,u_2): \quad u_1^2 + u_2^2 = 1\}$

LUND

LUND

Example 1

with boundary conditions

Example 1

with (21

 $a^T b = \|a\| \cos \theta$

See fig 18.1 for plots Remark: It can be shown that this optimal control problem has a minimum. Hence it must be the one we found, since this was the only solution to MP

FRNT05 Nonlinear Control Systems and Servo Systems

Lecture 11: Optimal control 2

YIANNIS KARAYIANNIDIS, ASSOCIATE PROFESSOR AUTOMATIC CONTROL, FACULTY OF ENGINEERING.

Example 2

$$\min \int_{0}^{1} u^{4} dt + x(1)$$

$$\dot{x} = -x + u, \quad x(0) = 0$$

$$\min \int_0^{t_f} \frac{\operatorname{Trajectory \ cost}}{L(x(t),u(t))} \, dt + \underbrace{\phi(x(t_f))}_{\phi(x(t_f))}$$
 where
$$x(t) \in R^n$$

$$u(t) \in U \subseteq R^m$$

 $\dot{x}(t) = f(x(t), u(t))$

x(0) = 0

Hamiltonian:

$$H = L + \lambda^T \cdot f = u^4 + \lambda(-x + u)$$

Adjoint equation:

$$\dot{\lambda} = -\frac{\partial H}{\partial x} = -(-\lambda) \qquad \qquad \Rightarrow \qquad \lambda(t) = C e^{t}$$

$$\lambda(t_f) = \frac{\partial \phi}{\partial x} = 1 \qquad \lambda(t) = 1 = C e^{t} \Rightarrow \qquad \lambda(t) = e^{t-t}$$

$$\Rightarrow C = e^{t}$$

Optimality:
$$H_u = \frac{3H}{\sigma u} = \frac{4u^3 + \lambda}{4}$$

$$H_u = 0 \implies u = \frac{4}{7} \frac{\lambda}{4}$$

$$=0 \Rightarrow u = \sqrt{\frac{3}{4}}$$

Maximum principle

L(x(t),u(t)) $dt + \phi(t_f,x(t_f))$ Optimization Problem (OP2) $x(t) \in \mathbb{R}^n$, $u(t) \in U \subseteq \mathbb{R}^m$, $0 \le t \le t_f$ $\dot{x}(t) = f(x(t), u(t)), \qquad x(0) = x_0$ $\psi(t_f, x(t_f)) = 0$

Assume that OP2 has a solution. Then there is a vector function $\lambda(t)$, a number

 $n_0 \geq 0$ and a vector $\mu \in R^r$ such that $[n_0 \;\; \mu^T] \neq 0$ and

 $H(x, u, \lambda) = n_0 L(x, u) + \lambda^T(t) f(x, u)$

$$\min_{t \in U} H(x^*(t), u, \lambda(t), n_0) = H(x^*(t), u^*(t), \lambda(t), n_0), \quad 0 \le t \le t_f,$$

where $\lambda(t)$ solves the **adjoint equation**

$$\begin{cases} \dot{\lambda}(t) &= -H_x^T(x^*(t), u^*(t), \lambda(t), n_0) \\ \lambda(t_f) &= n_0 \phi_x^T(t_f, x^*(t_f)) + \psi_x^T(t_f, x^*(t_f)) \mu \end{cases}$$

If the end time t_f is given, then $H(x^*(t_f), u^*(t_f), \lambda(t_f), n_0) = 0$. If the end time t_f is free:

Remarks

• Can scale $n_0, \mu, \lambda(t)$ by the same constant

$$\begin{cases} \dot{\lambda}(t) &= -H_x^T(x^*(t), u^*(t), \lambda(t), n_0) \\ \lambda(t_f) &= n_0 \phi_x^T(t_f, x^*(t_f)) + \psi_x^T(t_f, x^*(t_f)) \mu \end{cases}$$

$$H(x, u, \lambda) = n_0 L(x, u) + \lambda^T(t) f(x, u)$$

· Can reduce to two cases

$$H(x, u, \lambda) = n_0 L(x, u) + \lambda^T(t) f(x, u)$$

 $-n_0=1$ (normal)

If $n_0 > 0$, renormalize to $n_0 = 1$. Only existence of positive n_0 matters.

- $n_0 = 0$ (abnormal, since L and ϕ don't matter)

• Fixed time t_f and no end constraints \Rightarrow normal case

Optimal control (Linear Control Systems with quadratic running cost)

Performance, cost function

$$J(u) = \frac{1}{2}x^{T}(t_f)P(t_f)x(t_f) + \frac{1}{2}\int_{0}^{t_f} x^{T}Qx + u^{T}Ru\,dt$$

System dynamics (dynamic constraint)

$$\dot{x} = f(x, u), x(t_0) = x_0$$

Hamiltonian

$$H(x, u, \lambda) = \frac{1}{2}(x^TQx + u^TRu) + \lambda^T(Ax + Bu)$$

Hamiltonian minimization with respect to u

State equation Co-state, adjoint equation

$$\begin{split} \frac{\partial H(u)}{\partial u} &= u^T R + \lambda^T B \to u = -R^{-1} B^T \lambda^{-\lambda} \lambda(t) = P(t) x(t) \\ \begin{bmatrix} \dot{x} \\ \dot{\lambda} \end{bmatrix} &= \begin{bmatrix} A & -B R^{-1} B^T \\ -Q & -A^T \end{bmatrix} \begin{bmatrix} x \\ \lambda \end{bmatrix} x(t_0) &= x_0 \\ \lambda (t_f) &= P(t_f) x(t_f) \end{split}$$

$$\dot{P}(t) = P(t)A + A^TP(t) + P(t)BR^{-1}B^T(t)P(t) - Q$$

 $P(t_f)$ known by the cost function $\begin{array}{c} extstyle{Lund} extstyle{UNIVERSITY} extstyle{UNIVERSITY} extstyle{UNIVERSITY} extstyle{VIII} extstyle{VIII}$

Example – optimal heating (minimum fuel problem)

$$\min \int_0^{t_f=1} P(t) \, dt$$

$$\min \int_0 P(t) dt$$

s.t. $\dot{T} = P - T$, T(0) = 0 $0 \leq P \leq P_{max}$ T(1) = 1

T temperature P heat effect

Hamiltonian

$$H = n_0 P + \lambda (P - T)$$

Adjoint equation

$$\dot{\lambda}^T = -H_T = -\frac{\partial H}{\partial T} = \lambda^T \qquad \lambda(1) = \mu$$

 $\Rightarrow \quad \lambda(t) = \mu e^{t-1} \\ \Rightarrow \quad H = \underbrace{(n_0 + \mu e^{t-1})}_{\sigma(t)} P - \lambda T \\ \mid \begin{matrix} \mu & \text{cannot be minimal by fixed} \\ \gamma_{he} & \text{constraint on } P \\ \gamma_{he} & \text{c$

At optimality

$$P^*(t) = \left\{ \begin{array}{ll} 0, & \sigma(t) > 0 \\ P_{max}, & \sigma(t) < 0 \end{array} \right.$$

Example – optimal heating

$$\min \int_0^{t_f=1} P(t) \, dt$$

$$H = \sigma(t)P - \lambda T$$

$$\sigma(t) = n_0 + \mu e^{t-1}$$

s.t. $\dot{T} = P - T$, T(0) = 0 $0 \le P \le P_{max}$ T(1) = 1

T temperature

P heat effect

 $\mu < 0 \Rightarrow \sigma(t)$ strictly decreasing for all t $\Rightarrow \dot{T} = -(T - P_{\text{max}}), T(t_1) = 0$ $\Rightarrow T(t) = \left[1 - e^{-(t - t_1)}\right] P_{\text{max}}$

Example – optimal heating

If $t_1 = 0$ (no switching)

$$P_{\text{max}} = \frac{1}{1 - e^{-1}}$$

If $0 < t_1 < 1$ (switching from 0 to $P_{\rm max}$)

$$T(1) = [1 - e^{-(1-t_1)}] P_{\text{max}} = 1$$

$$t_1 = 1 + \ln(1 - P_{\text{max}}^{-1})$$

$$P_{\text{max}} > \frac{1}{1 - e^{-1}}$$

FRNT05 Nonlinear Control Systems and Servo Systems

Lecture 12: From optimal control to nonlinear control

YIANNIS KARAYIANNIDIS, ASSOCIATE PROFESSOR AUTOMATIC CONTROL, FACULTY OF ENGINEERING.

Outline

anadratic Control Control Predictive Contra

Maximum principle – no final time constraint

Assume that OP2 has a solution. Then there is a vector function $\lambda(t)$, a number

 $n_0 \geq 0$ and a vector $\mu \in R^r$ such that $[n_0 \;\; \mu^T] \neq 0$ and

 $H(x, u, \lambda) = n_0 L(x, u) + \lambda^T(t) f(x, u)$

$$\min_{u \in U} H(x^*(t), u, \lambda(t), n_0) = H(x^*(t), u^*(t), \lambda(t), n_0), \quad 0 \le t \le t_f,$$

 $\int \dot{\lambda}(t) = -H_x^T(x^*(t), u^*(t), \lambda(t), n_0)$ where $\lambda(t)$ solves the adjoint equation $\lambda(t_f) = n_0 \phi_x^T(t_f, x^*(t_f)) + \psi_x^T(t_f, x^*(t_f)) \mu$

If the end time $\underline{t_f}$ is free, then $H(x^*(t_f),u^*(t_f),\lambda(t_f),n_0)=0$.

If the end time $\overline{t_f}$ is given: $H(x^*(t_f), u^*(t_f), \lambda(t_f), n_0) = -n_0 \phi_t(t_f, x^*(t_f)) - \mu^T \psi_t(t_f, x^*(t_f)).$

Optimal control (Linear Control Systems with quadratic running cost)

Performance, cost function System dynamics

 $J(u) = \frac{1}{2}x^{T}(t_{f})P(t_{f})x(t_{f}) + \frac{1}{2}\int_{0}^{t_{f}}x^{T}Qx + u^{T}Ru\,dt$

 $\dot{x} = f(x, u), x(t_0) = x_0$

(dynamic constraint) Hamiltonian

Hamiltonian minimization with respect to u

State equation Co-state, adjoint equation $H(x,u,\lambda) = \frac{1}{2}(x^TQx + u^TRu) + \underline{\lambda}^T(Ax + \underline{B}\underline{u}) = u^T \underline{\lambda}_{\{} \ \underline{u}$ $\frac{\partial H(u)}{\partial u} = u^T R + \lambda^T B \to u = -R^{-1} B^T P$ $-BR^{-1}B^T \quad [x] \quad x(t_0) = x_0$ $\lambda \lambda(t_f) = P(t_f)x(t_f)$

 $\lambda(t) = P(t)x(t)$

 $\int \dot{x}(t) = (A(t) - BR^{-1}B^TP(t))x(t), \quad x(0) \text{ given }$ $\dot{P}(t) = P(t)A + A^{T}P(t) + P(t)BR^{-1}B^{T}(t)P(t) - Q$

Optimal control (Linear Control Systems with quadratic running cost and fixed final state)

Performance, cost function Constraint on

 $J(u) = \frac{1}{2} \int_0^{t_f} u^T R u \, dt$ $\psi(x(t_f)) = 0 \to x(t_f) = r$

System dynamics (dynamic constraint)

Hamiltonian

 $\dot{x} = f(x, u), x(t_0) = x_0$ $H(x,u,\lambda) = \frac{1}{2}u^TRu + \lambda^T(Ax + Bu)$

Hamiltonian minimization with respect to u

 $\frac{\partial H(u)}{\partial u} = u^T R + \lambda^T B \rightarrow u = -R^{-1} B^T \lambda$ $\begin{bmatrix} A & -BR^{-1}B^T \end{bmatrix} \begin{bmatrix} x \end{bmatrix}$ $x(t_0) = x_0$ $-A^T$ $\lambda(t_f)$??

State equation $\dot{\chi}$ = -4 \times + $\dot{\uparrow}$ Co-state, adjoint equation

Steps: 1. solve backwards the second differential equation $\lambda(t) \stackrel{1}{=} e^{A^T(t_f-t)} \lambda(t_f)$

2. substitute the solution in the system dynamics and solve the initial value problem

3. use the constraint to find $\lambda(t_f)$

x(++)=r

Example – moving to the origin in minimum time

$$\begin{aligned} & \text{Hamiltonian: } H = n_0 + \lambda_1 x_2 + \lambda_2 u \\ & \text{min} \int_0^{t_f} dt & \text{Adjoint equation:} \\ & \text{s.t. } \ddot{x} = u, \quad x(0) = x_0, \ \dot{x}(0) = v_0 & \begin{bmatrix} \dot{\lambda}_1 \\ \dot{\lambda}_2 \end{bmatrix} = -H_x^T = \begin{bmatrix} -\frac{\partial H}{\partial \dot{H}} \\ -\frac{\partial H}{\partial x_2} \end{bmatrix} = \begin{bmatrix} 0 \\ -\lambda_1 \end{bmatrix} & \begin{cases} \lambda_1(t_f) = \mu_1 \\ \lambda_2(t_f) = \mu_2 \end{cases} \\ & \text{w.} & \text{w.} & \text{w.} & \text{w.} & \text{w.} & \text{w.} \\ & \ddot{x} = u \Rightarrow \begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = u \end{cases} & \text{At optimality: } & \text{min}_u H(u) \equiv \underbrace{\left(\mu_1(t - t_f) + \mu_2\right)}_{\sigma(t) = \lambda_2(t)} u + n_0 + \lambda_1 x_2 \end{aligned} \\ & u^*(t) = \begin{cases} -1, & \sigma(t) > 0 \\ 1, & \sigma(t) < 0 \end{cases} \\ & \text{Conditions: } & H(t_f) = 0 \Rightarrow \mu_2 u^*(t_f) = -n_0 \end{aligned}$$

Example – minimum time control

$$\min \int_{0}^{t_{f}} dt \qquad H = (\mu_{1}(t - t_{f}) + \mu_{2})u + n_{0} + \lambda_{1}x_{2}$$

$$\mu_{2}u^{*}(t_{f}) = -n_{0}$$

$$\sigma(t) = (\mu_{1}(t - t_{f}) + \mu_{2})$$

$$u^{*}(t) = \begin{cases} -1, & \sigma(t) > 0 \\ 1, & \sigma(t) < 0 \end{cases}$$

$$s.t. \quad \ddot{x} = u, \quad x(0) = x_{0}, \, \dot{x}(0) = v_{0}$$

$$u \in [-1, 1]$$

$$x(t_{f}) = 0, \quad \dot{x}(t_{f}) = 0$$

$$\ddot{x} = u \Rightarrow \begin{cases} \dot{x}_{1} = x_{2} \\ \dot{x}_{2} = u \end{cases}$$

$$\mu_{1} < 0, \, \mu_{2} > 0$$

$$\mu_{1} < 0, \, \mu_{2} < 0$$

$$\mu_{1} = 0, \, \mu_{2} < 0$$

$$\mu_{2} = 0$$

$$\mu_{3} = 0, \, \mu_{3} = 0$$

$$\mu_{4} = 0, \, \mu_{2} < 0$$

$$\mu_{4} = 0, \, \mu_{4} < 0$$

$$\mu_{4} = 0, \, \mu_{4} < 0$$

$$\mu_{5} = 0, \, \mu_{5} = 0$$

Example – minimum time control

Example – minimum time control See Ex. 7,11

Optimal control provides with trajectories that can be then used as references to a controller

- We mainly address input constraints, but there might be state constraints e.g. obstacles that need to be avoided
- A popular approach is Model Predictive Control

From Continuous to Discrete Time

Receding horizon control – basic idea

- 1. At time instant t predict the response of the system over a prediction horizon M using inputs over a control horizon N.
- 2. Optimize a specified objective or cost function with respect to a control sequence $u(t+j), \quad j=0,1,\dots,N-1.$
- 3. Apply the first control $\boldsymbol{u}(t)$ and start over from 1 at next sample.

LUND

Unroll the cost

Minimize a cost function, V, of inputs and predicted outputs.

$$V = V(U_t, Y_t), \qquad U_t = \begin{bmatrix} u(t+N-1) \\ \vdots \\ u(t) \end{bmatrix}, \qquad Y_t = \begin{bmatrix} \widehat{y}(t+M|t) \\ \vdots \\ \widehat{y}(t+1|t) \end{bmatrix}$$

 ${\cal V}$ often quadratic

$$V(U_t, Y_t) = Y_t^T Q_y Y_t + U_t^T Q_u U_t$$

$$\tag{1}$$

 \Longrightarrow linear controller

$$u(t) = -L\widehat{x}(t|t)$$

Optimization problem

$$J(t) = y^T(t+M)P(t+M)y(t+M) + \sum_{t+1}^{t+M-1} y^T(i)Qy(i) + u^T(i)Ru(i)\,dt$$

Minimize a cost function, V, of inputs and predicted outputs.

$$V = V(U_t, Y_t), \qquad U_t = \begin{bmatrix} u(t+N-1) \\ \vdots \\ u(t) \end{bmatrix}, \qquad Y_t = \begin{bmatrix} \widehat{y}(t+M|t) \\ \vdots \\ \widehat{y}(t+1|t) \end{bmatrix}$$

 ${\cal V}$ often quadratic

$$V(U_t, Y_t) = Y_t^T Q_y Y_t + U_t^T Q_u U_t$$

⇒ linear controller

$$u(t) = -L\widehat{x}(t|t)$$

Prediction

Discrete-time model

$$x(t+1) = Ax(t) + Bu(t) + B_v v_1(t)$$

 $y(t) = Cx(t) + v_2(t)$ $t = 0, 1, ...$

Predictor (v unknown)

$$\widehat{x}(t+k+1|t) = A\widehat{x}(t+k|t) + Bu(t+k)$$

$$\widehat{y}(t+k|t) = C\widehat{x}(t+k|t)$$

Receding horizon control

- $\widehat{x}(t|t)$ is predicted by a standard Kalman filter, using outputs up to time t, and inputs up to time t-1.
- Future predicted outputs are given by

$$\begin{bmatrix} \widehat{y}(t+M|t) \\ \vdots \\ \widehat{y}(t+1|t) \end{bmatrix} = \begin{bmatrix} CA^M \\ \vdots \\ CA \end{bmatrix} \widehat{x}(t|t) + \begin{bmatrix} CB & CAB & CA^2B & \dots \\ 0 & CB & CAB & \dots \\ \vdots & \ddots & \ddots & \vdots \end{bmatrix} \begin{bmatrix} u(t+M-1) \\ \vdots \\ u(t+N-1) \\ \vdots \\ u(t) \end{bmatrix}$$

$$Y_t = D_x \widehat{x}(t|t) + D_u U_t$$

Receding horizon control

- + Flexible method
 - $\star\,$ Many types of models for prediction:
 - * state space, input-output, step response, nonlinear models
 - * MIMO
 - * Time delays
- + Can include constraints on input signal and states
- + Can include future reference and disturbance information
- On-line optimization needed
- Stability (and performance) analysis can be complicated

Receding horizon control

Limitations on control signals, states and outputs,

$$|u(t)| \leq C_u \quad |x_i(t)| \leq C_{x_i} \quad |y(t)| \leq C_y,$$

leads to linear programming or quadratic optimization. Efficient optimization software exists.

LUND

Design of MPC

- Model
- M (look on settling time)
- ullet N as long as computational time allows
- If N < M-1 assumption on $u(t+N), \dots, u(t+M-1)$ needed (e.g., =0, = u(t+N-1).)
- $Q_y,\,Q_u$ (trade-offs between control effort and performance)
- C_y , C_u constraints often given
- · Sampling time

FRNT05 Nonlinear Control Systems and Servo Systems

Lecture 13: Control Systems with discontinuities

YIANNIS KARAYIANNIDIS, ASSOCIATE PROFESSOR WINW. Yiannis AUTOMATIC CONTROL, FACULTY OF ENGINEERING. Yiannis@cor

Outline

Time optimal control

- Sliding mode control
- · Friction

Sliding set

 $\dot{x} = \begin{cases} f(x) & 6(x) > 0 \\ f(x) & 6(x) < 0 \end{cases}$ and f(x) = 0and f(x) = 0

LUND

- Once the trajectory hits the switching surface S, it cannot leave it because the vector fields on both sides point towards the surface
- If f^+ and f^- point "in the same direction" on both sides of the set $\sigma(x)=0$, then the solution curves will just pass through and this region will not belong to the sliding set.
- If f(f(x)) = f(x) on $\sigma(x)$ then the sliding set is actually a set of equilibrium points

Sliding set

- The general behavior for the solution is to slide on $\sigma(x)$ (sliding mode.)
- The sliding motion can be described by noting that there is a unique convex combination of $f^+(x)$ and $f^-(x)$ that is tangent to $\sigma(x)$ at the point
- · Sliding dynamics:

where $\alpha(x)$ is obtained from

 $-\frac{1}{\partial x}f(x)+\alpha(x)\frac{1}{\partial x}[f(x)-f(x)].$ • The fast switches will give rise to average dynamics that slide along the set where $\sigma(x)=0$.

Example

$$\begin{aligned} \dot{x} &= \begin{bmatrix} 0 & -1 \\ 1 & -1 \end{bmatrix} x + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u = \underline{A}x + \underline{B}u \\ u &= -\mathrm{sgn}\sigma(x) = -\mathrm{sgn}x_2 = -\mathrm{sgn}(Cx) \end{aligned}$$

which means that

$$\dot{x} = \begin{cases} Ax - B, & x_2 > 0 \\ Ax + B, & x_2 < 0 \end{cases}$$

Determine the sliding set and the sliding dynamics.

Example: Sliding set $\dot{x}_{1} = x_{2} + (u) = -x_{2} - \operatorname{sgn}(x_{2})$ $\dot{x}_{2} = x_{1} - x_{2} + (u) = x_{1} - x_{2} - \operatorname{sgn}(x_{2})$ $\sigma(x) = 0 \qquad f^{+} = \begin{bmatrix} -x_{2} + 1 \\ x_{1} - x_{2} + 1 \end{bmatrix} \qquad f^{-} = \begin{bmatrix} -x_{2} + 1 \\ x_{1} - x_{2} + 1 \end{bmatrix}$ $f^{-} = \begin{bmatrix} -x_{2} + 1 \\ x_{1} - x_{2} + 1 \end{bmatrix}$ $f^{-} = \begin{bmatrix} -x_{2} + 1 \\ x_{1} - x_{2} + 1 \end{bmatrix}$ $f^{-} = \begin{bmatrix} -x_{2} + 1 \\ x_{1} - x_{2} + 1 \end{bmatrix}$ $f^{-} = \begin{bmatrix} -x_{2} + 1 \\ x_{1} - x_{2} + 1 \end{bmatrix}$ $f^{-} = \begin{bmatrix} -x_{2} + 1 \\ x_{1} - x_{2} + 1 \end{bmatrix}$ $f^{-} = \begin{bmatrix} -x_{2} + 1 \\ x_{1} - x_{2} + 1 \end{bmatrix}$ $f^{-} = \begin{bmatrix} -x_{2} + 1 \\ x_{1} - x_{2} + 1 \end{bmatrix}$ $f^{-} = \begin{bmatrix} -x_{2} + 1 \\ x_{1} - x_{2} + 1 \end{bmatrix}$ $f^{-} = \begin{bmatrix} -x_{2} + 1 \\ x_{1} - x_{2} + 1 \end{bmatrix}$ $f^{-} = \begin{bmatrix} -x_{2} + 1 \\ x_{1} - x_{2} + 1 \end{bmatrix}$ $f^{-} = \begin{bmatrix} -x_{2} + 1 \\ x_{1} - x_{2} + 1 \end{bmatrix}$ $f^{-} = \begin{bmatrix} -x_{2} + 1 \\ x_{1} - x_{2} + 1 \end{bmatrix}$ $f^{-} = \begin{bmatrix} -x_{2} + 1 \\ x_{1} - x_{2} + 1 \end{bmatrix}$ $f^{-} = \begin{bmatrix} -x_{2} + 1 \\ x_{1} - x_{2} + 1 \end{bmatrix}$ $f^{-} = \begin{bmatrix} -x_{2} + 1 \\ x_{1} - x_{2} + 1 \end{bmatrix}$ $f^{-} = \begin{bmatrix} -x_{2} + 1 \\ x_{1} - x_{2} + 1 \end{bmatrix}$ $f^{-} = \begin{bmatrix} -x_{2} + 1 \\ x_{1} - x_{2} + 1 \end{bmatrix}$ $f^{-} = \begin{bmatrix} -x_{2} + 1 \\ x_{1} - x_{2} + 1 \end{bmatrix}$ $f^{-} = \begin{bmatrix} -x_{2} + 1 \\ x_{1} - x_{2} + 1 \end{bmatrix}$ $f^{-} = \begin{bmatrix} -x_{2} + 1 \\ x_{1} - x_{2} + 1 \end{bmatrix}$ $f^{-} = \begin{bmatrix} -x_{2} + 1 \\ x_{1} - x_{2} + 1 \end{bmatrix}$ $f^{-} = \begin{bmatrix} -x_{2} + 1 \\ x_{1} - x_{2} + 1 \end{bmatrix}$

We thus have the sliding set $\{-1 < x_1 < 1, x_2 = 0\}$

Example: Sliding dynamics

The sliding dynamics are the given by

$$\begin{split} \dot{x} &= \alpha f^+ + (1-\alpha) f^- \quad \text{sliding dynamics} \\ 0 &= \frac{\partial \sigma}{\partial x} f^-(x) + \alpha(x) \frac{\partial \sigma}{\partial x} \left[f^+(x) - f^-(x) \right] \quad \clubsuit \end{split}$$

On the sliding set $\{-1 < x < 1, x_2 = 0\}$, this gives

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \alpha \begin{bmatrix} -x_2 - 1 \\ x_1 - x_2 - 1 \end{bmatrix} + (1 - \alpha) \begin{bmatrix} -x_2 + 1 \\ x_1 - x_2 + 1 \end{bmatrix}$$

$$0 = x_1 - x_2 + 1 - 2\alpha$$

Eliminating α gives $\begin{cases} \overline{\hat{x}_1 = -x_1} \\ \dot{x}_2 = 0 \end{cases}$ Hence, any initial condition the sliding set will give exponential convergence to $x_1 = x_2 = 0$.

The dynamics along the sliding set in $\sigma(x)=0$ can also be obtained by finding $u=u_{\rm eq}\in[-1,1]$ such that $\dot{\sigma}(x)=0$. $u_{\rm eq}$ is called the **equivalent control**.

LUND

Sliding mode control

• Define an output $y=\sigma(x)$ such that the relative degree of the input-output relationship is 1 and the origin for the the system $\sigma(x)=0$ is stable.

Pendulum:
$$\begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = -\theta \cos(x_1) + bu \end{cases} \qquad \begin{aligned} x_1 &= \phi - \pi/2 \\ x_2 &= 0 \end{aligned}$$

$$\sigma = \begin{bmatrix} a & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \underbrace{ax_1 + x_2}_{11}$$

$$x_1 &= \frac{1}{2}$$

$$x_2 &= 0$$

$$x_1 &= \frac{1}{2}$$

$$x_2 &= 0$$

$$x_1 &= -ax_1$$

$$x_2 &= 0$$

$$x_1 &= -ax_1$$

$$x_2 &= 0$$

$$x_1 &= -ax_1$$

$$x_2 &= 0$$

$$x_1 &= -ax_1$$

Sliding mode control

- Design a control input that makes the state starting in $\sigma(x)=0$ to stay there for all t. $(\sigma(x)=0$ invariant)

Pendulum:
$$\begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = -\theta \cos(x_1) + b\theta \end{cases}$$

$$\begin{split} \sigma &= x_2 + ax_1 \Rightarrow \dot{\sigma} = -\theta \cos(x_1) + ax_2 + bu \\ \dot{\varepsilon} &= \odot & \epsilon(\mathbf{x} \otimes \mathbf{x}) = \mathbf{x} \\ &= \frac{1}{b} \left(-\alpha \times_{\mathbf{Z}} + \theta \cos(\mathbf{x}_{\perp}) \right) \\ &= \epsilon(\mathbf{x} \otimes \mathbf{x}) = \mathbf{x} \end{split}$$

Sliding mode control

- Use feedback linearization and design a control input that makes $\sigma(x) = 0$

$$U = ueq_{uv} + V$$

$$V = \frac{1}{2}\sigma^{2}$$

$$\dot{V} = A_{1}c\dot{c} = c \left[-\theta \cos(x_{1}) + a \times_{2} + b uequu$$

$$+ bv \right]$$

$$\sigma = x_2 + ax_1 \Rightarrow \dot{\sigma} = -\theta \cos(x_1) + ax_2 + bu$$

LUND

Sliding mode control

• Design a discontinuous control input v as part of the control $u=u_{\rm equiv}+v$ that drives $\sigma(x)$ to zero in <u>finite</u> time.

$$v = -K \operatorname{sign}(\sigma) \qquad \operatorname{sign}(\sigma) = \begin{cases} 1, & \sigma > 1 \\ -1, & \sigma < 0 \end{cases}$$

• Examine how
$$|\sigma(t)|$$
 changes over time

discontinuous feed back $v=K$ sign(s) $\frac{1}{2}$ $\frac{1}{4}$ $\frac{1}{6}$ $\frac{1}{2}$ $\frac{1}{6}$ $\frac{1}$

Sliding mode control

• Choose
$$K$$
 such that $\frac{1}{\sqrt{\log q}} + \frac{1}{\sqrt{\log q}$

Example

Example

Friction

Lubrication regimes

For low velocity: friction increases with decreasing velocity Stribeck (1902)

LUND

Hysteresis and friction

- Dynamics are important also outside sticking regime
- Hess and Soom (1990)
- Experiment with unidirectional motion $v(t) = v_0 + a\sin(\omega t)$
- · Hysteresis effect!

Classical friction models mix + Fee = Feet)

Advanced Friction Models

- Karnopp model
- · Armstrong's seven parameter model
- Dahl model
- Bristle model
- · Reset integrator model
- · Bliman and Sorine
- LuGre model (Lund-Grenoble)

See PhD-thesis by Henrik Olsson

https://lucris.lub.lu.se/ws/portalfiles/portal/4768278/8840259.pdf

Friction models with extended state

Dahl's model

$$\dot{F}(t) = \sigma_0(v(t) - F_c|v(t)|)$$
 LuGre model
$$\dot{z}(t) = v - \frac{|v|}{g(v)} z(t)$$

$$g(v) = \left(F_c + (F_s - F_c)e^{-|\frac{v}{v_s}|^2}\right)$$

$$F(t) = \sigma_0 z(t) + \sigma_1 \dot{z} + F_v v(t)$$
 Siff then display fields: Finally Contact between bristles

Friction and control

Friction and control

- · Friction compensation
- Lubrication
- Dither
- Integral action
- Non-model based control
- Model-based friction compensation
- Adaptive friction compensation
- To be useful for control the model should
 - sufficiently accurate,
 - suitable for simulation,
 - simple, few parameters to determine.
 - physical interpretations, insight
- Simple models should be preffed.
- · If no stiction occurs the v=0-models are

Adaptive friction compensation

Velocity Control – Results

Quantization

e: Noise independent of u with rectangular distribution over the quantization size with rectangular distribution with variance

Linear Model of Quantization

- Digital signals have specific number of bits (accuracy and range of signals) (e.g. 8 bits, 64 bits)
- Quantization in A/D and D/A converters
- Quantization of parameters
- Roundoff, overflow, underflow in operations
- It works if quantization level is small compared to the variations in u

Sliding mode control

- Choose K such that u=v drives $\sigma(x)$ to zero in finite time.

$$u = -K \mathrm{sign}(\sigma)$$

$$\mathrm{sign}(\sigma) = \begin{cases} 1, & \sigma > 1 \\ -1, & \sigma < 1 \end{cases}$$

Sliding mode control

• Choose K such that u=v drives $\sigma(x)$ to zero in finite time.

$$u = -K \operatorname{sign}(\sigma)$$

$$\operatorname{sign}(\sigma) = \begin{cases} 1, & \sigma > 1 \\ -1, & \sigma < 1 \end{cases}$$

Quantization: Describing function

 $Var(e) = \int_{-\infty}^{+\infty} e^2 f_e de = \int_{-D/2}^{D/2} e^2 \frac{1}{D} de = \frac{D^2}{12}$

Outline

Examples

Equilibrium points and Limit Cycles

• Find equilibrium points $f(x^*) = 0$

• Given a trajectory show that it is a limit cycle Let 2*(t) a periodic trajetory independent of initial condition

· Classify equilibrium points

· Stability of limit cycle

x (+1) = f(x +(+))

the classification of equilibriums in

Now It is function of time Now If is tunction of time

Stability an be checked by examining linear systems

the eigenvalues of If + If I

For simit cycle stability check you can also change coordinate. UND

to T, D and then sincarize the system

Existence of limit cycles – Describing **Function Analysis**

Consider a form of the van der Pol equation:

Express the system as a transfer function
$$G(s)$$
 in the forward loop with a non-

linear feedback though a static nonlinearity h(x). Find explicitly G(s) and h(x).

Existence of limit cycles – Describing **Function Analysis**

#Clanstable = #Olynotable - # encirclements Consider a form of the van der Pol equation: " lout of" the circle #encirclements = 0

Use the describing function analysis to examine the existence of a limit cycle.

Lyapunov stability analysis

1.
$$V > 0$$
 p.d. $V(x)$ if $x = 0$ for $X \in \mathbb{Q}$ and $V(x) > 0$ if $x \neq 0$ $\mathbb{Q} \in \mathbb{Q}$ $V(x) > 0$ if $x \neq 0$ $\mathbb{Q} \in \mathbb{Q}$ $V(x) > 0$ p.d. $V(x) = 0$ $\mathbb{Q} \in \mathbb{Q}^n$ $V(x) > 0$ p.d. for $X \in \mathbb{Q} \setminus \mathbb{Q} \in \mathbb{Q}^n$

If
$$0 \le 0$$
 then stable equilibrium point. Lasselle $0 = 0$ $0 = 0$ $0 = 0$

Lyapunov stability analysis

$$\begin{cases} \dot{x}_1 = \frac{1}{a}x_2\\ \dot{x}_2 = -bx_1 - x_2(1 - a^2x_1^2 - x_2^2) \end{cases}$$

Here the actual region __ of attraction is V21 since

Show that the origin and the ellipse $a^2x_1^2+x_2^2=1$ are invariant sets for

Choose a Lyapunov function to show that the origin is a locally asymptotical stable equilibium point. $\frac{\text{Inspired}}{\text{d_{000}e}} \quad \frac{\text{by +he}}{\text{$v=\alpha^2 \times_1^2 + \times_2^2 > 0$}} \quad \frac{\text{puestion}}{\text{p. d.}} \quad \text{we}$

What is the region of attraction? $\dot{V} = -x_2^2 (4 - \alpha^2 x_1^2 - x_2^2)$

A region of the form
$$Q_1 = \{V_1\}$$
 is an estimate of the RA.

If
$$x \in Q_1 = \{x \in \mathbb{R}^2, \forall < 1\}$$
 in the ellipse $\forall x \in Q_2 = \{x \in \mathbb{R}^2, \forall < 1\}$ in the ellipse $\forall x \in Q_2 = \{x \in \mathbb{R}^2, \forall < 1\}$ in the ellipse $\forall x \in Q_2 = \{x \in \mathbb{R}^2, \forall < 1\}$ in the ellipse $\forall x \in Q_2 = \{x \in \mathbb{R}^2, \forall < 1\}$ in the ellipse $\forall x \in Q_2 = \{x \in \mathbb{R}^2, \forall < 1\}$ in the ellipse $\forall x \in Q_2 = \{x \in \mathbb{R}^2, \forall < 1\}$ in the ellipse $\forall x \in Q_2 = \{x \in \mathbb{R}^2, \forall < 1\}$ in the ellipse $\forall x \in Q_2 = \{x \in Q_2 = 1\}$ in the ellipse $\forall x \in Q_2 = \{x \in Q_2 = 1\}$ in the ellipse $\forall x \in Q_2 = \{x \in Q_2 = 1\}$ in the ellipse $\forall x \in Q_2 = \{x \in Q_2 = 1\}$ in the ellipse $\forall x \in Q_2 = \{x \in Q_2 = 1\}$ in the ellipse $\forall x \in Q_2 = \{x \in Q_2 = 1\}$ in the ellipse $\forall x \in Q_2 = \{x \in Q_2 = 1\}$ in the ellipse $\forall x \in Q_2 = \{x \in Q_2 = 1\}$ in the ellipse $\forall x \in Q_2 = \{x \in Q_2 = 1\}$ in the ellipse $\forall x \in Q_2 = \{x \in Q_2 = 1\}$ in the ellipse $\forall x \in Q_2 = 1\}$ in the ellipse $\forall x \in Q_2 = \{x \in Q_2 = 1\}$ in the ellipse $\forall x \in Q_2 = 1\}$ in the ellipse $\forall x \in Q_2 = \{x \in Q_2 = 1\}$ in the ellipse $\forall x \in Q_2 = 1\}$

Lyapunov stability analysis

$$\begin{cases} \dot{x}_1 = \frac{1}{a}x_2\\ \dot{x}_2 = -bx_1 - x_2(1 - a^2x_1^2 - x_2^2) \end{cases}$$

Show that the origin and the ellipse $a^2x_1^2 + x_2^2 = 1$ are invariant sets for $b = \infty$

Show that the digital and the ellipse
$$a \cdot x_1 + x_2 = 1$$
 are invariant sets to $b = 0$.

$$\frac{o r(a) n}{cor} \quad x_1 = x_2 = 0 \quad \text{we} \quad f \in A \quad \dot{x}_1 = 0 \,, \, \dot{x}_2 = 0$$

$$\frac{e \text{ } \text{μipse}}{6} = \frac{a^2 x_1^2 + x_2^2 - 1}{6 \cdot a \cdot b} = \frac{a^2 x_1^2 + x_2^2 - 1}{2a \cdot a \cdot a \cdot b} = \frac{a^2 x_1^2 + x_2^2 - 1}{2a \cdot a \cdot a \cdot b} = \frac{a^2 x_1^2 + x_2^2 - 1}{2a \cdot a \cdot a \cdot b}$$

for 6=0 we get 6=0 i.e. 6(t) = 6(0) =0 4t

Similar to what we did for equilibrium point (origin) Lund

LUND

BIBO - Circle Criterion etc.

A motor is controlled using position and velocity feedback combined in a Pcontroller with gain k_s . A gain k is used as a weight for the position feedback. The input signal is saturated due to input torque limitations. In particular u= $-k_s(\dot{x}+kx)$ if -1 < u < 1, otherwise u is saturated to -1 or +1 depending on the signum of $\dot{x} + kx$. Use the circle criterion to study the asymptotic stability of the origin.

BIBO – Circle Criterion etc.

A motor is controlled using position and velocity feedback combined in a Pcontroller with gain k_s . A gain k is used as a weight for the position feedback. The input signal is saturated due to input torque limitations. In particular $u=% \frac{1}{2}\left(\frac{1}{2}\right) \left(\frac{1$ $-k_s(\dot{x}+kx)$ if -1 < u < 1, otherwise u is saturated to -1 or +1 depending on the signum of $\dot{x} + kx$. Use the circle criterion to study the asymptotic stability of the origin.

$$G(s) = \frac{s+k}{s(s+a_m)}$$

$$G(j\omega) = \frac{j\omega+k}{-\omega^2+j\omega a_m} \Rightarrow \operatorname{Re}[G(j\omega)] = \frac{a_m-k}{\omega^2+a_m^2}$$

Circle Criterion

Nonlinear Control Design

(b) V put for a, b > a positive constant
$$\begin{cases} \dot{x}_1 = -x_1 + \theta x^2 x_2 \end{cases}$$

$$\begin{cases} x_1 = -x_1 + \theta x_1^2 x_2 \\ \dot{x}_2 = u \end{cases} , \theta \text{ positive constant } \begin{tabular}{l} \lor = a x_1 \dot{x}_1 + b x_2 \dot{x}_2 \\ = -\alpha x_1^2 + a\theta x_1^3 x_2 + b x_2 \end{tabular}.$$

 $\begin{cases} \dot{x}_1 = -x_1 + \theta x_1^2 x_2 \\ \dot{x}_2 = u \end{cases}, \ \theta \ \text{positive constant} \ \ \dot{V} = \underbrace{a \times_i x_i}_{l} + \underbrace{b \times_2 x_2}_{l} = \underbrace{-\alpha x_i^2}_{l} + \underbrace{a \underbrace{b \times_i^3 x_2}_{l} + \underbrace{b \times_2 u}_{l}}_{l} = \underbrace{-\alpha \times_i^2}_{l} + \underbrace{b \times_2 u}_{l} = \underbrace{-\alpha \times_i^2}_{l} + \underbrace{b \times_i u}_{l} = \underbrace{-\alpha \times_i^2}_{l} + \underbrace{b \times_i u}_{l} = \underbrace{-\alpha \times_i^2}_{l} + \underbrace{b \times_i u}_{l} = \underbrace{-\alpha \times_i^2}_{l} + \underbrace{-\alpha \times_i u}_{l} = \underbrace{-\alpha \times_i u}_{l} = \underbrace{-\alpha \times_i u}_{l} + \underbrace{-\alpha \times_i u}_{l} = \underbrace{-\alpha \times_i u$ local asymptotic stability of the origin.

(3) Assume full state feedback can be used. Derive a controller that can achieve global asymptotic stability of the origin? Is the stabilty property exponential?

(c) Is your controller robust to uncertainty in the parameter $\theta_{1}^{2} \frac{\partial u}{\partial x} = \frac{1}{6} \frac{1}{6} \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} = \frac{1}{6} \frac{\partial$

