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State-space models (autonomous systems)

• State vector:
• Input vector:
• Output vector:

• General:
• Explicit:
• Affine in the control:
• Linear time-invariant:

General

Non-autonomous systems

• Autonomous forced system:
• Control Input vector:
• Non-autonomous system:

Always possible to transform to autonomous system 

Introduce               time           

Linear Systems 
State space representation Transfer function

State space models of systems are not unique

• Controllable Canonical Form
• Observable Canonical Form

Linear Systems 
State space representation

Properties:
• Unique equilibrium if A is full-rank
• Regardless of the initial value, the equilibrium point is stable when the 

eigenvalues have negative real-parts
• Analytic solution: superposition of the natural modes of the system 

Linear Systems 
State space representation

Properties:
• Unique equilibrium if A is full-rank
• Regardless of the initial value, the equilibrium point is stable when the 

eigenvalues have negative real-parts
• Analytic solution: superposition of the natural modes of the system 

Properties:
• Principle of superposition and scaling

• If the unforced system is asymptotically stable, the forced 
system is bounded-input bounded-output stable 

• Sinusoidal input Sinusoidal output at the same frequency



A standard form for analysis 

Nonlinearities

Example: closed loop with friction

Friction

Friction

Friction

First order linear and nonlinear differential equations

• Damping – linear dynamic friction

• Damping – nonlinear viscous friction (drag underwater vehicles)

• Population growth example
Population

Maximum size that can be reached 

• First order unforced systems described by differential equations

Second order nonlinear equations

• Hardening spring

• Pendulum

• Circuit with negative resistance

• Mechanical systems with friction

• Robot manipulators

Transformation to first order systems & 
Equilibrium points

Transformation to first order systems & 
Equilibrium points

• The system can stay at equilibrium forever without moving
• Set all derivatives equal to zero!



Multiple isolated equilibria 
• Pendulum 

Equilibria given by 

• Population growth

Response to the input 

Finite escape time

Compare with instability of linear systems

Example:

Solution:

Region of attraction
Region of attraction: The set of all initial conditions such that the solution converges to the 
equilibrium point

Limit Circles
• Circuit with negative resistance • Circuit with no resistance

Lipschitz Continuity and existence and 
uniqueness of solutions

Check the continuity of 

Lipschitz-continuous

Local

Global

and the boundedness of first order partial derivatives 

Examples:



Lipschitz Continuity and existence and 
uniqueness of solutions

Lipschitz-continuous

Local

Global

A solution of the diff. equation                              exists 

A solution of the diff. equation                                  exists and is unique  if  

is locally Lipschitz 

and if it is known that every solution of the 
differential equation starting at  a closed and 
bounded set                  remains in it.

Lipschitz Continuity and existence and 
uniqueness of solutions

Check the continuity of 

Lipschitz-continuous

Local

Global

A solution of the diff. equation                              exists 

and the boundedness of first order partial derivatives 

Examples:

Local
and

Lipschitz Continuity and existence and 
uniqueness of solutions

Check the continuity of 

Lipschitz-continuous

Local

Global

A solution of the diff. equation                              exists 

and the boundedness of first order partial derivatives 

Examples:

Local
and

Existence of the solution, finite escape time, 
instability (Quiz)

Uniqueness problems
Does the initial value problem have more than one solution? 

If so, the differential equation cannot be used for prediction

Some nonlinearities -simulink



Next Lecture(s)
• Phase plane analysis for 2nd order linear systems

• Linearization

• Stability definitions

• Simulation in Matlab

Lecture 2: Linearization and Phase 
plane analysis 
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Outline
• Linearization around equilibrium 

• Phase plane analysis of linear systems 

Material

• Glad and Ljung: Chapter 13

• Khalil: Chapter 2.1–2.3

• Lecture notes

Linearization around an equilibrium point
• Linear systems with non-zero equilibrium points 

Change of variables to move the origin to the equilibrium point

Equilibrium

New variable

Equilibrium

New variable

Example

• Linear approximation of nonlinear systems (Taylor expansion                                        )                                    

Linearization around an equilibrium point

• Linear approximation of nonlinear systems (Taylor expansion)

Jacobian Hessian

Example (nonlinear spring with external force)

5

• Differential Equation

• State space representation

• State space representation (vector form)

Position: Velocity:



Phase plane analysis
• The phase plane method is the graphical study of second-order autonomous 

systems:

• Phase plane has        and       as coordinates.

• Phase plane trajectory: a curve of the phase plane representing the solution for 
initial conditions                      with time   varied from 0 to infinity

• Phase portrait: a family of phase plane trajectories from various initial conditions

• Example:

      

                  

A first glimpse on phase portraits
• The vector field

is tangent at point because

• The slope is indeterminate at equilibrium 
points aka singular points 

• Don’t forget the arrows!

Solution of Linear Systems of diff. eq. 

State space representation:

Solution:

Similarity transformation and 
change of variables:

One double eigenvalueReal distinct eigenvalues Complex Eigenvalues

Complex eigenvectorsTwo real eigenvectors

Solution of Linear Systems of diff. eq. 
State space representation after change of variables                     :

Solution for the new state:

Solution of the original state:

Real distinct eigenvalues

One double eigenvalue

Complex Eigenvalues

Two real eigenvalues 
Direct elimination of time variable Separation of variables Integration



Two real eigenvalues 

Fast eigenvector

Slow eigenvector

Example:

Some comments
• What if                 ?

•

          

One tangent mode Matching quiz 1

Complex eigenvalues

If 

If 

If 

Unstable focus 

Center

Stable  focus 

Why?

Matching quiz 2



Example

• Stable  focus 

How to draw phase portraits

Matching quiz 3 Summary of phase portraits and their 
equilibriums

Effect of perturbations 

• Structurally stable: the qualitative behavior remains the same under arbitrarily small 
perturbations in A

Perturbations in 

Examples: a node(with distinct eigenvalues), a saddle or a focus 

• A stable node with multiple eigenvalues could become a stable node or a stable focus 
under arbitrarily small perturbations in A

• A center is not structurally stable

Back to linearization



Back to linearization Summary
• Linearization 

• Phase portraits of Linear systems 

• Whether the behavior of the Linear system (outcome of linearization) can be 
inherited to the nonlinear system?

Lecture 3: Linearization around a 
trajectory, Limit cycles and Stability 
definitions
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Outline
• Linearization around trajectory (general case)

• Limit Cycles

• Definitions of Stability

Material

• Glad& Ljung Ch. 11, 12.1,
( Khalil Ch 2.3, part of 4.1, and 4.3 )

• Lecture slides

Summary of phase portraits and their 
equilibriums Effect of perturbations 

• Structurally stable: the qualitative behavior remains the same under arbitrarily small 
perturbations in A

Perturbations in 

Examples: a node(with distinct eigenvalues), a saddle or a focus 

• A stable node with multiple eigenvalues could become a stable node or a stable focus 
under arbitrarily small perturbations in A

• A center is not structurally stable



Linearization around an equilibrium point

• Linear approximation of nonlinear systems (Taylor expansion)

Jacobian Hessian

Predicting behaviors close to equilibrium

Linear approximation
Valid when 

??? Center 
node node
saddle saddle 
focus focus
unstable
stable
???

Linearization around a trajectory Linearization around a trajectory

Linearization around a trajectory Time-varying Linear Systems
Example:



Time-varying Linear Systems

Stable

Unstable

No conclusion

Periodic solutions and Limit Cycles

• A system oscillates when it has a nontrivial periodic solution:

for  some 

Example:

The system has a sustained oscillation of amplitude

• Harmonic oscillator LC circuit 

⁻ Small perturbation will destroy the oscillation (e.g. resistance)
⁻ The amplitude depends on the initial conditions

Periodic solutions and Limit Cycles

• An isolated closed curve in the phase plane
• Closed: periodic solution
• Isolated: limiting nature of the limit cycle, nearby trajectories 

either converge to or diverge from the limit cycle

Stability of limit cycles

• Stable limit cycle: all trajectories in the vicinity of the limit cycle converge to it

• Unstable limit cycle: all trajectories in the vicinity of the limit cycle diverge from it 

• Semi-Stable Limit Cycles: some of the trajectories in the vicinity converge to it, 
while the others diverge from it

Stability of limit cycles – matching quiz Stability of limit cycles 
(linearization around a trajectory) 
• Study the stability of the trajectory 



• Change variables 

Stability of an equilibrium point

• Use the term “stable (unstable) system” only for linear systems 

• A nonlinear system have more than one equilibrium points that each one 
can be either stable or unstable  

• Unstable equilibrium does not mean unbounded trajectories

Unstable equilibrium does not mean unbounded 
trajectories Local vs Global Stability of Equilibrium

Convergent but not stable Exponential stability 



Lecture 4: Describing function 
analysis
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Outline
• How to obtain a describing function for a nonlinear element in an “almost” linear

system

• Prediction of oscillations based on extended Nyquist Criterion and the describing
function of the nonlinearity

Motivation: Nonlinearities in the control 
system

Motor Transfer function
Saturation

Controller

Nonlinear element

Motor 

Motivation: Nonlinearities

• The physical system (the plant) may contain nonlinearities

Hardening spring

Coulomb Friction

Motivation: prediction of persistent oscillations 
(limit cycles)

• Oscillations can be desirable: 
electronic oscillators used in 
laboratories.

• Oscillations are undesirable

Oscillations are a sign of instability, tend to cause poor control accuracy

Constant oscillations can increase wear or even cause mechanical failure

Nonlinearities: Single-valued nonlinearities
Increasing slope

Deadzone

• Saturation 
nonlinearity 

Saturation 
level

Slope

• On-Off (relay) nonlinearit

• Deadzone nonlinearity 



Nonlinearities: Backlash

Contact is 
achieved 

The input gear started 
rotating to different direction

The output gear does not 
move until contact is 

(re)established

• Multi-valued

• The output depends on the 
input and the history of the 
input 
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Odd and even functions
• Odd function

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

• Examples
Deadzone Saturation

• Even function

Odd functions with

Describing function analysis

• Assumptions
Single, odd, time-invariant nonlinear element

• Replace the nonlinearity with a quasi-linear component

• Use tools from linear control systems design to examine the existence 
of oscillations

Low-pass transfer function

Describing function analysis

• Form of the nonlinear system

• Reference is set zero to study self-sustained oscillations 

• “almost” linear system or genuinely nonlinear system (written as shown 
in the block diagram)  

“Almost” linear systems

• Contain hard nonlinearities in the control loop but are otherwise 
linear

• Implementation involves hard nonlinearities, e.g. actuator saturation 
or sensor dead-zones

• Linear Control Design and linear system 

Quiz: Write the nonlinear system in a feedback 
form where the nonlinearity is in a block

Hardening spring

Viscous Friction



Fourier Transformation
Input Output

Output – Periodic function

Fourier Transformation

0 for odd

The linear transfer function as a low-pass filter

• If the transfer function is acting as a low pass filter the output   will be mainly 
affected by the first harmonic of  

• The method is based on approximations (heuristic)

The linear transfer function as a low-pass filter

• “Filtering” Assumption: the first harmonic is taken as output of 
the nonlinear block 

Describing Function
Input of the nonlinear 
element 

• Describing function definition

Input

Output

Output of the nonlinear element 

Describing Function (cont.)

• Depends on the amplitude of the input signal in contrast to the 
frequency response for linear systems  

• Extension of the notion of frequency response for systems with 
nonlinearities  

Describing Function –special cases

• It is real and independent of the frequency  when the non-
linearity is single-valued 

• Why? • Imaginary part

• Real part



Describing Function – Example Describing Function – Example

Nyquist criterion: Definitions

• The characteristic equation of the 
system:

• Zeros of          poles of the CLS system

• Poles of          poles the OLS system

for proper/strictly proper transfer function

• Example:

• Closed loop Transfer Function

• Open loop Transfer Function

  

  

Nyquist contour and plot
• Nyquist contour • Nyquist plot

A path that 
encircles the right-
half plane

Example

• Nyquist Criterion

Number of clockwise 
encirclements of the 
point (-1,0)

Nyquist Criterion

• Given a stable open loop system, the closed loop is stable if the 
Nyquist plot of the open loop system does not encircle the point (-1,0). 

• The number of unstable Closed Loop Poles is equal  to the number of 
open loop poles with positive real part plus the number of clockwise 
encirclements of the point (-1,0)  

Nyquist Criterion: Quiz

Stable or Unstable?



Nyquist Criterion

Necessary and sufficient condition stability condition for 
systems for stable open-loop systems:

The Nyquist plot does not encircle the point -1/k

Extension of Nyquist Criterion for Describing 
Function Analysis (Existence of oscillations)

• Assume that there exists self-sustained oscillations 

• The amplitude and frequency must satisfy (*) – Harmonic balance

• If (*) has no solutions then there are no oscillations in the system 

(*) 

Extension of Nyquist Criterion for Describing 
Function Analysis (Stability of oscillations)

Necessary and sufficient condition stability condition for 
systems for systems with stable (open-loop) linear part: 

The Nyquist plot does not encircle the point -1/k--1/1/1/////11/1//1/11//11//1///kkkkkkkkkkkkkkkkkkkk

Stability of oscillations

• Permanent oscillation: Common point of the Nyquist diagram                  
and the plot         

• Stability of the oscillation: Does the oscillation continue after a 
small perturbation in A?

          
 

Stability of oscillations

Stability of the oscillation:  Does the oscillation continue after a small perturbation in A?

Point is not encircled
Oscillation amplitude 
decreases

Oscillation unstable

Point is encircled
Oscillation amplitude 
increases

Oscillation unstable

Point is encircled

Oscillation stable

Oscillation amplitude 
increase

Point is not encircled
Oscillation amplitude 
decrease

Oscillation stable

Example – Prediction and stability of persistent 
oscillations 
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0

0.01

Nyquist Plot – Describing function System Response



Example – Prediction of oscillations 

Real for

For

Describing function analysis: pitfalls  
• DF analysis may predict a limit cycle, even if it does not exist.

• A limit cycle may exist, even if DF analysis does not predict it.

• The predicted amplitude and frequency are only approximations and 
can be far from the true values.
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Lecture 5: Lyapunov stability I
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Outline
• Physics based motivation

• Lyapunov function candidates

• Local Lyapunov  Stability 

• Global Lyapunov Stability 

• Lyapunov stability for linear systems

• Lyapunov stability with linearization

Example (nonlinear spring with external force)

3

• Differential Equation

• State space representation

Position: Velocity:

• Energy
• Plug in the system dynamics 
• Derivative along the system trajectories

Hardening springNonlinear damping

Kinetic Potential

Lyapunov function candidates



Lyapunov function candidates  – positive 
definite functions

increasing  function with 

Lyapunov function candidates  – quadratic 
forms

Differentiating Lyapunon function candidates 
along trajectories 

Example:

Energy conservation and dissipation

Energy conservation and dissipation 
(pendulum)

Local stability of an equilibrium point of a 
nonlinear system – Lyapunov’s Direct Method

Stable Equilibrium

Positive definite

Positive semidefinite

Positive definite

Asymptotically 
Stable Equilibrium



Sketchy proof of the basic Lyapunov Theorem 
on stability

Choose 

Choose 

Stability analysis of eq. for the pendulum

Stability analysis of eq. for the pendulum Stability analysis of eq. for the pendulum

Stability analysis of eq. for the pendulum Stability analysis of eq. for the pendulum



Global stability of an equilibrium point of a 
nonlinear system – Lyapunov’s Direct Method

Stable Equilibrium

Positive definite

Positive semidefinite

Positive definite

Asymptotically 
Stable Equilibrium

Is it enough to consider                    ?               

Study the stability of the eq. point 
Example:

Radially unbounded functions
Example:

Lyapunov function candidates  for global 
stability – radially unbounded functions

increasing  function with 

Lyapunov function candidates  – radially 
functions

increasing  function with 

Global stability of an equilibrium point of a 
nonlinear system – Lyapunov’s Direct Method

Stable Equilibrium

Positive definite

Positive semidefinite

Positive definite

Asymptotically 
Stable Equilibrium

Radially unbounded



Stability of an equilibrium point of a nonlinear 
system – Lyapunov’s Direct Method

Stable Equilibrium

Positive definite

Positive semidefinite

Positive definite

Asymptotically 
Stable Equilibrium

Radially unbounded

Lyapunov stability analysis - comments
• The conditions of the Theorem are only sufficient 

If conditions are not satisfied:

It does not mean that the equilibrium is unstable.

It means that the chosen Lyapunov function does not allow to make a conclusion 

It requires further investigation 
try to find another Lyapunov function
Use other Theorems

Lyapunov analysis for Linear systems

To check stability:

Try to prove stability with:
www.yiannis.info

Lecture 6: Lyapunov stability II
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Stability of an equilibrium point of a nonlinear 
system – Lyapunov’s Direct Method

Stable Equilibrium

Positive definite

Positive semidefinite

Positive definite

Asymptotically 
Stable Equilibrium

Radially unbounded

Lyapunov stability analysis - comments
• The conditions of the Theorem are only sufficient 

If conditions are not satisfied:

It does not mean that the equilibrium is unstable.

It means that the chosen Lyapunov function does not allow to make a conclusion 

It requires further investigation 
try to find another Lyapunov function
Use other Theorems 



Outline
• Softer conditions

• Convergence rate (exponential stability)

• Invariant Sets

• Region of attraction

• Asymptotic stability of invariant sets

• Lyapunov stability for linear systems

Asymptotic Stability (softer condition on     )     
Barbashin, Krasovskii Theorem (LaSalle Invariance Principle is more general and proved afterwards, we 
can call this LaSalle Theorem)

Example (revisited) 

Barbashin, Krasovskii or LaSalle

Exponential stability 

Invariants Sets Lyapunov sets as invariant sets 

Why?



Region of Attraction
• Local asymptotic stability theorems guarantee existence of a possibly small 

neighborhood of the equilibrium point where such an attraction takes place

Discussion

Van der Pol equation in reverse time 

Example 1
Example:

Example 2

LaSalle

Example 3
Van der Pol equation in reverse time 

LaSalle’s invariance principle
LaSalle’s invariant set Theorem



Example – Limit Cycle Example – Limit Cycle 

LaSalle’s Invariance Principle

almost globally 

Example – Set of equilibriums 
At equilibrium 

LaSalle’s Invariance Theorem

Lyapunov analysis for Linear systems

To check stability:

Try to prove stability with:

Lyapunov analysis for Linear systems

To check stability:

Try to prove stability with:

Parametric Lyapunov function in a quadratic form 

Choose parameters for P such that                 p.d.            

Lyapunov analysis for Linear systems



Lyapunov analysis for Linear systems

To check stability:

or
www.yiannis.info

Lecture 7: Indirect Lyapunov’s 
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Outline
• Lyapunov Analysis for Linearized systems

• Indirect Lyapunov’s Method

• Small-gain theorem 

• Circle Criterion (the point -1/k is replaced by a cycle)

Lyapunov analysis for Linear systems

To check stability:

or

Lyapunov analysis for Linear systems Lyapunov’s indirect method 



Lyapunov’s indirect method Feedback form where the nonlinearity is in a 
block

Sector nonlinearity Signal norms and spaces

Equivalent expression in frequency domain 

Gain of a system 

Stable Linear System

Static Nonlinearity  

Static linear relation

The Small-Gain Theorem 



Small-Gain Theorem is conservative Nyquist criterion

• Given a stable open loop system, the closed loop is
stable if the Nyquist plot of the open loop system does
not encircle the point (-1/k,0) in the clockwise direction.

•

Circle criterion Circle criterion – Example 1 

1) Find the sector

2) Apply Circle Criterion depending on the sector

Circle criterion – Example 2 

1) Find the sector

2) Apply Circle Criterion depending on the sector

Circle criterion – Example 3  

1) Find the sector

2) Apply Circle Criterion depending on the sector
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Lecture 8: Input-Output Stability
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Outline
• Circle criterion and positive real functions (passivity)

• Control design based on linearization

• Lyapunov-based control design

(Strictly) Positive Real Transfer Functions Quiz 

Matching Quiz Kalman Yakubovich Popov  Lemma
Minimal realization of 



Passivity Theorem(s)

Power inflow 

Passive Linear System

(Strictly) 
positive 
real 

• Feedback interconnection of passive systems is passive 
• A passive system is BIBO
• If the input r=0, the origin of minimum realization of G(s) is gas

Passivity theorem – Circle criterion

Circle criterion – Strictly positive real functions  

2) Nonlinearity: Find the sector as a function of the gain K

3) Check if the Z(s) is strictly positive real

1) Isolate the linear part of the system (A). Check the argument (input) of 
the nonlinear function (c). Check how the nonlinearity is involved in the 
system(b). Find G(s) using A, b, c. 

Find the maximum value of K that ensures 
asymptotic stability of the origin using the 
circle criterion.

Linear control design based on linearization

Example (Linearization) Example (Linearization)

Try this home – See lecture notes 2. 



Lyapunov-based design
Steps of Lyapunov-based design:

Comments:

Example 1 (Lyapunov-based design)

Example 2 (Lyapunov-based design) Example 3 (Lyapunov-based design)

www.yiannis.info

Lecture 9: Control design for 
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Outline
• Lyapunov-based control design

• Exact feedback linearization



Lyapunov-based design
Steps of Lyapunov-based design:

Comments:

Example 3 (Lyapunov-based design)

Energy shaping (nonlinear spring)

Total energy :

Friction-less system:

Energy shaping (swing-up control)

Exact feedback linearization Exact feedback linearization



Exact feedback linearization Exact feedback linearization

Exact feedback linearization and control-
design based on linearization

Closed loop system:

Multi–joint robot control with exact feedback 
linearization 

Should I cancel or not?
• Good nonlinearities – passive  

Passive: energy absorbed by the
damper is positive 

Passive: energy stored in the 
spring is positive

Total energy as Lyapunov function:

Should I cancel or not?
Total energy as Lyapunov function:



Robot manipulator – Example revisited with 
Lyapunov-based design Adaptive noise cancellation

Simplified Adaptive control

www.yiannis.info

Lecture 10: Optimal control
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Simplified Adaptive control Outline
• Static optimization 

• Problem formulation 

• Maximum principle

• Examples 



Optimal Control Recap static optimization
Optimization under constraints:

Necessary conditions for optimality:

Lagrangian:

Static optimization Maximum principle – no final time constraint 

Optimization 
Problem (OP1)

Sketchy proof (Hamiltonian)
Optimal Control Problem 

Functions of time the constraint is 
satisfied over the assumed period of 
time

Sketchy proof (Calculus of variation)



Summary of the approach 

System dynamics 

State equation

Performance, cost function

Co-state, adjoint equation

Hamiltonian

Hamiltonian minimization with respect to u

No final-time constraint but final time is a free variable 

We can often first eliminate the control input u(t) by (3)

(1)

(2)

(3)

Remarks

Example 1 Example 1

Example 1

www.yiannis.info

Lecture 11: Optimal control 2
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Example 2 Maximum principle 

Optimization 
Problem (OP2)

Remarks Optimal control  (Linear Control Systems with 
quadratic running cost)

System dynamics 
(dynamic constraint) 

State equation

Performance, cost function

Co-state, adjoint equation

)

Hamiltonian

Hamiltonian minimization with respect to u

Example – optimal  heating (minimum fuel 
problem) Example – optimal  heating 



Example – optimal  heating 

www.yiannis.info

Lecture 12: From optimal control to 
nonlinear control

YIANNIS KARAYIANNIDIS, ASSOCIATE PROFESSOR
AUTOMATIC CONTROL, FACULTY OF ENGINEERING. 

FRNT05 Nonlinear Control Systems and Servo Systems

yiannis@control.lth.se

Outline
• Time optimal control

• Sliding mode control

Maximum principle – no final time constraint 

Optimization 
Problem (OP2)

Optimal control  (Linear Control Systems with 
quadratic running cost)

System dynamics 
(dynamic constraint) 

State equation

Performance, cost function

Co-state, adjoint equation

)

Hamiltonian

Hamiltonian minimization with respect to u

Optimal control  (Linear Control Systems with 
quadratic running cost and fixed final state)

System dynamics 
(dynamic constraint) 

State equation

Performance, cost function

Co-state, adjoint equation

Hamiltonian

Hamiltonian minimization with respect to u

Steps:  1. solve backwards the second differential equation 
2. substitute the solution in the system dynamics and solve the initial value problem 

3. use the constraint to find 

Constraint on 



Example – moving to the origin in minimum 
time Example – minimum time control 

Example – minimum time control Example – minimum time control 

• Optimal control provides with trajectories that can be then used as references to a 
controller 

• We mainly address input constraints, but there might be state constraints e.g.
obstacles that need to be avoided 

• A popular approach is Model Predictive Control 

From Continuous to Discrete Time

Sampling time T

Euler Approximation

The integral 
becomes sum



Receding horizon control – basic idea Unroll the cost

Optimization problem Prediction

Receding horizon control Receding horizon control



Receding horizon control Design of MPC

www.yiannis.info
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Outline
• Time optimal control

• Sliding mode control

• Time optimal control

Sliding set
• Sliding set:

Sliding set



Example Example: Sliding set

Example: Sliding dynamics

Sliding mode control Sliding mode control



Sliding mode control

Equivalent control 

Sliding mode control

Sliding mode control Example

- Chattering  wear on 
mechanical devices 

Example
• Contninuous control

Friction



Lubrication regimes 

For low velocity: friction increases 
with decreasing velocity
Stribeck (1902)

Hysteresis and friction
• Dynamics are important also outside sticking regime

• Hess and Soom (1990) 

• Experiment with unidirectional motion

• Hysteresis effect!

Classical friction models Advanced Friction Models
• Karnopp model

• Armstrong's seven parameter model

• Dahl model

• Bristle model

• Reset integrator model

• Bliman and Sorine

• LuGre model (Lund-Grenoble)

See PhD-thesis by Henrik Olsson

https://lucris.lub.lu.se/ws/portalfiles/portal/4768278/8840259.pdf

Friction models with extended state
Dahl’s model

LuGre model

Contact between bristles

Friction and control
• Friction compensation
– Lubrication
– Dither
– Integral action 
– Non-model based control
– Model-based friction compensation
– Adaptive friction compensation

High-frequency mechanical 
vibration: used to avoid sticking

Integral term compensate for 
slowly varying disturbances



Friction and control
• Friction compensation
– Lubrication
– Dither
– Integral action 
– Non-model based control
– Model-based friction compensation
– Adaptive friction compensation

• To be useful for control the model should 
be: 
– sufficiently accurate,
– suitable for simulation,
– simple, few parameters to determine.
– physical interpretations, insight

• Simple models should be preffed.

• If no stiction occurs the v=0-models are 
not needed.

Adaptive friction compensation

Velocity Control – Results Quantization

• Digital signals have specific number of bits 
(accuracy and range of signals) (e.g. 8 bits, 64 bits)

• Quantization in A/D and D/A converters  
• Quantization of parameters 
• Roundoff, overflow, underflow in operations

• e: Noise independent of u with rectangular 
distribution over the quantization size with 
rectangular distribution with variance

• It works if quantization level is small 
compared to the variations in u

Linear Model of Quantization

For prediction of limit cycles 

• Use describing function analysis

Sliding mode control Sliding mode control



Quantization: Describing function 

• Recall the deadzone nonlinearity
www.yiannis.info
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Outline
• Examples

Equilibrium points and Limit Cycles 
• Find equilibrium points

• Given a trajectory show that it is a limit cycle

• Classify equilibrium points

• Stability of limit cycle

Existence of limit cycles – Describing  
Function Analysis

Existence of limit cycles – Describing  
Function Analysis



Lyapunov stability analysis Lyapunov stability analysis 

Lyapunov stability analysis BIBO – Circle Criterion etc.

BIBO – Circle Criterion etc. Circle Criterion
Nyquist

arbitrarily large

You could check the
conditions for strictly 
positive real functions and 
get the result without a 
Nyquist graph.



Nonlinear Control Design


