

FRNT05 Nonlinear Control Systems and Servo Systems

Lecture 14: Course summary

YIANNIS KARAYIANNIDIS, ASSOCIATE PROFESSOR AUTOMATIC CONTROL, FACULTY OF ENGINEERING.

www.yiannis.info
yiannis@control.lth.se

Outline

Examples

Equilibrium points and Limit Cycles

$$\chi = f(\chi)$$

• Find equilibrium points $\int (x^*) = 0$

$$f(x^*) = 0$$

- Given a trajectory show that it is a limit cycle
- Classify equilibrium points
- Stability of limit cycle

$$\int f = \left[\frac{ax}{3t}\right]^{X = X_{4}(f)}$$

Let x (t) a periodic trajetory independent of initial condition $\mathcal{X}^{4}(t) = f(\mathcal{X}^{4}(t))$

$$\int f = \left(\frac{\partial x}{\partial t}\right)^{X=x}$$

Now It is function of time Stability and be checked by examining the Gyenwhues of Jf+Jf7

Check the eigenvalues and classify according the classification of equilibriums in linear systems

For limit cycle stability check you can also change to r, o and then linearize the system

Existence of limit cycles – Describing Function Analysis

Consider a form of the van der Pol equation:

$$\ddot{x} + \varepsilon (3x^2 - 1)\dot{x} + x = 0$$

$$\Rightarrow \ddot{x} - \varepsilon \dot{x} + x = \varepsilon 3x^2 \dot{x}$$

$$\Rightarrow \ddot{x} - \varepsilon \dot{x} + x = -\varepsilon 4(x^3)$$

Express the system as a transfer function G(s) in the forward loop with a non-linear feedback though a static nonlinearity h(x). Find explicitly G(s) and h(x).

Existence of limit cycles – Describing Function Analysis

Consider a form of the van der Pol equation:

Thia is in fact the van der Pol oscillator that generates limit cycles. $\# Cl_{mobble} = 0$ (stable)
Use the describing function analysis to examine the existence of a limit cycle.

 $-\frac{1}{N(A)} = -\frac{4}{3A} = -1$ If A increases $-\frac{1}{N(A)}$ moves towards origin. N(A) [If A== disturbed to the left (decreased) then unstable (out of the circle) and returns back It A = 2 disturbed to the right (increased) -0.4 then stable (in the circle) and returns by (decreases).

Lyapunov stability analysis

1.
$$V > 0$$
 p.d. $V(x)$ if $x = 0$ for $X \in Q$.

 $V(x) > 0$ if $x \neq 0$ $Q \in \mathbb{R}^N$

det. $\left[V < 0 \sim -V > 0 \text{ p.d.}\right]$ \Longrightarrow asymptotic of ability

 V radially unbruded. $\left(\begin{smallmatrix} 0 & c & d \\ 0 & c & d \\$

Lyapunov stability analysis

$$\begin{cases} \dot{x}_1 = \frac{1}{a}x_2\\ \dot{x}_2 = -bx_1 - x_2(1 - a^2x_1^2 - x_2^2) \end{cases}$$

Choose a Lyapunov function to show that the origin is a locally asymptotical Inspired by the first question WE stable equilibium point. 0h005e V=012×12+×,2>0 p.d.

What is the region of attraction?

A region of the form
$$-1 = \{V_{2}, V_{3}\}$$
 is an estimate of the RA.

1?
$$\sqrt{z} = -x_2^2 (1 - \alpha^2 \times 1^2 - x_2^2)$$

If $x \in \mathcal{Q}_1 \equiv \{x \in \mathbb{R}^2, \forall \leq 1\}$ in the ellipse

$$V = -\varepsilon \times_2^2 \leq 0 \text{ (Not negative definite)}$$

$$V = -\varepsilon \times_2^2 \leq 0 \text{ (Not negative definite)}$$

$$V = -\varepsilon \times_2^2 \leq 0 \text{ (Not negative definite)}$$

$$V = -\varepsilon \times_2^2 \leq 0 \text{ (Not negative definite)}$$

$$V = -\varepsilon \times_2^2 \leq 0 \text{ (Not negative definite)}$$

$$V = -\varepsilon \times_2^2 \leq 0 \text{ (Not negative definite)}$$

$$V = -\varepsilon \times_2^2 \leq 0 \text{ (Not negative definite)}$$

$$V = -\varepsilon \times_2^2 \leq 0 \text{ (Not negative definite)}$$

$$V = -\varepsilon \times_2^2 \leq 0 \text{ (Not negative definite)}$$

$$V = -\varepsilon \times_2^2 \leq 0 \text{ (Not negative definite)}$$

$$V = -\varepsilon \times_2^2 \leq 0 \text{ (Not negative definite)}$$

$$V = -\varepsilon \times_2^2 \leq 0 \text{ (Not negative definite)}$$

$$V = -\varepsilon \times_2^2 \leq 0 \text{ (Not negative definite)}$$

$$V = -\varepsilon \times_2^2 \leq 0 \text{ (Not negative definite)}$$

$$V = -\varepsilon \times_2^2 \leq 0 \text{ (Not negative definite)}$$

$$V = -\varepsilon \times_2^2 \leq 0 \text{ (Not negative definite)}$$

$$V = -\varepsilon \times_2^2 \leq 0 \text{ (Not negative definite)}$$

$$V = -\varepsilon \times_2^2 \leq 0 \text{ (Not negative definite)}$$

$$V = -\varepsilon \times_2^2 \leq 0 \text{ (Not negative definite)}$$

$$V = -\varepsilon \times_2^2 \leq 0 \text{ (Not negative definite)}$$

$$V = -\varepsilon \times_2^2 \leq 0 \text{ (Not negative definite)}$$

$$V = -\varepsilon \times_2^2 \leq 0 \text{ (Not negative definite)}$$

$$V = -\varepsilon \times_2^2 \leq 0 \text{ (Not negative definite)}$$

$$V = -\varepsilon \times_2^2 \leq 0 \text{ (Not negative definite)}$$

Lyapunov stability analysis

$$\begin{cases} \dot{x}_1 = \frac{1}{a}x_2\\ \dot{x}_2 = -bx_1 - x_2(1-a^2x_1^2-x_2^2) \end{cases}$$
 Show that the origin and the ellips

Show that the origin and the ellipse $a^2x_1^2 + x_2^2 = 1$ are invariant sets for $b = \infty$

$$\frac{\text{Origin}}{\text{For}} = x_1 = x_2 = 0 \quad \text{we get} \quad \dot{x_1} = 0, \quad \dot{x_2} = 0$$

e llips e

$$6 = a^{2}x_{1}^{2} + x_{2}^{2} - 1$$

$$7 = a^{2}x_{1}^{2} + x_{2}^{2} - 1$$

For
$$6=0$$
 we get $C=0$ i.e. $6(t)=6(0)=0$ $\forall t$ invariant similar to what we did for equilibrium point (origin) LUND UNIVERSITY

BIBO – Circle Criterion etc.

A motor is controlled using position and velocity feedback combined in a P-controller with gain k_s . A gain k is used as a weight for the position feedback. The input signal is saturated due to input torque limitations. In particular $u = -k_s(\dot{x} + kx)$ if -1 < u < 1, otherwise u is saturated to -1 or +1 depending on the signum of $\dot{x} + kx$. Use the circle criterion to study the asymptotic stability of the origin.

BIBO - Circle Criterion etc.

A motor is controlled using position and velocity feedback combined in a P-controller with gain k_s . A gain k is used as a weight for the position feedback. The input signal is saturated due to input torque limitations. In particular $u = -k_s(\dot{x} + kx)$ if -1 < u < 1, otherwise u is saturated to -1 or +1 depending on the signum of $\dot{x} + kx$. Use the circle criterion to study the asymptotic stability of the origin.

Circle Criterion

$$a_m > k$$

Nyquist
$$G(s) = \frac{s+k}{s(s+a_m)} \quad k > a_m$$

You could check the conditions for strictly positive real functions and get the result without a Nyquist graph.

 c_{s} arbitrarily large

Nonlinear Control Design

$$\begin{cases} \dot{x}_1 = -x_1 + \theta x_1^2 x_2 \\ \dot{x}_2 = u \end{cases}, \ \theta \ \text{positive constant} \quad \begin{tabular}{ll} \dot{v} = a x_i x_i + b x_2 x_2 \\ & = -a x_i^2 + a \theta x_i^3 x_2 \\ & = -\frac{\alpha}{b} \theta x_i^3 - k x_$$

- Assume that x_1 is not measurable and thus cannot be used for control. Use the function $V = \frac{1}{2}(ax_1^2 + bx_2^2)$ to show that linear feedback of x_2 can achieve $\sqrt{z \alpha x_1^2 \lambda b x_2^2}$ local asymptotic stability of the origin.
- Assume full state feedback can be used. Derive a controller that can achieve global asymptotic stability of the origin? Is the stability property exponential?
- (c) α, b are free parameters

 (d) Is your controller robust to uncertainty in the parameter θ ? Thouse $\frac{\alpha}{b} = \frac{\epsilon}{\theta}$ where ϵ α

positive constant

Then
$$u = + E X_1^3 - k X_2$$
 independent of θ

