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Maximum principle — no final time constraint

. Trajectory cost Final cost

f . % ~ e N

I\/Iinimize/ L(z(t),u(t)) dt + ¢(ts, x(ty))
0

Optimization ~ Wwhere

Problem (OP2) p(t) e R, w(t) e U CR™, 0<t<t;
() = f(z(t),u(t)),  x(0) =20

Pty z(ty)) =0

Assume that OP2 has a solution. Then there is a vector function A\(¢), a number

no > 0 and a vector u € R” such that [ng u!] # 0 and H(z.u, ) = noL(x.w) + N () (@0

min H(x*(t), u, A(t),no) = H(z™(t),u™(t),A(t),no), 0t <ty,

uelU
)\(t) — _Hg(w*(t)9U*(t)a)\(t)an0)
where \(t) solves the adjoint equation i}
2 {A(tf = o6 (k0 (1) + T (b, " (1)
If the end time i is free, then H(z*(ts),u"(tr), AM(tf), o) = 0.
If the end time ¢, is given: LUND

H(x*(tf), u* (tf), /\(tf), n—o') — _nOCbt(tf, 7 (tf)) B ﬂth(tfa - (tf)). UNIVERSITY



Optimal control (Linear Control Systems with
quadratic running cost)

1 (Y
Performance, cost function J(u) = 5% 2l (tp)P(ty)x(ty) + 5 f 1 Qx + u' Ru dt
0

Free-final-state but in the perfromance function

System dynamics

(dynamic constraint) &= f(w,u), z(lo) =
Hamiltonian H(z,u,\) = 1(2TQz + uTRu) + )\T(A;U + Bu) = %7/\1 U
Hamiltonian minimization with respect to u agiu) CTRANTE Sy — 1BTf)x -+ b'_:k@
K State equation {ﬂ _ | A —BR~ 1BT‘| (2] a(ty) = g
—T Co-state, adjoint equation )\J L_Q -AY J [)\J Aty) = P(ty)x(ty)
- —

A(t) = P(t)z(1) {W = (A(t) - BR7'BTP(t))z(t), x(0) given

P(t)= P(t)A+ ATP(t) + P(t)BR"'BT(t)P(t) — Q

P(ts) known by the cost function
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Optimal control (Linear Control Systems with
guadratic running cost and fixed final state)

1
Performance, cost function J(u) = 5/ u' Ru dt
. 0

Constraint on w(aﬁ(tf)) —0— a:(tf) —

System dynamics .

(dynamic constraint) T = f(z,u), z(to) = o

Hamiltonian H(z,u,\) = tu” Ru+ AT (Az + Bu)
Hamiltonian minimization with respect to u agf,,“) —uTRAN'B — u— —R-1BT)
e State equation { i | [A —BR'BT] [z z(to) = o

T AT
X7 mh X © Co-state, adjoint equation J [ A J Alty) 27

Steps: 1. solve backwards the second differential equation  A(t) = e (tr=D ()
2. substitute the solution in the system dynamics and solve the initial value problem

%‘ 3. use the constraint to find )\(tf) LUND
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Example — moving to the origin In minimum
time

Hamiltonian: H = ng + A\1x2 + Aau

ty
min/ dt o .
? 0 Adjoint equation:
' _9H
T N (RN e IR
u & [—1,1] 2 Ox2 1 Z(tf)—lJQ
:c(tf) = 0, :'B(tf) =0
A (t) =
N 1(t) = w1
A2(t) = pa(t —tg) + pio
By = {xl = L2 At optimality: min, H(u) = E/J,l(t —tr)+ Mlu + ng + A 2o
e ()= Aa (1)
F\
min t¢ v 1 o(t)>0
L w(t) { 1, o(t) <0
LUND
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Conditions: H(tf) =0 = pau*(ty) = —no



Example — minimum time control

ty
min / dt
0

H = (p1(t —ty) + p2)u+ng + Ao

pou”(ty) = —no
o(t) = (pa(t —ty) + p2)
st. T=wu, x(0)=mxzg, £(0)=1vg e
u € [—1,1] 1 w1 <0, us >0
w(t;) =0, @(t;) =0 \

w1 >0, o >0

""""" 1
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Example — minimum time control

H = (p1(t —tf) + p2)u+ng + Ao

ty
min/ dt pou(ty) = —ng ) 0 > 0
0 . —1, o
7(t) = (r (¢ — t) + o) wo={ " 002
st. Z=wu, x(0)=u1z0, £(0)=vo S mznej;;l:rc:;j? mereasing funchon
U & [_1) 1] = A +-L A ot 'ﬁyZ: most one

ZC(tf) = O, £C(tf) =0 iy, / \ 5w,‘+d|/zj

. 1 »
L1 T
\ Tm eetovi €3 V' /
= dX - X2 o wdx = X dX \ OLSSQW
JX; T 2 /

X - R
X = 2 < &> 0O u=—1r
T TR ( ) 2 LUND
=z 2 l = /2 Xl == UNIVERSITY
Xy = X' 4ec , ¢zo (et l) 2 2



Example — minimum time control s = ~.u

H = (p1(t —tf) + p2)u+ng + Ao

ty
0 ) 1,
=ity rm  ww={ " g
st. #=u, x(0)=zy, #(0)= vy Ao () (Z:n+£oez seen 217  feed back.
ue|—1,1
| | ; c ult) =-s59n [xi 9y 54n(X;) Xzzﬁ
z(t;) =0, @(ty) =0 mlz—%a:%—l—c 2

. T1 = X2
r=u= < .
o = U

(¥) Intorsestion of {Xl BN

A(Z - \‘_><°>
2! - A X = L = +c
Timé B —=> /'\ 1 U 2 — _
(VA —Ug)="Ftpg — th~= Xy C = UNIVERSITY

Tim< A —2 0O (Up —UVA) =) -toA 5 +toh=8%, ”‘>—~I;=2T;\h




« Optimal control provides with trajectories that can be then used as references to a
controller

* We mainly address input constraints, but there might be state constraints e.qg.
obstacles that need to be avoided

A popular approach is Model Predictive Control
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From Continuous to Discrete Time

r = Ax + Bu 1 1 [ -
y=Cxz J:§:v (tf)P(tf)x(tf)+§/to r” Qr+ u” Rudt
l Sampling time T
__ AT
Ag=e The integral
By=(Aq—DNA'B l becomes sum
Euler Approximation
A;=1+TA
By=TB ; '
J =" (M)P(M)x(M) + Y «"())Qu(i) + u” (i) Ru(i)
2(t+ 1) = Aga(t) + Bau(t) !
y(t) = Cult)
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Receding horizon control — basic idea

M prﬁo{ Yediev \/UM’" oy
»
N . Constrod Hqi-viwlq

+ reference r

O

R
L]

past output y ! 1
| o

i predicted output » E

e —— |
| ] : control input #
‘ ‘ ?
-1 t+1 - (+N t+M
A

1. At time instant ¢ predict the response of the system over a prediction
horizon M using inputs over a control horizon N.

2. Optimize a specified objective or cost function with respect to a control
sequence u(t+j), j=0,1,...,N —1.

3. Apply the first control u(¢) and start over from 1 at next sample. TuVERSITY



Unroll the cost

Minimize a cost function, V, of inputs and predicted outputs.

u(t+ N —1)] y(t+ M|t)
V =V(U,Y), U, = : , Y, = 5
() G+ 1)
V' often quadratic
V(U Y:) =Y Q,Y: + U QuU; (1)

— linear controller
u(t) = —Lx(t|t)
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Optimization problem

t+M—1
J(t) =y (t+ M)P(t+ M)y(t+ M) + Z vt (1) Qy(i) + u' (i) Ru(i) dt
t+1

Minimize a cost function, V, of inputs and predicted outputs.

u(t+ N —1) y(t+ M|t)]
V:V(Utan)a Ut — 3 }/t —

u(t) Yyt +1)t) |

V' often quadratic

V(U V) =Y, QY + U QuUs

— linear controller )

LUND
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u(t) = —LE(t[t)



Prediction

Discrete-time model

z(t+1) = Az(t) + Bu(t) + Byvi(?)
y(t) = Cx(t) + va(t)

t=0,1,...

Predictor (v unknown)

T(t+k+1|t) = AZ(t + k|t) + Bu(t + k)
y(t+ klt) = Cx(t + k|t)

S
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Receding horizon control

 Z(t[t) is predicted by a standard Kalman filter, using outputs up to time ¢,
and inputs up to time ¢ — 1.

 Future predicted outputs are given by

u(t+ M — 1)
Tyt + M|t)] [CAM] ‘CB CAB CA’B ;
5 | |aep+| 0 OB CAB 4 N - 1)
g+t | CcA ' ' | ' ;
u(t)

Y: = D,x(t|t) + D, Uy

£ ¢
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Receding horizon control

+ Flexible method

x Many types of models for prediction:
« state space, input—output, step response, nonlinear models

* MIMO
x Time delays

+ Can include constraints on input signal and states
+ Can include future reference and disturbance information
— On-line optimization needed

— Stability (and performance) analysis can be complicated
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Receding horizon control

Limitations on control signals, states and outputs,
u(t)] < Cu i) < Cop y(0)] < Oy,

leads to linear programming or quadratic optimization.
Efficient optimization software exists.
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Design of MPC

Model

M (look on settling time)

N as long as computational time allows

If N < M —1assumptionon u(t+N),...,u(t+ M —1) needed (e.g., = 0,
=u(t+N —1).)

Q,, Q. (trade-offs between control effort and performance)

Cy, C, constraints often given

Sampling time

£
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