

FRNT05 Nonlinear Control Systems and Servo Systems Lecture 12: From optimal control to nonlinear control

YIANNIS KARAYIANNIDIS, ASSOCIATE PROFESSOR AUTOMATIC CONTROL, FACULTY OF ENGINEERING.

www.yiannis.info
yiannis@control.lth.se

Outline

Linear	Quadratic Control
Time	Optimal Control
Model	Predictive Contro

-

Maximum principle – no final time constraint

$$\begin{array}{l} \textbf{Optimization} \\ \textbf{Problem (OP2)} \end{array} \begin{array}{l} \textbf{Where} \\ x(t) \in R^n, \quad u(t) \in U \subseteq R^m, \quad 0 \leq t \leq t_f \\ \dot{x}(t) = f(x(t), u(t)), \quad x(0) = x_0 \\ \psi(t_f, x(t_f)) = 0 \end{array}$$

Assume that OP2 has a solution. Then there is a vector function $\lambda(t)$, a number $n_0 \geq 0$ and a vector $\mu \in R^r$ such that $[n_0 \ \mu^T] \neq 0$ and $H(x, u, \lambda) = n_0 L(x, u) + \lambda^T(t) f(x, u)$

$$\begin{split} & \min_{u \in U} H(x^*(t), u, \lambda(t), n_0) = H(x^*(t), u^*(t), \lambda(t), n_0), \quad 0 \le t \le t_f, \\ & \text{where } \lambda(t) \text{ solves the adjoint equation} \quad \begin{cases} \dot{\lambda}(t) &= -H_x^T(x^*(t), u^*(t), \lambda(t), n_0) \\ \lambda(t_f) &= n_0 \phi_x^T(t_f, x^*(t_f)) + \psi_x^T(t_f, x^*(t_f)) \mu \end{cases} \end{split}$$

If the end time t_f is free, then $H(x^*(t_f), u^*(t_f), \lambda(t_f), n_0) = 0$. If the end time t_f is given: $H(x^{*}(t_{f}), u^{*}(t_{f}), \lambda(t_{f}), n_{0}) = -n_{0}\phi_{t}(t_{f}, x^{*}(t_{f})) - \mu^{T}\psi_{t}(t_{f}, x^{*}(t_{f})).$

Optimal control (Linear Control Systems with quadratic running cost)

e

Performance, cost function Free-final-state but in the perfromance function

System dynamics (dynamic constraint)

Hamiltonian

Hamiltonian minimization with respect to u

State equation

Co-state, adjoint equation

$$J(u) = \frac{1}{2}x^{T}(t_{f})P(t_{f})x(t_{f}) + \frac{1}{2}\int_{0}^{t_{f}}x^{T}Qx + u^{T}Ru\,dt$$

$$\dot{x} = f(x, u), \, x(t_0) = x_0$$

$$H(x, u, \lambda) = \frac{1}{2} (x^T Q x + u^T R u) + \lambda^T (A x + B u) \equiv u^T A_I u$$

$$\frac{\partial H(u)}{\partial u} = u^T R + \lambda^T B \rightarrow u = -R^{-1} B^T + \lambda^T U + b^T u$$

$$\frac{[\dot{x}]}{[\dot{\lambda}]} = \begin{bmatrix} A & -BR^{-1} B^T \\ -Q & -A^T \end{bmatrix} \begin{bmatrix} x \\ \lambda \end{bmatrix} x(t_0) = x_0$$

$$\lambda(t_f) = P(t_f) x(t_f)$$

$$\lambda(t) = P(t)x(t)$$

 $\begin{cases} \dot{x}(t) = (A(t) - BR^{-1}B^T P(t))x(t), & x(0) \text{ given} \\ \dot{P}(t) = P(t)A + A^T P(t) + P(t)BR^{-1}B^T(t)P(t) - Q \end{cases}$

 $P(t_f)$ known by the cost function

Optimal control (Linear Control Systems with quadratic running cost and fixed final state)

Performance, cost function

Constraint on System dynamics (dynamic constraint)

Hamiltonian

Hamiltonian minimization with respect to u

State equation $\hat{x} = -a \times + f$ Co-state, adjoint equation

3. use the constraint to find

 $X(t_{r}) = r$

$$J(u) = \frac{1}{2} \int_0^{t_f} u^T R u \, dt$$

$$\psi(x(t_f)) = 0 \to x(t_f) = r$$

$$\dot{x} = f(x, u), \, x(t_0) = x_0$$

$$H(x, u, \lambda) = \frac{1}{2} u^T R u + \lambda^T (A x + B u)$$

$$\frac{\partial H(u)}{\partial u} = u^T R + \lambda^T B \to u = -R^{-1}B^T \lambda$$

 $\frac{-BR^{-1}B^T}{-A^T}$

Steps: 1. solve backwards the second differential equation
$$\lambda(t) \stackrel{\bullet}{=} e^{A^T(t_f - t)}\lambda(t_f)$$

 $\lambda(t_f)$

2. substitute the solution in the system dynamics and solve the initial value problem

m Luni Universit

 $x(t_0) = x_0$ $\lambda(t_f) ??$

Example – moving to the origin in minimum time

Hamiltonian: $H = n_0 + \lambda_1 x_2 + \lambda_2 u$

Adjoint equation:

t.
$$\ddot{x} = u$$
, $x(0) = x_0$, $\dot{x}(0) = v_0$
 $u \in [-1, 1]$
 $x(t_f) = 0$, $\dot{x}(t_f) = 0$
 $\begin{vmatrix} \dot{\lambda}_1 \\ \dot{\lambda}_2 \end{vmatrix} = -H_x^T = \begin{bmatrix} -\frac{\partial H}{\partial x_1} \\ -\frac{\partial H}{\partial x_2} \end{bmatrix} = \begin{bmatrix} 0 \\ -\lambda_1 \end{bmatrix}$
 $\begin{cases} \lambda_1(t_f) = \mu_1 \\ \lambda_2(t_f) = \mu_2 \end{cases}$

$$\Rightarrow \begin{cases} \lambda_1(t) = \mu_1 \\ \lambda_2(t) = \mu_1(t - t_f) + \mu_2 \end{cases}$$

$$\ddot{x} = u \Rightarrow \begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = u \end{cases}$$

$$min t_f$$

 $\min_{\mathbf{A}} \int_0^{t_f} dt$

At optimality:
$$\min_{u} H(u) \equiv \underbrace{(\mu_1(t-t_f) + \mu_2)}_{\sigma(t) = \lambda_2(t)} u + n_0 + \lambda_1 x_2$$

$$u^*(t) = \begin{cases} -1, & \sigma(t) > 0\\ 1, & \sigma(t) < 0 \end{cases}$$

Conditions: $H(t_f) = 0 \Rightarrow \mu_2 u^*(t_f) = -n_0$

Example – minimum time control

Example – minimum time control

Example – minimum time control See Ex. 7, 11

- Optimal control provides with trajectories that can be then used as references to a controller
- We mainly address input constraints, but there might be state constraints e.g. obstacles that need to be avoided
- A popular approach is Model Predictive Control

From Continuous to Discrete Time

$$\begin{aligned} \dot{x} &= Ax + Bu \\ y &= Cx \\ \end{bmatrix} & J = \frac{1}{2}x^{T}(t_{f})P(t_{f})x(t_{f}) + \frac{1}{2}\int_{t_{0}}^{t_{f}}x^{T}Qx + u^{T}Ru\,dt \\ \end{bmatrix} \\ \end{bmatrix} \\ \begin{aligned} & \mathbf{Sampling time T} \\ & A_{d} &= e^{AT} \\ & B_{d} &= (A_{d} - I)A^{-1}B \\ & \mathbf{Euler Approximation} \\ & A_{d} &= I + TA \\ & B_{d} &= TB \\ & J &= x^{T}(M)P(M)x(M) + \sum_{1}^{M-1}x^{T}(i)Qx(i) + u^{T}(i)Ru(i) \\ x(t+1) &= A_{d}x(t) + B_{d}u(t) \\ & y(t) &= Cx(t) \\ \end{aligned}$$

Receding horizon control – basic idea

- 1. At time instant t predict the response of the system over a prediction horizon M using inputs over a control horizon N.
- 2. Optimize a specified objective or cost function with respect to a control sequence u(t + j), j = 0, 1, ..., N 1.
- 3. Apply the first control u(t) and start over from 1 at next sample.

Unroll the cost

Minimize a cost function, V, of inputs and predicted outputs.

$$V = V(U_t, Y_t), \qquad U_t = \begin{bmatrix} u(t+N-1) \\ \vdots \\ u(t) \end{bmatrix}, \qquad Y_t = \begin{bmatrix} \widehat{y}(t+M|t) \\ \vdots \\ \widehat{y}(t+1|t) \end{bmatrix}$$

V often quadratic

$$V(U_t, Y_t) = Y_t^T Q_y Y_t + U_t^T Q_u U_t$$
(1)

 \implies linear controller

$$u(t) = -L\widehat{x}(t|t)$$

Optimization problem

$$J(t) = y^{T}(t+M)P(t+M)y(t+M) + \sum_{t+1}^{t+M-1} y^{T}(i)Qy(i) + u^{T}(i)Ru(i) dt$$

Minimize a cost function, V, of inputs and predicted outputs.

$$V = V(U_t, Y_t), \qquad U_t = \begin{bmatrix} u(t+N-1) \\ \vdots \\ u(t) \end{bmatrix}, \qquad Y_t = \begin{bmatrix} \widehat{y}(t+M|t) \\ \vdots \\ \widehat{y}(t+1|t) \end{bmatrix}$$

V often quadratic

$$V(U_t, Y_t) = Y_t^T Q_y Y_t + U_t^T Q_u U_t$$

 \implies linear controller

$$u(t) = -L\widehat{x}(t|t)$$

Prediction

Discrete-time model

$$\begin{aligned} x(t+1) &= Ax(t) + Bu(t) + B_v v_1(t) \\ y(t) &= Cx(t) + v_2(t) \end{aligned} \qquad t = 0, 1, \dots \end{aligned}$$

Predictor (v unknown)

$$\widehat{x}(t+k+1|t) = A\widehat{x}(t+k|t) + Bu(t+k)$$
$$\widehat{y}(t+k|t) = C\widehat{x}(t+k|t)$$

Receding horizon control

- $\hat{x}(t|t)$ is predicted by a standard Kalman filter, using outputs up to time t, and inputs up to time t 1.
- Future predicted outputs are given by

$$\begin{bmatrix} \widehat{y}(t+M|t) \\ \vdots \\ \widehat{y}(t+1|t) \end{bmatrix} = \begin{bmatrix} CA^M \\ \vdots \\ CA \end{bmatrix} \widehat{x}(t|t) + \begin{bmatrix} CB & CAB & CA^2B & \dots \\ 0 & CB & CAB & \dots \\ \vdots & \ddots & \ddots & \vdots \end{bmatrix} \begin{bmatrix} u(t+M-1) \\ \vdots \\ u(t+N-1) \\ \vdots \\ u(t) \end{bmatrix}$$

 $Y_t = D_x \widehat{x}(t|t) + D_u U_t$

Receding horizon control

- + Flexible method
 - $\star\,$ Many types of models for prediction:
 - * state space, input-output, step response, nonlinear models
 - \star MIMO
 - $\star\,$ Time delays
- + Can include constraints on input signal and states
- + Can include future reference and disturbance information
- On-line optimization needed
- Stability (and performance) analysis can be complicated

Receding horizon control

Limitations on control signals, states and outputs,

 $|u(t)| \le C_u \quad |x_i(t)| \le C_{x_i} \quad |y(t)| \le C_y,$

leads to linear programming or quadratic optimization. Efficient optimization software exists.

Design of MPC

- Model
- M (look on settling time)
- ${\cal N}$ as long as computational time allows
- If N < M-1 assumption on $u(t+N), \ldots, u(t+M-1)$ needed (e.g., = 0, = u(t+N-1).)
- Q_y , Q_u (trade-offs between control effort and performance)
- C_y , C_u constraints often given
- Sampling time

