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Stability of an equilibrium point of a nonlinear
system — Lyapunov’s Direct Method
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Lyapunov stability analysis - comments

* The conditions of the Theorem are only sufficient

If conditions are not satisfied:
It does not mean that the equilibrium is unstable.

It means that the chosen Lyapunov function does not allow to make a conclusion

It requires further investigation
v" try to find another Lyapunov function
v Use other Theorems @
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Outline

 Softer conditions

« Convergence rate (exponential stability)
* Invariant Sets

* Region of attraction

« Asymptotic stability of invariant sets

 Lyapunov stability for linear systems
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Asymptotic Stability (softer condition on V)

Barbashin, Krasovskii Theorem (LaSalle Invariance Principle is more general and proved afterwards, we
can call this LaSalle Theorem)

Theorem: Let 2 = f(x) and f(z*) = 0. If there exists a C! function V : " — R
such that

e et (1) V(z)>0forallz # 2* and V(z*) =0

Hhis

o Solle (2) V(z) = o0as |z + o0 i Find the SopLuﬁ'om Correspor
' . mdhne o V= O

Thesrent | @) Viz) <oforalls | e V2O e

g}low

anol we (4) No solution of & = f(x) can stay identically in £ = {a:' eRM:V = 0} et
| thpt corrCply
use it except of z = z* g

do =X
uh et then z* is globally asymptotically stable.
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Example (revisited)

Viz, ) = (ij:QIMM >0, V(0,0)=0

3(*) )_> ineti ->P0_/—€MJH°U en elij
V(z,2) = —b|z|® gives E = {(x, %) : © = 0}.

mi = —bx|t| — koxr — k1o

.V < 0 (it is not negative definite because it can be zero for all z)

m, Ne gockive semi gret e
| g - V= 0:>x_0:>$0kx(1—|—k1 )=0=12,=0
!_/(m{ D Vzo implies x=o
i 5 D ,H@\,W» oAt g we 3”* Barbashin, Krasovskii or LaSalle
] | vzo. |
L ﬂnal sk s ar nY *) we geod XE= O

Global asymptotic stability of (z,z) = (0,0)
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Exponential stability

Theorem: Let z = f(x) and f(z*) = 0. If there exists a C! function V' : R — R

and numbers a, €, ¢ > 0 such that 15~
Mor & (“ z*) =0 \
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Invariants Sets

Invariant set ) for the system & = f(x).

Examples: - G’cru{,bfbm‘utm po}n%s

—K/l'n/ll"f Oj cdes

n
whold e KJQ/

— 4he

® =/
omeee 3

UNIVERSITY



Lyapunov sets as Invariant sets

sSee e xt ‘S/UO(QS

» Notice that the condition V' < 0 implies that if a trajectory ,  exptamgtion 29
crosses a Lyapunov surface V(z) = ~ it can never come why 2 )5 met invory et

-

out again. Lo = Fw,) £44 )

o —t
Why? Vo= V(1) <V(@0)<r (g

Vixe)) < Y at)e Qo ={zeR: V(z) <y}, Vt>0

. If V(z) € C' and satisfies V' (z) < 0 along the solutions of
© = f(x), then the set:

Qy={zeR: V(z) <y} CQ

IS an invariant set. LUND
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Region of Attraction

Local asymptotic stability theorems guarantee existence of a possibly small
neighborhood of the equilibrium point where such an attraction takes place

The region of attraction to the equilibrium point x* of the system & = f(x)
Is defined by R4 = {x(0) € Q: x(t) — 2> as t — oo}.

If V(z) € C' and satisfies V(z) < 0 along the solutions of
t = f(x), then the set:

Qy={zeR: V(z) <~} CQ

IS an invariant set and can be used as an estimate of re-
gion of attraction.

The estimate of the region of attraction based on Lyapunov

N

level sets is conservative €1, C R 4 z(0)
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DIscussion

Why we cannot claim that €2 is an estimate of re.gion of attraction?
T O Q={zeR”: V <0}

Van der Pol equation in reverse time

.5531 = —XI2

1 =x1 — (1 — 5()%)332

L2
o

= 2 (2% + 22) positive definite for all

V
V = —(1 — 22)22 negative semidefinite for |z2| < 1

The conditions for applying LaSalle Theorem for asymptotic stability are satisfied in Q@ = {|z1| <
1, |x2| < L} L arbitrarily large constant.

Thus, the origin is local asymptotically stable. However €2 is not invariant. Starting within €
the trajectory can move to Lyapunov surfaces V() = ~ with smaller vs but there is no guarantee
that the trajectory will remain in Q. See the blue trajectories. Once leaving ©, V could be positive
and the trajectory may move to Lyapunov surfaces with higher +. Observe that one of the blue
trajectories is a limit cycle. Charecterize its stability.
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Example 1

=0 __({ 712 = C
Example: ! PN B, S =7 2 Yy,
ple-. 2 Hzz 2 % T g 5
By = 2% 4 oy 1 5 1,2 > ()% = 2c
1 (1—|—CL'%)2 2 ¢ V:§1+;2—|—§$2>Oand‘/(0):0 74 hos Sodudion
Ty = _(21(331-5)5622) 1 e A G*_)
+x7 _ _ 2
-V = %1+ > + 223 is radially unbounded for V (z) < 1
. . 2
o |V — _T1T1 o — 1 _
V = (H_lx%l)Q + oo = 6(1+:;%)4 2(1—|— 7y2 < 0, V(O) =0
A9 = O
The owys X270
inter seds  wih
LYyFpuryoy . -
wit=c= ¢ Local asymptotic stability
l =c
v £3) » Estimate of region of attraction el
EPa ' ' Juker S e V() <1
2 15 1 05 0 05 1 15 2 7 /2 L_‘U ND
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Example 2

1Ec{. Point

2 5 =£<)V DV-:( [X,/]
—_ [ ] p— m_]- — 6
B = —2, 2(551‘09 g —o V="4+2;>0and V(0) =0 Vx5 Ox, 5

X =0 ; = XI;({ ’/’»‘ZXZ,XL
. — 5 2 i
V =3 +; radially unbounded - _ 5/ _ 9 x4 2x,f
ToA e V =iy + 20oiig = -+ = 223 (23
« V< 0for |z <1

/_‘\ °V50¢x250:$:f($)x150f0r
> VED = X=z=o0o> %20
L1
\_./ § Lasale .o
______________ V) < ¢

Ty = —1 » Local asymptotic stability

 Estimate of region of attraction LUND
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Example 3

Van der Pol equation in reverse time

d31 = —XI2

1 =T — (1 — 33%)562

V = 1 (2% 4 23) positive definite for all z

V = —(1 — 22)22 negative semidefinite for |z1| < 1

The conditions for applying LaSalle Theorem for asymptotic stability are satisfied in Q = {|z1| <
1, |z2| < L} L arbitrarily large constant. Thus, the origin is local asymptotically stable.

 Derive an estimate of the region of attraction.
« Which is the actual region of attraction?
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LaSalle’s invariance principle

LaSalle’s invariant set Theorem
« Let Q C R™ compact invariant set for z = f(x).

 Let V: Q — R be a C* function such that V(z) < 0, Vz € Q.
« E:={zeQ: V(z)=0}, M :=largest invariant subset of E

Vx(0) € Q, x(t) approaches M ast — +oc

Note that 2 can be defined indepednent of V. In many cases, it is easier
to construct 2 basedon Vas Q=Q, =V (zx) <.

E
Q ‘\E M / V 7“”‘\‘;5 \:{;
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Example — Limit Cycle

Show that M = {x : ||z|| = 1} is a asymptotically stable limit cycle for
(almost globally, except for startingy\ai\kf 0)

2 _ .2 2
|2 = o2 + a3.

. B 2 2
1= 22 xl(xl T T 1) The system has one equilibrium at the origin and one limit cycle. Thus the set of trajectories

To = —X1 — _1;2(39% + 5(;% — 1) that are.invariant for_the system are in Ilhe set2E = {x :2||acH = 0 or ||z]| = 1}. We can actually
show this by calculating the derivative — (||x[[*) = —||=[[=(||=[]* — 1):
* If ||x(0)|| = 0 or ||z(0)|| = 1 the derivative is zero %(Hx(O)H?)and thus the norm of x will
not change.

 ||z(t)|| = 0 corresponds to the equilibrium point at the origin ©1 = &2 while ||x(¢)|| = 1

corresponds to g; _ gile defining a limit cycle moving clockwise
S - Remark: From the derivative - (||||?) = —2||2|?(||=||2—1) and if we consider a Lyapunov-
Ny like function Vo = % we can see that Q' = {||z|| < 1} cannot be proved invariant since

V0>0.

- | LUND
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Example — Limit Cycle

T = Ty — gjl(g;% un x% —1) » Take the Lyapunov-like V' = .(m% + 3 - 1)2, that is positive but not positive definite. It
, 5 5 encodes some dinstance metric from the limit cycle 2% + 22 = 1.
Ty = —x1 — xo(x] + 25 — 1)

- Differentiating V along the system trajectories, we get: V = —4(z? 4+22)(z? +22—1)? < 0.

« Choose 2 = {z € 2 : 0 < ||z|| < 1} to exclude ||z|| = 0. Note that € is invariant as it
is subset of 2; = {V < 1}. Check this. By excluding z = 0, the maximum invariant set is
M={xeQ:|z|] =1}

LaSalle’s Invariance Principle

-15 -1 05 0 - 05 1 "o ’ T M as t - aImOSt glOba”y LUND
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Example — Set of equilibriums

(} CoY\\S"l’OL‘V\/‘C'
Y/ At equilibrium

1 = A\T1 — T1T9 .
P _(IZU2 $1:)\$1—CIZ1$2:0 0 ER
2 — 1 . xr1 = To €
By = az? = 0 ) 1 =0, 72
C conp"o’wl’ll'
ToA « V =12+ 3 (z2 — )% > 0, radially unbounded

e V=—(c=Nz?<0fore> A\
=N : o

LaSalle’s Invariance Theorem

&JJ L1 e E={zeR:V(z)=0=M:={zecR: z; =0}

e xr > Mast — oo
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Lyapunov analysis for Linear systems

Linear system: i = Ax o Ap — [—1 4 ] [:13‘1]
0 -3 i)

To check stability:
1. Find the eigenvalues of 4, ;. Eigenvalues of A : {~1, -3}

2. Verify that they are negative. = (global) asymptotic stability.

Try to prove stability with:
Nz L - A2, 2
V(e) Sllal® =p"e =5 ot
v :xlf, + XQ,XZ

L
=) EHAXX, T3,

god (M) =32 =~

& lev : gj
] [)?f} 7 7 [, X Q
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Lyapunov analysis for Linear systems

Linear system: & = Ax

To check stability:
1. Find the eigenvalues of A, \;.

2. Verify that they are negative.

Try to prove stability with: p = [ P Pz
/ Pin Pra

V(z) = ||z||> = 2¥ Px  Parametric Lyapunov function in a quadratic form

V(z) = 2T Pi+ i7" Px =27 (PA+ ATP)x  Choose parameters for P such that —V/(z) p.d.

Qs <0
L egq. 1.9, >0 LUND
J C> Pz
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Lyapunov analysis for Linear systems

1. LetQ = I, | {_1 4] H

2. Solve P from the Lyapunov equation

AP+ PA=—1

—1 0| [p11 P12 L P P2 -1 4| _ —2p11 —4p12 +4pun| _ |-1 0
4 =3| |p12 P22 pi2 p2| | 0 =3 —4p12 +4p11 8p12 — 6pa2 0 -1
Solving for P11, P12 and D22 giVGS

2p11 = —1

pi1 piz|  |1/2 1/2
—4p12 +4p11 =0 - [Plz Pzzl N [1/2 5/6 =Y

8p12 — Op22 = —1

UNIVERSITY



Lyapunov analysis for Linear systems

Linear system: & = Ax
To check stability:

1. Find the eigenvalues of A, \;.

2. Verify that they are negative.

or

1. Choose an arbitrary symmetric, positive definite matrix Q. Lyapunov function: V (z) = 2* Px
2. Find P that satisfies Lyapunov equation V(z) =a2TPi+ it Pr = —2TQu

PA+ AP =-Q

3/< \%
Oy W |
=W 2y, )2
NI =g
RN,
<o5T ”;i«\\
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and verify that it is positive definite.



