

FRNT05 Nonlinear Control Systems and Servo Systems

Lecture 6: Lyapunov stability II

YIANNIS KARAYIANNIDIS, ASSOCIATE PROFESSOR AUTOMATIC CONTROL, FACULTY OF ENGINEERING.

www.yiannis.info

Stability of an equilibrium point of a nonlinear system – Lyapunov's Direct Method

unboundedness is not satisfied

Lyapunov stability analysis - comments

The conditions of the Theorem are only sufficient

If conditions are not satisfied:

It does not mean that the equilibrium is unstable.

It means that the chosen Lyapunov function does not allow to make a conclusion

It requires further investigation

- ✓ try to find another Lyapunov function
- ✓ Use other Theorems ②

Outline

- Softer conditions
- Convergence rate (exponential stability)
- Invariant Sets
- Region of attraction
- Asymptotic stability of invariant sets
- Lyapunov stability for linear systems

Asymptotic Stability (softer condition on V)

Barbashin, Krasovskii Theorem (LaSalle Invariance Principle is more general and proved afterwards, we can call this LaSalle Theorem)

Theorem: Let $\dot{x} = f(x)$ and $f(x^*) = 0$. If there exists a \mathcal{C}^1 function $V: \Re^n \to \Re$ such that

(1)
$$V(x) > 0$$
 for all $x \neq x^*$ and $V(x^*) = 0$

(2)
$$V(x) \to \infty$$
 as $||x|| \to \infty$

Theorem (3)
$$\dot{V}(x) \leq 0$$
 for all x

1. Find the solution corresponding to
$$V=0$$
2. Substitute in $\dot{x}=f(x)$

(4) No solution of
$$\dot{x}=f(x)$$
 can stay identically in $E=\left\{x\in\Re^n:\dot{V}=0\right\}$ and show except of $x=x^\star$

$$=\left\{x\in\Re^n:\dot{V}=0
ight\}$$
 and show $X=X$

then x^* is globally **asymptotically** stable. when

Example (revisited)

$$m\ddot{x} = -b\dot{x}|\dot{x}| - k_0x - k_1x^{3(3)}$$

$$V(x,\dot{x}) = \underbrace{(2m\dot{x}^2)} + \underbrace{(2k_0x^2 + k_1x^4)/4} > 0, \quad V(0,0) = 0$$
 in every $\dot{V}(x,\dot{x}) = -b|\dot{x}|^3$ gives $E = \{(x,\dot{x}): \dot{x} = 0\}.$

- $\dot{V} \leq 0$ (it is not negative definite because it can be zero for all x)
- $\dot{V} \equiv 0 \Rightarrow \dot{x} \equiv 0 \Longrightarrow^{\ddot{x}=0} k_0 x (1 + \frac{k_1}{k_0} x^2) \equiv 0 \Rightarrow x_1 = 0$

Will we get Barbashin, Krasovski $\dot{x} \equiv 0$.

And substituing in (*) we get $\times \equiv 0$ Global asymptotic stability of $(x, \dot{x}) = (0, 0)$

Barbashin, Krasovskii or LaSalle

Exponential stability

Theorem: Let $\dot{x} = f(x)$ and $f(x^*) = 0$. If there exists a \mathcal{C}^1 function $V: \Re^n \to \Re$

and numbers $\alpha, \epsilon, c > 0$ such that

(1)
$$V(x^*) = 0$$

Strict condition (2)
$$V(x) > \epsilon ||x - x^*||^c > 0$$
 for all $x \neq x^*$

than $P(x) = (3) \dot{V}(x) \le -\alpha V(x)$ for all x

(4)
$$V(x) \to \infty$$
 as $||x|| \to \infty$

then x^* is globally **exponentially** stable.

radially unbounded

From (3)

From (3)

$$V(x) \leq V(0) e^{-\alpha t} - \frac{\alpha}{c}$$

From (2)
$$\in ||x-x^*||^c \leq V(0) e^{-\alpha t}$$

$$= ||x-x^*|| \leq \left(\frac{V(0)}{c}\right)^{\frac{1}{c}} e^{-\frac{\alpha}{c}t}$$

Lund

11x-x1

Invariants Sets

Invariant set M for the system $\dot{x} = f(x)$.

$$x(0) \in M \Longrightarrow x(t) \in M \ \forall t \ge 0.$$

Lyapunov sets as invariant sets

• Notice that the condition $\dot{V} \leq 0$ implies that if a trajectory crosses a Lyapunov surface $V(x) = \gamma$ it can never come out again.

• If $V(x) \in \mathcal{C}^1$ and satisfies $\dot{V}(x) \leq 0$ along the solutions of $\dot{x} = f(x)$, then the set:

$$\Omega_{\gamma} = \{x \in \Re: V(x) \le \gamma\} \subset \Omega$$

is an invariant set.

Region of Attraction

- Local asymptotic stability theorems guarantee existence of a possibly small neighborhood of the equilibrium point where such an attraction takes place
- The region of attraction to the equilibrium point x^* of the system $\dot{x} = f(x)$ is defined by $\mathcal{R}_A = \{x(0) \in \Omega : x(t) \to x^* \text{ as } t \to \infty\}.$
- If $V(x) \in \mathcal{C}^1$ and satisfies $\dot{V}(x) \leq 0$ along the solutions of $\dot{x} = f(x)$, then the set:

$$\Omega_{\gamma} = \{ x \in \Re : \ V(x) \le \gamma \} \subset \Omega$$

is an invariant set and can be used as an estimate of region of attraction.

• The estimate of the region of attraction based on Lyapunov level sets is conservative $\Omega_{\gamma} \subset \mathcal{R}_{\mathcal{A}}$

Discussion

Why we cannot claim that Ω is an estimate of region of attraction?

$$\Omega = \{ x \in \Re^n : \dot{V} \le 0 \}$$

Van der Pol equation in reverse time

$$\dot{x}_1 = -x_2$$

$$\dot{x}_1 = x_1 - (1 - x_1^2)x_2$$

$$V = \frac{1}{2}(x_1^2 + x_2^2)$$
 positive definite for all x

$$\dot{V} = -(1-x_1^2)x_2^2$$
 negative semidefinite for $|x_2| < 1$

The conditions for applying LaSalle Theorem for asymptotic stability are satisfied in $\Omega = \{|x_1| < 1, |x_2| < L\}$ L arbitrarily large constant.

Thus, the origin is local asymptotically stable. However Ω is not invariant. Starting within Ω the trajectory can move to Lyapunov surfaces $V(x)=\gamma$ with smaller γ s but there is no guarantee that the trajectory will remain in Ω . See the blue trajectories. Once leaving Ω , \dot{V} could be positive and the trajectory may move to Lyapunov surfaces with higher γ . Observe that one of the blue trajectories is a limit cycle. Charecterize its stability.

Example 1

Example:

$$\begin{cases} \dot{x}_1 = \frac{-6x_1}{(1+x_1^2)^2} + 2x_2\\ \dot{x}_2 = \frac{-2(x_1+x_2)}{(1+x_1^2)^2} \end{cases}$$

$$\int_{\frac{1}{2}}^{\chi_{2}=0} \frac{\chi_{1}^{2}}{|+\chi_{1}^{2}|} + \frac{1}{2} \chi_{2}^{2} = C \implies \int_{\frac{1}{2}}^{\frac{1}{2}} \frac{|-\chi_{1}^{2}|}{|+\chi_{1}^{2}|} = C$$

$$V = \frac{1}{2} \frac{x_1^2}{1+x_1^2} + \frac{1}{2} x_2^2 > 0 \text{ and } V(0) = 0$$

$$\text{when} \quad c < \frac{l}{2} \text{ (1-2c)} \quad x_l^2 = 2c$$

$$when < < \frac{1}{2} (*)$$
 • $V = \frac{1}{2} \frac{x_1^2}{1+x_1^2} + \frac{1}{2} x_2^2$ is radially unbounded for $V(x) < 1$

•
$$\dot{V} = \frac{x_1 \dot{x}_1}{(1+x_1^2)^2} + x_2 \dot{x}_2 = -6 \frac{x_1^2}{(1+x_1^2)^4} - 2 \frac{x_2^2}{(1+x_1^2)^2} < 0, \ \dot{V}(0) = 0$$

The
$$\alpha x_1 = 0$$

The $\alpha x_1 = 0$

intersects with α

Lyapunor

Surface • Local asymptotic stability

Estimate of region of attraction
$$\Omega_{1/2} = x \in \Re^2 : V(x) < 1/2$$

Example 2

$$\begin{cases} \dot{x}_1 = -x_2 & \begin{cases} \dot{x}_1 = 0 \\ \dot{x}_2 = \frac{x_1}{2} + x_2^3 - x_2 \end{cases} & \begin{cases} \dot{x}_2 = 0 \\ \dot{x}_2 = 0 \end{cases} \end{cases}$$

•
$$V = \frac{x_1^2}{2} + x_2^2 > 0$$
 and $V(0) = 0$

•
$$V = \frac{x_1^2}{2} + x_2^2$$
 radially unbounded

$$\dot{V} = x_1 \dot{x}_1 + 2x_2 \dot{x}_2 = \dots = 2x_2^2 (x_2^2 - 1)$$

•
$$\dot{V} \leq 0$$
 for $|x_2| < 1$

•
$$\dot{V}\equiv 0 \Rightarrow x_2\equiv 0 \Longrightarrow^{\dot{x}=f(x)} x_1\equiv 0 \text{ for } x_2|<1$$

$$\sqrt{\exists \circ \Rightarrow x_2 \equiv \circ \Rightarrow x_2 \equiv \circ \Rightarrow}$$
LaSalle

- Local asymptotic stability
- Estimate of region of attraction $\Omega_1 = x \in \Re^2 : V(x) < 1$

Example 3

Van der Pol equation in reverse time

$$\dot{x}_1 = -x_2$$

$$\dot{x}_1 = x_1 - (1 - x_1^2)x_2$$

$$V=rac{1}{2}(x_1^2+x_2^2)$$
 positive definite for all x

$$\dot{V} = -(1-x_1^2)x_2^2$$
 negative semidefinite for $|x_1| < 1$

The conditions for applying LaSalle Theorem for asymptotic stability are satisfied in $\Omega = \{|x_1| < 1, |x_2| < L\}$ L arbitrarily large constant. Thus, the origin is local asymptotically stable.

- Derive an estimate of the region of attraction.
- Which is the actual region of attraction?

LaSalle's invariance principle

LaSalle's invariant set Theorem

- Let $\Omega \subseteq \Re^n$ compact invariant set for $\dot{x} = f(x)$.
- Let $V: \Omega \to \Re$ be a C^1 function such that $\dot{V}(x) \leq 0, \ \forall x \in \Omega$.
- $E:=\{x\in\Omega:\dot{V}(x)=0\}$, M:=largest invariant subset of E

 $\forall x(0) \in \Omega, x(t)$ approaches M as $t \to +\infty$

Note that Ω can be defined indepednent of V. In many cases, it is easier to construct Ω based on V as $\Omega = \Omega_{\gamma} = V(x) \leq \gamma$.

Example – Limit Cycle

Show that $M=\{x:\|x\|=1\}$ is a asymptotically stable limit cycle for (almost globally, except for starting at x=0)

$$||x||^2 = x_1^2 + x_2^2.$$

$$\dot{x}_1 = x_2 - x_1(x_1^2 + x_2^2 - 1)$$

$$\dot{x}_2 = -x_1 - x_2(x_1^2 + x_2^2 - 1)$$

The system has one equilibrium at the origin and one limit cycle. Thus the set of trajectories that are invariant for the system are in the set $E=\{x: \|x\|=0 \text{ or } \|x\|=1\}$. We can actually show this by calculating the derivative $\frac{d}{dt}(\|x\|^2)=-\|x\|^2(\|x\|^2-1)$:

- If ||x(0)|| = 0 or ||x(0)|| = 1 the derivative is zero $\frac{d}{dt}(||x(0)||^2)$ and thus the norm of x will not change.
- $\|x(t)\|=0$ corresponds to the equilibrium point at the origin $\dot{x}_1=\dot{x}_2$ while $\|x(t)\|=1$ corresponds to $\left\{ \begin{array}{ccc} \dot{x}_1=&x_2\\ \dot{x}_2=&-x_1 \end{array} \right.$ defining a limit cycle moving clockwise
- Remark: From the derivative $\frac{d}{dt}(\|x\|^2) = -2\|x\|^2(\|x\|^2 1)$ and if we consider a Lyapunov-like function $V_0 = \frac{1}{2}$ we can see that $\Omega' = \{\|x\| < 1\}$ cannot be proved invariant since $\dot{V}_0 > 0$.

Example – Limit Cycle

$$\dot{x}_1 = x_2 - x_1(x_1^2 + x_2^2 - 1)$$

$$\dot{x}_2 = -x_1 - x_2(x_1^2 + x_2^2 - 1)$$

- Take the Lyapunov-like $V=(x_1^2+x_2^2-1)^2$, that is positive but not positive definite. It encodes some dinstance metric from the limit cycle $x_1^2+x_2^2=1$.
- Differentiating V along the system trajectories, we get: $\dot{V} = -4(x_1^2 + x_2^2)(x_1^2 + x_2^2 1)^2 \le 0$.
- Choose $\Omega=\{x\in\Re^2:0<\|x\|\le 1\}$ to exclude $\|x\|=0$. Note that Ω is invariant as it is subset of $\Omega_1=\{V<1\}$. Check this. By excluding x=0, the maximum invariant set is $M=\{x\in\Omega:\|x\|=1\}$.

LaSalle's Invariance Principle

almost globally

Example – Set of equilibriums

$$\begin{cases} \dot{x}_1 = \lambda x_1 - x_1 x_2 \\ \dot{x}_2 = a x_1^2 \end{cases}$$

At equilibrium

$$\begin{cases} \dot{x}_1 = \lambda x_1 - x_1 x_2 = 0 \\ \dot{x}_2 = a x_1^2 = 0 \end{cases} \qquad \longrightarrow \qquad x_1 = 0, \ x_2 \in \Re$$

•
$$\dot{V} = -(c - \lambda)x_1^2 \le 0$$
 for $c > \lambda$

•
$$E := \{x \in \Re^2 : \dot{V}(x) = 0\} \equiv M := \{x \in \Re^2 : x_1 = 0\}$$

 $x_2 \wedge$

LaSalle's Invariance Theorem

•
$$x \to M$$
 as $t \to \infty$

Linear system: $\dot{x} = Ax$

To check stability:

- 1. Find the eigenvalues of A, λ_i .
- 2. Verify that they are negative.

Try to prove stability with:

$$V(x) = \frac{1}{2} ||x||^{2} = \frac{1}{2} x^{T} x = \frac{1}{2} (x_{1}^{2} + x_{2}^{2})$$

$$\dot{V} = x_{1} \dot{x}_{1} + x_{2} \dot{x}_{2}$$

$$= -x_{1}^{2} + 4x_{1} x_{2} - 3x_{2}^{2}$$

$$= -\left[\frac{x_{1}}{x_{2}} \right]^{2} \left[\frac{1}{-2} \frac{-2}{3} \right] \left[\frac{x_{1}}{x_{2}} \right]$$

$$-\mathring{V} \text{ is not } \rho \cdot \text{ol.}$$

$$\dot{x} = Ax = \begin{bmatrix} -1 & 4 \\ 0 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Eigenvalues of $A: \{-1, -3\}$

 \Rightarrow (global) asymptotic stability.

Let
$$(M) = 3 - 4 = -1$$

 $-\mathring{V}$ is not $p - 01$

Linear system: $\dot{x} = Ax$

To check stability:

- 1. Find the eigenvalues of A, λ_i .
- 2. Verify that they are negative.

Try to prove stability with:

$$P = \begin{bmatrix} P_{11} & P_{12} \\ P_{12} & P_{22} \end{bmatrix}$$

by to prove stability with:
$$P = \begin{bmatrix} P_{\ell 1} & P_{\ell 2} \\ P_{\ell 2} & P_{\ell 2} \end{bmatrix}$$

$$V(x) = \|x\|^2 = x^T P x \qquad \text{Parametric Lyapunov function in a quadratic form}$$

$$\dot{V}(x) = x^T P \dot{x} + \dot{x}^T P x = x^T (PA + A^T P) x$$
 Choose parameters for P such that $-\dot{V}(x)$ p.d.

$$-x^{T}Qx < 0$$

$$\Rightarrow e.g. \qquad Q = \begin{bmatrix} q_{1} & 6 \\ 0 & q_{2} \end{bmatrix} \quad q_{1}q_{2} > 0$$

- 1. Let $Q = I_2$
- 2. Solve P from the Lyapunov equation

$$\dot{x} = Ax = \begin{bmatrix} -1 & 4 \\ 0 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$A^T P + PA = -I$$

$$\begin{bmatrix} -1 & 0 \\ 4 & -3 \end{bmatrix} \begin{bmatrix} p_{11} & p_{12} \\ p_{12} & p_{22} \end{bmatrix} + \begin{bmatrix} p_{11} & p_{12} \\ p_{12} & p_{22} \end{bmatrix} \begin{bmatrix} -1 & 4 \\ 0 & -3 \end{bmatrix} = \begin{bmatrix} -2p_{11} & -4p_{12} + 4p_{11} \\ -4p_{12} + 4p_{11} & 8p_{12} - 6p_{22} \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

Solving for p_{11} , p_{12} and p_{22} gives

$$2p_{11} = -1$$

$$-4p_{12} + 4p_{11} = 0 \qquad \Longrightarrow \begin{bmatrix} p_{11} & p_{12} \\ p_{12} & p_{22} \end{bmatrix} = \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & 5/6 \end{bmatrix} > 0$$

$$8p_{12} - 6p_{22} = -1$$

Linear system: $\dot{x} = Ax$

To check stability:

- 1. Find the eigenvalues of A, λ_i .
- 2. Verify that they are negative.

or

- 1. Choose an arbitrary symmetric, positive definite matrix Q.
- 2. Find *P* that satisfies Lyapunov equation

$$PA + A^T P = -Q$$

and verify that it is positive definite.

Lyapunov function: $V(x) = x^T P x$

$$\dot{V}(x) = x^T P \dot{x} + \dot{x}^T P x = -x^T Q x$$

