

FRNT05 Nonlinear Control Systems and Servo Systems

Lecture 4: Describing function analysis

YIANNIS KARAYIANNIDIS, ASSOCIATE PROFESSOR AUTOMATIC CONTROL, FACULTY OF ENGINEERING.

www.yiannis.info yiannis@control.lth.se

Outline

- How to obtain a describing function for a nonlinear element in an "almost" linear system
- Prediction of oscillations based on extended Nyquist Criterion and the describing function of the nonlinearity

Motivation: Nonlinearities in the control system

Motivation: Nonlinearities

The physical system (the plant) may contain nonlinearities

Motivation: prediction of persistent oscillations (limit cycles)

 Oscillations can be desirable: electronic oscillators used in laboratories.

- Oscillations are undesirable
 - Oscillations are a sign of instability, tend to cause poor control accuracy
 - Constant oscillations can increase wear or even cause mechanical failure

Nonlinearities: Single-valued nonlinearities

Saturation nonlinearity

Increasing slope

On-Off (relay) nonlineari

Deadzone nonlinearity

Nonlinearities: Backlash

The input gear started driven driving gear

Multi-valued

The output depends on the input and the history of the input

The output gear does not move until contact is (re)established

Contact is achieved

Odd and even functions

$$\int_{-a}^{\underline{a}} f(x)dx = \underline{0}$$

Odd function
$$f(-x) = -f(x)$$

Even function

$$f(\underline{-x}) = f(x)$$

$$\int_{-a}^{a} f(x)dx = 2\int_{0}^{a} f(x)dx$$

Examples

Saturation

Odd functions with

$$xf(x) \ge 0$$

Describing function analysis

Assumptions

Single, odd, time-invariant nonlinear element $f(\cdot)$ Low-pass transfer function G(s)

- Replace the nonlinearity with a quasi-linear component
- Use tools from linear control systems design to examine the existence of oscillations

Describing function analysis

Form of the nonlinear system

- Reference is set zero to study self-sustained oscillations
- "almost" linear system or genuinely nonlinear system (written as shown in the block diagram)

"Almost" linear systems

- Linear Control Design and linear system
- Implementation involves hard nonlinearities, e.g. actuator saturation or sensor dead-zones
- Contain hard nonlinearities in the control loop but are otherwise linear

Quiz: Write the nonlinear system in a feedback form where the nonlinearity is in a block

Hardening spring $f = -kx - k_h x^3$

Fourier Transformation

Input
$$e(t) = A \sin(\omega t)$$

Output
$$w(t) = f(e) = f(A\sin(\omega t))$$

Output – Periodic function w(t+T) = w(t)

$$w(t+T) = w(t)$$

Fourier Transformation
$$w(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos(n\omega t) + b_n \sin(n\omega t) \right]$$

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} w(t) d(\omega t)$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} w(t) \cos(n\omega t) d(\omega t)$$

 $oldsymbol{0}$ for odd w

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} w(t) \sin(n\omega t) d(\omega t)$$

The linear transfer function as a low-pass filter

• If the transfer function is acting as a low pass filter the output $\,y$ will be mainly affected by the first harmonic of $\,w$

$$w(t) = w_1(t) = a_1 \cos(\omega t) + b_1 \sin(\omega t)$$

The method is based on approximations (heuristic)

The linear transfer function as a low-pass filter

 "Filtering" Assumption: the first harmonic is taken as output of the nonlinear block

Describing Function

Input of the nonlinear element

$$Ae^{j\omega t}$$

Output of the nonlinear element

$$w_1(t) = Me^{(j\omega t + \phi)}$$
$$w_1(t) = (b_1 + ja_1)e^{j\omega t}$$

Describing function definition

$$N(A,\omega) = \frac{\text{Output}}{\text{Input}} \longrightarrow N(A,\omega) = \frac{Me^{(j\omega t + j\phi)}}{Ae^{j\omega t}} = \frac{Me^{(j\omega t + j\phi)}}{A$$

Describing Function (cont.)

$$N(A,\omega) = \frac{M}{A}e^{j\phi} \qquad r = 0 \qquad w = f(\cdot) \qquad G(s) \qquad y$$

$$N(A,\omega) = \frac{1}{A}(b_1 + ja_1)$$

- Extension of the notion of frequency response for systems with nonlinearities
- Depends on the amplitude of the input signal in contrast to the frequency response for linear systems

Describing Function –special cases

$$N(A,\omega) = \frac{M}{A}e^{j\phi} \qquad r = 0$$

$$N(A,\omega) = \frac{1}{A}(b_1 + ja_1)$$

- It is real and independent of the frequency when the nonlinearity is single-valued
- Why? $a_1=\frac{1}{\pi}\int_{-\pi}^{\pi}w(t)\cos(\omega t)d(\omega t)$ • Imaginary part $b_1=\frac{1}{\pi}\int_{-\pi}^{\pi}w(t)\sin(\omega t)d(\omega t)$ • Real part

Describing Function – Example

$$N(A,\omega) = \frac{1}{A}(\underline{b}_1 + j\underline{a}_1) \qquad a_1 = \frac{1}{\pi} \int_{-\pi}^{\pi} \underline{w}(t) \cos(\omega t) d(\omega t)$$
$$b_1 = \frac{1}{\pi} \int_{-\pi}^{\pi} \underline{w}(t) \sin(\omega t) d(\omega t)$$

Describing Function — Example w(+) = sign (sinwt)

$$N(A,\omega) = 1 (b_1 + ja_1)$$

$$a_1 = \frac{1}{\pi} \int_{-\pi}^{\pi} \underline{w(t)} \cos(\omega t) d(\omega t)$$

$$b_1 = \frac{1}{\pi} \int_{-\pi}^{\pi} w(t) \sin(\omega t) d(\omega t)$$

$$a_1 = \frac{1}{\pi} \int_{-\pi}^{\pi} \operatorname{sign}[\sin(\omega t)] \cos(\omega t) d(\omega t) = 0$$

$$a_{1} = \frac{1}{\pi} \int_{-\pi}^{\pi} \cos \sigma d\sigma = -\frac{1}{\pi} \int_{-\pi}^{0} \cos \sigma d\sigma + \frac{1}{\pi} \int_{0}^{\pi} \cos \sigma d\sigma = 0$$

$$N(A_{1}) = \frac{4}{A_{1}}$$

$$\int_{-\pi}^{\pi} \operatorname{sign}[\sin(\omega t)] \sin(\omega t) d(\omega t)$$

$$N(A, \omega) = \frac{4}{A_{\pi}}$$

$$b_1 = \frac{1}{\pi} \int_{-\pi}^{\pi} \operatorname{sign}[\sin(\omega t)] \sin(\omega t) d(\omega t)$$

$$b_1 = \frac{2}{\pi} \int_0^{\pi} \sin \sigma d\sigma = \frac{2}{\pi} [-\cos \sigma]_0^{\pi} = \boxed{\frac{4}{\pi}}$$

Nyquist criterion: Definitions

- The characteristic equation of the

Output system:
$$\Delta(s) = 1 + G(s)H(s) = 0$$

- Poles of $\Delta(s) \rightarrow$ poles the OLS system
- Zeros of $\Delta(s)$ poles of the CLS system

Closed loop Transfer Function

$$\frac{G(s)}{1+G(s)H(s)}$$

Open loop Transfer Function

$$G(s)H(s) = \frac{a_m s^m + \dots + a_1 s + a_0}{b_n s^n + \dots + b_1 s + b_0}$$

 $m \leq n$ for proper/strictly proper transfer function

Example:

$$G(s)H(s) = \frac{s+1}{(s-1)(s-2)}$$

Nyquist contour and plot

Nyquist contour

A path that encircles the righthalf s plane

Number of clockwise encirclements of the point (-1,0)

Nyquist plot

Nyquist Criterion

$$P_{CL} - P_{OL} = (N(-1,0))$$

Example

$$G(s)H(s) = \frac{s+1}{(s-1)(s-2)}$$

$$G(j\omega) + G(\omega) = \mathcal{L}(\omega) + \mathcal{J} \mathcal{L}(\omega) + \mathcal{$$

Nyquist Criterion

• The number of unstable Closed Loop Poles is equal to the number of open loop poles with positive real part plus the number of clockwise encirclements of the point (-1,0)

$$P_{CL} = N(-1,0) + P_{OL}$$

• Given a stable open loop system, the closed loop is stable if the Nyquist plot of the open loop system does not encircle the point (-1,0).

Nyquist Criterion: Quiz

$$G(s)H(s) = \frac{s+1}{(s-1)(s-2)}$$

$$G(s)H(s) = \frac{(s+1)^2 + 2}{(s+1)(s+2)}$$

Nyquist Diagram

Nyquist Criterion

Necessary and sufficient condition stability condition for systems for stable open-loop systems:

The Nyquist plot does not encircle the point -1/k

Extension of Nyquist Criterion for Describing Function Analysis (Existence of oscillations)

Assume that there exists self-sustained oscillations (1+ ((jw) N(A,w))y=0

- The amplitude and frequency must satisfy (*) Harmonic balance
- If (*) has no solutions then there are no oscillations in the system

Extension of Nyquist Criterion for Describing Function Analysis (Stability of oscillations)

Necessary and sufficient condition stability condition for systems for systems with stable (open-loop) linear part: The Nyquist plot does not encircle the point $\frac{-1}{N(A,\omega)}$

Stability of oscillations

• Permanent oscillation: Common point of the Nyquist diagram $G(j\omega)$ and the plot $\frac{-1}{N(A,\omega)}$

 Stability of the oscillation: Does the oscillation continue after a small perturbation in A?

Stability of oscillations

Stability of the oscillation: Does the oscillation continue after a small perturbation in A?

Example – Prediction and stability of persistent oscillations

Nyquist Plot – Describing function

System Response

Example – Prediction of oscillations

Real for
$$\omega = 1 \mathrm{rad/s}$$

$$G(j1) = -\frac{K}{2}$$

$$N(A) = \frac{4}{A\pi}$$

 $A = \frac{2K}{\pi}$ $G(j\omega) = -\frac{1}{N(A)}$

For K=0.2

$$A = 0.127$$

Describing function analysis: pitfalls

- DF analysis may predict a limit cycle, even if it does not exist.
- A limit cycle may exist, even if DF analysis does not predict it.
- The predicted amplitude and frequency are only approximations and can be far from the true values.

