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Grading and points
• All answers must include a clear motivation.

• Answers should be given in English.

• Number all your solution sheets and indicate the total number of sheets, e.g.,
1/12, 2/12 and so on.

• Write your anonymous code and personal identifier on each solution sheet.

The total number of points is 25. The maximum number of points is specified
for each subproblem. Preliminary grading scales:

Grade 3: 12 points
4: 17 points
5: 22 points

Accepted aid
• All lecture slides

• Mathematical prerequisites document

You may use the results in the lecture slides and the mathematical prerequisites
document unless the opposite is explicitly stated.

Submission
Scan all your solution sheets using a scanner app on your phone and save as a single
PDF file. Upload this PDF file to the Canvas course webpage. You will have 15
minutes to complete this part after the official end of the exam. You must also hand
in your physical solution sheets at the end of the exam.

Results
Suggested solutions will be posted on the Canvas course webpage after the exam.
The exam will be graded anonymously via Canvas, and your graded submission
will be made visible in Canvas once we are done with the grading. Results will be
registered in LADOK.
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Remark: In this exam you are allowed to assume that norms are convex and that
the function hp : R → R such that

hp(z) = max(0, z)p (1)

for each z ∈ R is convex and nondecreasing, for any p ≥ 1.

1. Show that the following sets are convex:

a. S1 =
{
(x1, x2, x3, x4) ∈ R4 : (x1 − x2)2 + (x3 − x4)2 ≤ π

}
. (1 p)

b. S2 = {(x, y) ∈ R2 : x ≥ y2}. (1 p)

Show that the following sets are nonconvex:

c. S3 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. (1 p)

d. S4 = {(x, t) ∈ R2 : ∃y ∈ R such that |t| ≤ y and y2 = x3 − x}. (1 p)

e. S5 =
{
x ∈ R2 : 1 ≤ ‖x‖∞ ≤ 10

}
. (1 p)

2. Show that the following functions are convex:

a. f1 : R2 → R such that

f1(x) = xT

[
1 −1
0 1

]
x

for each x ∈ R2. (1 p)

b. f2 : R → R such that

f2(x) =
∫ x

0
eetdt

for each x ∈ R.
Hint: Recall that the fundamental theorem of calculus gives that if a function
g : R → R is continuous then

d
dx

∫ x

0
g(t)dt = g(x)

for each x ∈ R. (1 p)

c. f3 : R → R ∪ {∞} such that

f3(x) = sup
y∈R

(xy − cos y)

for each x ∈ R. (1 p)

Show that the following functions are nonconvex:

d. f4 : S2 → R such that

f4(X) = λmin(X)

for each X ∈ S2, where λmin denotes the smallest eigenvalue. (1 p)
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Figure 1 The function f in Problem 3

e. f5 : R → R such that

f5(x) = min(x2 + 10, −x2)

for each x ∈ R. (1 p)

3. Consider the function f : R → R defined as

f(x) =
{−x + 1 if x < 1,

3x − 3 if x ≥ 1.

See Figure 3.

a. Compute the subdifferential ∂f . (1 p)

b. Compute proxf . (1 p)

c. Compute the conjugate function f∗. (1 p)

d. Compute proxf∗ . (1 p)

e. Find a function g : R → R ∪ {∞} that is not equal to f∗ but that satisfies
g∗ = f . You are allowed to used graphical arguments in this subproblem.

(1 p)

4. Let f : Rn → R ∪ {∞} be proper, closed and convex.

a. Show that
f∗(0) < ∞

implies that the infimum of f is finite. (1 p)

b. Let n = 1. Suppose that
f∗(0) < ∞

and that there exists no x ∈ R such that

0 ∈ ∂f(x).

Find an example of a function f that satisfies this. (1 p)
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5. Let f : R → R be defined by

f(x) = 1 − cos(2πx)
2

x2 + x2

for each x ∈ R.

a. Let g : R → R be the mapping x 7→ x2. Show that

g ≤ env f.

Hint: Show that g ≤ f and that g is convex. (1 p)

b. Compute (env f)(10).
Hint: Use env f ≤ f . (1 p)

6. Consider a two-layer feed-forward neural network without bias terms, m (· ; θ) :
R → R, defined as

m(x; θ) = W2σ1(W1x)

for each x ∈ R, where θ = (W1, W2) ∈ R2 contains the two parameters of the
neural network and σ1 : R → R is some activation function. Moreover, consider
the training problem

minimize
θ∈R2

N∑
i=1

L(m(xi; θ), yi) (2)

over some training set {(xi, yi)}N
i=1 where (xi, yi) ∈ R2 for each i = 1, . . . , N

and L : R × R → R is some loss function.

a. Assume that σ1 : R → R is the ReLU activation function, i.e.,

σ1(x) = max (0, x)

for each x ∈ R, that W1 is fixed, that L(·, ·) is convex in the first argument,
and that we optimize over W2 only. Define the feature vector

ϕ(xi) = σ1(W1xi)

for each training point i = 1, . . . , N . The training problem (2) can then be
written as

minimize
W2∈R

N∑
i=1

L(W2ϕ(xi), yi). (3)

That is, we optimize only over the weights in the final layer. Is (3) a convex
optimization problem? (1 p)
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b. Assume instead that σ1 : R → R is the identity mapping, i.e., σ1 = Id, that
N = 1, that (x1, y1) = (1, 0), and that

L(u, y) = 1
2

(u − y)2

for each (u, y) ∈ R2. The training problem (2) can then be written as

minimize
(W1,W2)∈R2

1
2

(W2W1)2. (4)

Let f : R2 → R denote the objective function in (4), i.e.,

f(θ) = 1
2

(W2W1)2 (5)

for each θ = (W1, W2) ∈ R2. Show that f is nonconvex. (1 p)

c. What is the optimal value of the training problem defined in (4)? (1 p)

d. Let Ss denote the set of all stationary points (that includes all local minima)
to (4), i.e.,

Ss = {θ ∈ R2 : ∇f(θ) = 0},

where f is defined in (5). Let Sg denote the set of all globally optimal points
to (4), i.e.,

Sg = {θ ∈ R2 : f(θ) = f∗},

where f∗ is the optimal value of (4) computed in subproblem c..
Show that Ss and Sg are equal with the common value

{ (W1, W2) ∈ R2 : W1 = 0 or W2 = 0 } .

I.e., all stationary points for the nonconvex training problem are global minima.
Hint: The gradient of the function f in (5) satisfies

∇f(θ) =
[

W1W 2
2

W 2
1 W2

]
(6)

for each θ = (W1, W2) ∈ R2. (1 p)

e. Let γ ∈ R. Consider a gradient update

θ(+) = θ − γ∇f(θ),

applied to f in (5), where we start from a point θ = (W1, W2) ∈ R2 and go to
the point θ(+) = (W (+)

1 , W
(+)
2 ) ∈ R2.

Suppose that

(W1, W2) ∈ R2
++,

i.e., W1 > 0 and W2 > 0. Provide bounds on γ such that

0 < W
(+)
1 < W1 and 0 < W

(+)
2 < W2.

(1 p)
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f. Consider f in (5). It can be shown that
f(θ1) ≤ f(θ2) + ∇f(θ2)T (θ1 − θ2) + 3

2
‖θ1 − θ2‖2

2 ,

f(θ1) ≥ f(θ2) + ∇f(θ2)T (θ1 − θ2) − 3
2

‖θ1 − θ2‖2
2

(7)

holds for each θ1, θ2 ∈ R2 such that

‖θ1‖∞ ≤ 1 and ‖θ2‖∞ ≤ 1.

Remark: Such a function is said to be locally 3-smooth on the set

{θ ∈ R2 : ‖θ‖∞ ≤ 1}.

Now, let θ(0) ∈ R2
++ such that

∥∥∥θ(0)
∥∥∥

∞
≤ 1 and γ ∈ (0, 2/3). The gradient

method then defines the update

θ(k+1) = θ(k) − γ∇f
(
θ(k)

)
for each integer k ≥ 0. Show that∥∥∥∇f

(
θ(k)

)∥∥∥
2

→ 0 as k → ∞.

Hint: If γ ∈ (0, 2/3), e. implies that

θ(k) ∈ R2
++ and

∥∥∥θ(k)
∥∥∥

∞
≤ 1

for each integer k ≥ 0. This can be shown using induction. You are free to use
this result here. (1 p)
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