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Remark: In this exam you are allowed to assume that norms are convex and that
the function hp : R → R such that

hp(z) = max(0, z)p (1)

for each z ∈ R is convex and nondecreasing, for any p ≥ 1.

1. Show that the following sets are convex:

a. S1 =
{
(x1, x2, x3, x4) ∈ R4 : (x1 − x2)2 + (x3 − x4)2 ≤ π

}
. (1 p)

b. S2 = {(x, y) ∈ R2 : x ≥ y2}. (1 p)

Show that the following sets are nonconvex:

c. S3 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. (1 p)

d. S4 = {(x, t) ∈ R2 : ∃y ∈ R such that |t| ≤ y and y2 = x3 − x}. (1 p)

e. S5 =
{
x ∈ R2 : 1 ≤ ‖x‖∞ ≤ 10

}
. (1 p)

Solution

a. Note that

S1 =
{

x ∈ R4 : ‖Ax‖2
2 ≤ π

}
where

A =
[

1 −1 0 0
0 0 1 −1

]
.

Convexity of S1 follows as it is the π-sublevel set of the convex function

x 7→ ‖Ax‖2
2

from R4 to R. Indeed, the norm ‖·‖2 is a convex function, the mapping

y 7→ h2(‖y‖2) = ‖y‖2
2

from R2 to R is convex since it is a composition of the convex and nondecreasing
function h2 defined in (1) and the convex function ‖·‖2, and the mapping

x 7→
(
‖·‖2

2 ◦ A
)

(x) = ‖Ax‖2
2

from R4 to R is convex since it is the composition of the convex function
y 7→ ‖y‖2

2 from R2 to R and the affine mapping x 7→ Ax from R4 to R2.

b. Alternative 1 : Note that S2 is the 0-sublevel set of the convex function (x, y) 7→
y2 −x from R2 to R. This can be verified using, e.g., the second-order condition
for convexity. Therefore, S2 is convex.
Alternative 2 : Let f : R → R be the convex function x 7→ x2. Define the set

C = { (x, y) ∈ R2 : x2 ≤ y }
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and note that

C = { (x, y) ∈ R2 : f(x) ≤ y }
= epif.

Thus, C is convex since it is equal to the epigraph of a convex function More-
over, note that

S2 = T (C)

where T is the affine map T : R2 → R2 given by

T (x, y) = (y, x)

for each (x, y) ∈ R2. Convexity of S2 follows from that it is the image set of an
affine map applied to a convex set.

c. Note that 1, 2 ∈ S3, but

0.5 · 1 + (1 − 0.5) · 2 = 1.5 /∈ S3,

which shows that S3 is not convex.

d. Consider the points a0 = (0, 0) and a1 = (1, 0) that both lie in S4. Create the
convex combination

a = 1
2

a0 + 1
2

a1

=
(1

2
, 0

)
.

We claim that a is not in S4.
This follows since for x ∈ (0, 1) we have that x3 < x and so x3 − x < 0 ≤ y2

for each y ∈ R. Therefore a /∈ S4. This show that S4 is not convex.

e. Let {e1, e2} denote the standard basis in R2, where ei is the vector whose ith
coordinate is one while all the others are zeros. Then e1 ∈ S5 and −e1 ∈ S5.
However,

0.5e1 + (1 − 0.5)(−e1) = 0 /∈ S5,

which shows that S5 is not convex.

2. Show that the following functions are convex:

a. f1 : R2 → R such that

f1(x) = xT

[
1 −1
0 1

]
x

for each x ∈ R2. (1 p)
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b. f2 : R → R such that

f2(x) =
∫ x

0
eetdt

for each x ∈ R.
Hint: Recall that the fundamental theorem of calculus gives that if a function
g : R → R is continuous then

d
dx

∫ x

0
g(t)dt = g(x)

for each x ∈ R. (1 p)

c. f3 : R → R ∪ {∞} such that

f3(x) = sup
y∈R

(xy − cos y)

for each x ∈ R. (1 p)

Show that the following functions are nonconvex:

d. f4 : S2 → R such that

f4(X) = λmin(X)

for each X ∈ S2, where λmin denotes the smallest eigenvalue. (1 p)

e. f5 : R → R such that

f5(x) = min(x2 + 10, −x2)

for each x ∈ R. (1 p)

Solution

a. The Hessian of f1 is given by

∇2f1(x) =
[

2 −1
−1 2

]

for each x ∈ R2, which has positive eigenvalues 1 and 3. Therefore, the Hessian
is positive definite for each x ∈ R2. We conclude that f is convex by the
second-order condition for convexity.

b. Let g : R → R such that t 7→ eet . The function g is a composition of two con-
tinuous functions and is therefore also continuous. The fundamental theorem
of calculus gives that

∇f2(x) = ∇
∫ x

0
g(t)dt

= g(x)
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Figure 1 The function f in Problem 3

for each x ∈ R. Therefore,

∇2f2(x) = eex
ex

= eex+x

> 0

for each x ∈ R. We conclude that f is convex by the second-order condition
for convexity.

c. The function f3 is equal to the conjugate function of cos(·) and we know that
all conjugate functions are convex. Therefore f3 is convex.

d. Let

X =
[

1 0
0 0

]
and Y =

[
0 0
0 1

]
.

Then X and Y both have 0 as the smallest eigenvalue and the convex combi-
nation 0.5X + (1 − 0.5)Y = 0.5I has 0.5 as the smallest eigenvalue. Therefore,

0.5 = f4(0.5X + (1 − 0.5)Y ) > 0.5f4(X) + (1 − 0.5)f4(Y ) = 0.

This shows that f4 is not convex.

e. Note that f5(x) = min(x2 +10, −x2) = −x2 and that this is a concave function
that is not convex. Hence f5 is not convex.

3. Consider the function f : R → R defined as

f(x) =
{−x + 1 if x < 1,

3x − 3 if x ≥ 1.

See Figure 3.

a. Compute the subdifferential ∂f . (1 p)

b. Compute proxf . (1 p)

c. Compute the conjugate function f∗. (1 p)
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d. Compute proxf∗ . (1 p)

e. Find a function g : R → R ∪ {∞} that is not equal to f∗ but that satisfies
g∗ = f . You are allowed to used graphical arguments in this subproblem.

(1 p)

Solution

a. Note that f is finite-valued, closed and convex. Moreover,

∇f(x) =
{−1 if x < 1,

3 if x > 1.

Thus,

∂f(x) =
{{ −1 } if x < 1,

{ 3 } if x > 1.

Moreover, recall that ∂f is maximally monotone. Thus, ∂f(1) = [−1, 3]. There-
fore, we conclude that

∂f(x) =


{−1} if x < 1,

[−1, 3] if x = 1,

{3} if x > 1.

b. Let z ∈ R and

x = proxf (z)

= argmin
x̃∈R

(
f(x̃) + 1

2
‖x̃ − z‖2

2

)
.

Fermat’s rule gives that this is equivalent to that

0 ∈ ∂f(x) + x − z.

Plugging in the expression for ∂f gives

0 ∈


{−1 + x − z} if x < 1,

[−1, 3] + 1 − z if x = 1,

{3 + x − z} if x > 1.

Solving for x we get that

x = proxf (z)

=


z + 1 if z < 0,

1 if z ∈ [0, 4],

z − 3 if z > 4.
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c. Let s ∈ R. Recall that

f∗(s) = sup
x∈R

(sx − f(x)) .

Moreover, Fenchel-Young’s equality states that s ∈ ∂f(x) if and only if

f∗(s) = sx − f(x),

where x ∈ R.
We split into five cases:

• Suppose that s ∈ (−1, 3). Then s ∈ ∂f(x) implies that x = 1. Fenchel-
Young’s equality gives that

f∗(s) = s · 1 − f(1)
= s − 0
= s.

• Suppose that s = −1. Then s ∈ ∂f(x) implies that x ≤ 0. Fenchel-Young’s
equality gives that

f∗(s) = (−1) · x − f(x)︸ ︷︷ ︸
=−x+1

= −1.

• Suppose that s = 3. Then s ∈ ∂f(x) implies that x ≥ 0. Fenchel-Young’s
equality gives that

f∗(s) = 3 · x − f(x)︸ ︷︷ ︸
=3x−3

= 3.

• Suppose that s < −1. Let t < 1. Then

f∗(s) = sup
x∈R

(sx − f(x))

≥ st − f(t)
= st − (−t + 1)
= (s + 1)︸ ︷︷ ︸

<0

t − 1 → ∞ as t → −∞.

Thus, f∗(s) = ∞ in this case.
• Suppose that s > 3. Let t > 1. Then

f∗(s) = sup
x∈R

(sx − f(x))

≥ st − f(t)
= st − (3t − 3)
= (s − 3)︸ ︷︷ ︸

>0

t + 3 → ∞ as t → ∞.

Thus, f∗(s) = ∞ in this case.
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This covers all cases and we conclude that

f∗(s) = s + ι[−1,3].

d. Let z ∈ R. The Moreau decomposition gives that

proxf∗(z) = z − proxf (z)

= z −


z + 1 if z < 0,

1 if z ∈ [0, 4],

z − 3 if z > 4.

=


−1 if z < 0,

z − 1 if z ∈ [0, 4],

3 if z > 4.

e. Note that

f∗∗ = f,

since f is proper, closed and convex. Moreover, consider the function g : R →
R ∪ {∞} such that

g = Id + ι{ −1,3 }.

It is clear that

g 6= f∗,

since f∗ = Id+ι[−1,3]. However, a via graphical arguments (just draw the graph
of both functions), one can show that g and f∗ must have the same convex
envelope, i.e.,

env g = env f∗.

But then we see that

g∗ = (env g)∗

= (env f∗)∗

= (f∗)∗

= f∗∗

= f.

This is what we wanted to show.

4. Let f : Rn → R ∪ {∞} be proper, closed and convex.

a. Show that
f∗(0) < ∞

implies that the infimum of f is finite. (1 p)
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b. Let n = 1. Suppose that
f∗(0) < ∞

and that there exists no x ∈ R such that

0 ∈ ∂f(x).

Find an example of a function f that satisfies this. (1 p)

Solution

a. Note that

∞ > f∗(0)

= sup
x∈Rn

(
0T x − f(x)

)
= − inf

x∈Rn
f(x),

or

−∞ < inf
x∈Rn

f(x).

Since f is proper, we have that

inf
x∈Rn

f(x) < ∞.

We conclude that

−∞ < inf
x∈Rn

f(x) < ∞,

as desired.

b. Consider the proper, closed and convex function f : R → R ∪ {∞} such that

f(x) =


1
x

if x > 0,

∞ if x ≤ 0.

Note that

f∗(0) = sup
x∈R

(0 · x − f(x))

= − inf
x∈R++

f(x)

= 0

is finite. Moreover, note that

∂f(x) =


{

− 1
x2

}
if x > 0,

∅ if x ≤ 0,

which does not contain 0 for any x ∈ R.
Moral: The function has a finite infimum but no minimizing argument.
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5. Let f : R → R be defined by

f(x) = 1 − cos(2πx)
2

x2 + x2

for each x ∈ R.

a. Let g : R → R be the mapping x 7→ x2. Show that

g ≤ env f.

Hint: Show that g ≤ f and that g is convex. (1 p)

b. Compute (env f)(10).
Hint: Use env f ≤ f . (1 p)

Solution

a. Note that

g(x) = x2

≤ 1 − cos(2πx)
2︸ ︷︷ ︸

≥0

x2︸︷︷︸
≥0

+x2

= f(x)

or

g(x) ≤ f(x)

for each x ∈ R, since

cos(2πx) ∈ [−1, 1]

for each x ∈ R. Moreover, note that g is convex. This is easily seen from, e.g.,
the second-order condition for convexity. But then

g ≤ env f,

by definition of the convex envelope env f of f .

b. We know that

g ≤ env f ≤ f.

Since

g(10) = 100 and f(10) = 100,

we conclude that

(env f)(10) = 100.
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6. Consider a two-layer feed-forward neural network without bias terms, m (· ; θ) :
R → R, defined as

m(x; θ) = W2σ1(W1x)

for each x ∈ R, where θ = (W1, W2) ∈ R2 contains the two parameters of the
neural network and σ1 : R → R is some activation function. Moreover, consider
the training problem

minimize
θ∈R2

N∑
i=1

L(m(xi; θ), yi) (2)

over some training set {(xi, yi)}N
i=1 where (xi, yi) ∈ R2 for each i = 1, . . . , N

and L : R × R → R is some loss function.

a. Assume that σ1 : R → R is the ReLU activation function, i.e.,

σ1(x) = max (0, x)

for each x ∈ R, that W1 is fixed, that L(·, ·) is convex in the first argument,
and that we optimize over W2 only. Define the feature vector

ϕ(xi) = σ1(W1xi)

for each training point i = 1, . . . , N . The training problem (2) can then be
written as

minimize
W2∈R

N∑
i=1

L(W2ϕ(xi), yi). (3)

That is, we optimize only over the weights in the final layer. Is (3) a convex
optimization problem? (1 p)

b. Assume instead that σ1 : R → R is the identity mapping, i.e., σ1 = Id, that
N = 1, that (x1, y1) = (1, 0), and that

L(u, y) = 1
2

(u − y)2

for each (u, y) ∈ R2. The training problem (2) can then be written as

minimize
(W1,W2)∈R2

1
2

(W2W1)2. (4)

Let f : R2 → R denote the objective function in (4), i.e.,

f(θ) = 1
2

(W2W1)2 (5)

for each θ = (W1, W2) ∈ R2. Show that f is nonconvex. (1 p)

c. What is the optimal value of the training problem defined in (4)? (1 p)
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d. Let Ss denote the set of all stationary points (that includes all local minima)
to (4), i.e.,

Ss = {θ ∈ R2 : ∇f(θ) = 0},

where f is defined in (5). Let Sg denote the set of all globally optimal points
to (4), i.e.,

Sg = {θ ∈ R2 : f(θ) = f∗},

where f∗ is the optimal value of (4) computed in subproblem c..
Show that Ss and Sg are equal with the common value

{ (W1, W2) ∈ R2 : W1 = 0 or W2 = 0 } .

I.e., all stationary points for the nonconvex training problem are global minima.
Hint: The gradient of the function f in (5) satisfies

∇f(θ) =
[

W1W 2
2

W 2
1 W2

]
(6)

for each θ = (W1, W2) ∈ R2. (1 p)

e. Let γ ∈ R. Consider a gradient update

θ(+) = θ − γ∇f(θ),

applied to f in (5), where we start from a point θ = (W1, W2) ∈ R2 and go to
the point θ(+) = (W (+)

1 , W
(+)
2 ) ∈ R2.

Suppose that

(W1, W2) ∈ R2
++,

i.e., W1 > 0 and W2 > 0. Provide bounds on γ such that

0 < W
(+)
1 < W1 and 0 < W

(+)
2 < W2.

(1 p)

f. Consider f in (5). It can be shown that
f(θ1) ≤ f(θ2) + ∇f(θ2)T (θ1 − θ2) + 3

2
‖θ1 − θ2‖2

2 ,

f(θ1) ≥ f(θ2) + ∇f(θ2)T (θ1 − θ2) − 3
2

‖θ1 − θ2‖2
2

(7)

holds for each θ1, θ2 ∈ R2 such that

‖θ1‖∞ ≤ 1 and ‖θ2‖∞ ≤ 1.

Remark: Such a function is said to be locally 3-smooth on the set

{θ ∈ R2 : ‖θ‖∞ ≤ 1}.

12



FRTN50

Now, let θ(0) ∈ R2
++ such that

∥∥∥θ(0)
∥∥∥

∞
≤ 1 and γ ∈ (0, 2/3). The gradient

method then defines the update

θ(k+1) = θ(k) − γ∇f
(
θ(k)

)
for each integer k ≥ 0. Show that∥∥∥∇f

(
θ(k)

)∥∥∥
2

→ 0 as k → ∞.

Hint: If γ ∈ (0, 2/3), e. implies that

θ(k) ∈ R2
++ and

∥∥∥θ(k)
∥∥∥

∞
≤ 1

for each integer k ≥ 0. This can be shown using induction. You are free to use
this result here. (1 p)

Solution

a. Note that

W2 7→ W2ϕ(xi)

from R to R is linear for each i = 1, . . . , N , and that

W2 7→ L(W2ϕ(xi), yi)

from R to R is convex, since it is a convex function composed with a linear
function, for each i = 1, . . . , N . Therefore,

W2 7→
N∑

i=1
L(W2ϕ(xi), yi)

from R to R is convex, since it is a sum of convex function. This show that (3)
is a convex optimzation problem.

b. Alterative 1 : Let θ1 = (1, 0) and θ2 = (0, 1). Then

f

(1
2

θ1 + 1
2

θ2

)
= f

(1
2

,
1
2

)
= 1

2

(1
2

· 1
2

)2

= 1
32

and

1
2

f (θ1) + 1
2

f (θ2) = 1
2

· 1
2

(1 · 0)2 + 1
2

· 1
2

(0 · 1)2

= 0.
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In particular,

f

(1
2

θ1 + 1
2

θ2

)
>

1
2

f (θ1) + 1
2

f (θ2) ,

and we conclude that f is not convex.
Alterative 2 : The gradient is

∇f(θ) =
[

W1W 2
2

W 2
1 W2

]

for each θ = (W1, W2) ∈ R2 and the Hessian is

∇2f(θ) =
[

W 2
2 2W1W2

2W1W2 W 2
1

]

for each θ = (W1, W2) ∈ R2. If we pick θ = (1, 1), we get that

∇2f(1, 1) =
[

1 2
2 1

]
.

The eigenvalues are −1 and 3. Using the the second-order condition for convex-
ity, we condculde that f is nonconvex since the Hessian ∇2f(θ) is not positive
semidefinite at the point θ = (1, 1).

c. Note that

f(θ) = 1
2

(W2W1)2

≥ 0

for each θ = (W1, W2) ∈ R2 and that

f(0) = 0.

Therefore,

min
θ∈R2

f(θ) = 0.

Let f⋆ = 0 in the following.

d. Let θ = (W1, W2) ∈ R. First, note that

∇f(θ) = 0
⇔[

W1W 2
2

W 2
1 W2

]
= 0

⇔
W1 = 0 or W2 = 0.
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Second, using f∗ = 0 from c., we have that

f(θ) = f∗

⇔
1
2

(W2W1)2 = 0

⇔
W1 = 0 or W2 = 0.

This prove the claim.

e. Written coordinate-wise, the gradient update is

W
(+)
1 = W1 − γW1W 2

2 ,

W
(+)
2 = W2 − γW 2

1 W2.

We consider each of the four inequalities in

0 < W
(+)
1 < W1 and 0 < W

(+)
2 < W2.

separately.

• Note that

W
(+)
1 > 0

⇔
W1 − γW1W 2

2 > 0
⇔

γ <
1

W 2
2

,

since W1 > 0 and W2 > 0.
• Note that

W
(+)
2 > 0

⇔
W2 − γW 2

1 W2 > 0
⇔

γ <
1

W 2
1

,

since W1 > 0 and W2 > 0.
• Note that

W
(+)
1 < W1

⇔
W1 − γW1W 2

2 < W1

⇔
0 < γ,

since W1 > 0 and W2 > 0.
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• Note that

W
(+)
2 < W2

⇔
W2 − γW 2

1 W2 < W2

⇔
0 < γ,

since W1 > 0 and W2 > 0.

We conclude that

γ ∈
(

0, min
( 1

W 2
1

,
1

W 2
2

))
,

which is nonempty, satisfy the requirements.

f. The hint gives that

θ(k) ∈ R2
++ and

∥∥∥θ(k)
∥∥∥

∞
≤ 1

holds for each integer k ≥ 0. In particular, we are free to use the quadratic
upper bound in (7) with θ1 = θ(k+1) and θ2 = θ(k):

f
(
θ(k+1)

)
≤ f

(
θ(k)

)
+ ∇f

(
θ(k)

)T (
θ(k+1) − θ(k)

)
+ 3

2

∥∥∥θ(k+1) − θ(k)
∥∥∥2

2

≤ f
(
θ(k)

)
− γ

∥∥∥∇f
(
θ(k)

)∥∥∥2

2
+ 3γ2

2

∥∥∥∇f
(
θ(k)

)∥∥∥2

2

= f
(
θ(k)

)
− γ

(
1 − 3γ

2

) ∥∥∥∇f
(
θ(k)

)∥∥∥2

2

for each integer k ≥ 0. This can be written as

γ

(
1 − 3γ

2

) ∥∥∥∇f
(
θ(k)

)∥∥∥2

2
≤ f

(
θ(k)

)
− f

(
θ(k+1)

)
for each integer k ≥ 0. Summing from k = 0 until k = K for some nonnegative
interger K gives that

K∑
k=0

γ

(
1 − 3γ

2

) ∥∥∥∇f
(
θ(k)

)∥∥∥2

2
≤

K∑
k=0

f
(
θ(k)

)
− f

(
θ(k+1)

)
= f

(
θ(0)

)
− f

(
θ(K+1)

)
or

K∑
k=0

∥∥∥∇f
(
θ(k)

)∥∥∥2

2
≤

f
(
θ(0)

)
γ

(
1 − 3γ

2

) ,

since γ ∈ (0, 2/3) implies that γ(1 − 3γ/2) > 0 and f ≥ 0. Letting K → ∞
gives that

∞∑
k=0

∥∥∥∇f
(
θ(k)

)∥∥∥2

2
≤

f
(
θ(0)

)
γ

(
1 − 3γ

2

) .
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Therefore, ∥∥∥∇f
(
θ(k)

)∥∥∥2

2
→ 0 as k → ∞,

and we conclude that ∥∥∥∇f
(
θ(k)

)∥∥∥
2

→ 0 as k → ∞,

as desired.
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