Convex Sets

Pontus Giselsson

Today’s lecture

Motivation and context
® What is optimization?
® Why optimization?
® Convex vs nonconvex optimization

® Short course outlook

Today's subject: Convex sets

What is optimization?

® Find point € R™ that minimizes a function f: R” — R:
minimize f(x
inimize f(z)

® Example in R:

f(z)

What is optimization?

® Can also require x to belong to a set S C R™:
minimize f(x
z€S f( )

® Example in R:

f(z)

Why optimization?

® Many engineering problems can be modeled using optimization
Supervised learning

Optimal control

Signal reconstruction

Portfolio selection

Image classifiction

Circuit design

Estimation

® Results in “optimal”:
® Model

® Decision

® Performance

® Design

® Estimate

L]

w.r.t. optimization problem model
o Different question: How good is the model?

Convex vs nonconvex optimization

® Convex optimization if set and function are convex
® Otherwise nonconvex optimization problem
® Why convexity? Local minima are global minima

® Why go nonconvex? Richer modeling capabilities
I

nonconvex function convex function

® |f convex modeling enough, use it, otherwise try nonconvex

Short course outlook — Convex analysis part

® Set up to arrive at convex duality theory

® Fenchel duality (as opposed to (equivalent) Lagrange duality)

® Dual problem:

is companion problem to stated primal problem

can be easier to solve and than primal (SVM)

solution can (sometimes) be used to recover primal solution

is based on conjugate functions and optimizes over subgradients
in Fenchel duality assumes primal problem on composite form:

minimize f(z) + g(z)
zERn

® Will see one algorithm for composite problem form

Short course outlook — Supervised learning part

® Some supervised learning methods from optimization perspective
® (Classical supervised learning is based on convexity
® Least squares, logistic regression, support vector machines (SVM)
® SVM relies heavily on duality, state of the art until 10 years ago
® “All local minima good” (if properly regularized)
® Separates modeling from algorithm design
® Deep learning is based on nonconvex training problems
® Algorithm can end up in local minima
® Contemporary deep networks often overparameterized

® Many global minima, some desired some not
® Used algorithms (SGD variations) often find a “good” minimum
® There is implicit regularization in SGD — will try to understand

® No separation between modeling and algorithm




Different global minima generalize differently well

® Binary classification problem with blue and red class
® Black line is decision boundary of trained network with 0 loss
® Perfect fit to data and probably OK generalization

Different global minima generalize differently well

® Binary classification problem with blue and red class
® Decision boundary of another 0 loss network (same problem)

® Perfect fit to data and probably much worse generalization

® SGD has implicit regularization — often finds “good” minima
® Will try to understand why this is the case
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Outline
C S ¢ Definition and convex hull
onvex Sets o Examples of convex sets
o Convexity preserving operations
e Concluding convexity — Examples
o Separating and supporting hyperplanes
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Convex sets — Definition Convex sets — Definition
® A set C is convex if for every z,y € C and 6 € [0,1]: ® A set C is convex if for every z,y € C and 6 € [0, 1]:
x4+ (1-0)yeC fz+ (1-0)yeC
® “Every line segment that connect any two points in C' is in C"” ® “Every line segment that connect any two points in C'is in C"
Nonconvex
. .
. . . .
® Will assume that all sets are nonempty and closed ® Will assume that all sets are nonempty and closed
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Convex sets — Definition Convex sets — Definition
® A set C is convex if for every z,y € C and 6 € [0, 1]: ® A set C is convex if for every z,y € C and 6 € [0, 1]:
x4+ (1-0)yeC Ox+(1—-0)yeC
® “Every line segment that connect any two points in C'is in C" ® “Every line segment that connect any two points in C'is in C"
Nonconvex Convex Nonconvex Convex
. .
. . . .
Nonconvex
® Will assume that all sets are nonempty and closed ® Will assume that all sets are nonempty and closed
12
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Convex sets — Definition

® A set C is convex if for every z,y € C and 6 € [0, 1]:
0z +(1-0)yeC

® “Every line segment that connect any two points in C'is in C"”

Nonconvex Convex
.
. .
. .
Nonconvex Nonconvex

® Will assume that all sets are nonempty and closed

Convex combination and convex hull

Convex hull (convS) of S is smallest convex set that contains S:

Mathematical construction:
® Convex combinations of z1, ...,z are all points = of the form
xr=0111 + 000 + ...+ Opxy

where 1 +...+6,=1and 0; >0
® Convex hull: set of all convex combinations of points in S
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Outline Affine sets
® Take any two points x,y € V: V is affine if full line in V:
e Definition and convex hull
o Examples of convex sets
e Convexity preserving operations
e Concluding convexity — Examples Lines and planes are affine sets
o Separating and supporting hyperplanes ® Definition: A set V is affine if for every z,y € V and o € R:
ar+(1—a)yeV (1)
hence convex this holds in particular for « € [0, 1]
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Affine hyperplanes Halfspaces
® Affine hyperplanes in R™ are affine sets that cut R™ in two halves * A halfspace is one of the halves constructed by a hyperplane
s -
. . . . . s
® Dimension of affine hyperplane in R™ is n — 1 (If s # 0)
o All affine sets in R™ of dimension n — 1 are hyperplanes
® Mathematical definition: ]
® Mathematical definition:
he, ={zeR:sTe=r}
' H,={zxeR":sTx <r}
where s € R™ and r € R, i.e., defined by one affine function )
. ® Halfspaces are convex, and vector s is called normal to halfspace
® Vector s is called normal to hyperplane
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Polytopes Cones
® A polytope is intersection of halfspaces and hyperplanes
® Aset Kisaconeifforallz € K anda>0: ax € K
® |f z is in cone K, so is entire ray from origin passing through x:
z i
® Examples:
® Mathematical representation: .
C={zecR": s’z <rforiec{l,...,m} and
siw=r;forie{m+1,..,p}} Cone Cone Not cone
® Polytopes convex since intersection of convex sets
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Convex cones

® Cones can be convex or nonconvex:

Nonconvex cone Convex cone

® Convex cone examples:
® Linear subspaces { € R" : Az = 0} (but not affine subspaces)
® Halfspaces based on linear (not affine) hyperplanes {z : s”a < 0}
® Positive semi-definite matrices
{X € R™*"™ : X symmetric and 27 Xz > 0 for all z € R"}
® Nonnegative orthant {z € R" : z > 0}
® Second order cone {(z,r) € R" x R: ||z|2 < r}

Sublevel sets

® Suppose that g : R™ — R is a real-valued function
® The (0th) sublevel set of g is defined as
S:={zeR":g(z) <0}

® Example: construction giving 1D interval S = [a, ]

g(x)

xT

® S is a convex set if g is a convex function

® S is not necessarily nonconvex although g is
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Sublevel sets — Examples Outline
® | evelset of convex quadratic function
4
3
2
h o Definition and convex hull
o Examples of convex sets
o Convexity preserving operations
e Concluding convexity — Examples
o Separating and supporting hyperplanes
{z eR": %xTPz +qTx +r <0}, with P positive definite
® Norm balls {z € R" : ||z|| —r < 0}
® Second-order cone {(z,7) € R" xR : ||z|2 —r < 0}
® Halfspaces {z € R" : ¢’z —r < 0}
22 23
Convexity preserving operations Intersection and union
® |ntersection C = C1NCy means z € C if x € C; and z € Cy
® |f no 2 exists such that x € C; and z € C> then C1 N Ca =0
® Union C=CiUCymeansz e Cifz e CrorzeCy
® Intersection (but not union)
o Affine image and inverse affine image of a set ‘ ‘
Intersection Union
® |ntersection of any number of, e.g., infinite, convex sets is convex
® Union of convex sets need not be convex
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Image sets and inverse image sets Outline
® Let L(xz) = Az + b be an affine mapping defined by
® matrix A € R™*"
® vector b € R™ o Definition and convex hull
® Let C be a convex set in R™ then the image set of C' under L e Examples of convex sets
Convexity preserving operations
{Az +b:2 € C} i Yp g.p
e Concluding convexity — Examples
is convex o Separating and supporting hyperplanes
® Let D be a convex set in R™ then the inverse image of D under L
{z: Az +be D}
is convex
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Ways to conclude convexity

® Use convexity definition
® Show that set is sublevel set of a convex function
® Show that set constructed by convexity preserving operations

Example — Nonnegative orthant

® Nonnegative orthant is set C' = {x € R" : & > 0}
® Prove convexity from definition:

® let x > 0 and y > 0 be arbitrary points in C'
® Forall 6 € [0,1]:

x>0 and (1-0)y>0
® All convex combinations therefore also satisfy
Oz + (1—0)y >0

i.e., they belongs to C' and the set is convex
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Example — Positive semidefinite cone Example — Linear matrix inequality
® The positive semidefinite (PSD) cone is
{X € R"*"™: X symmetric} m{X eR™": 27Xz >0 for all z € R"}
® This can be written as the following intersection over all z € R™ . . - .
! wr Wing ! on ov z ® |et us consider a linear matrix inequality (LMI) of the form
{X e R™*" : X symmetric} ﬂ ﬂ {(X eRV™: 21X 2 >0} R
ek {zeRF: A+ Z.’I:iBl =0}
which, by noting that 27 Xz = tr(:7 X 2) = tr(227 X), is equal to i=1
{X € R™" . X symmetric} m m (X e R™" - (22T X) > 0} where A and B; are fixed matrices in R"*"
zE€R ® Convex since inverse image of PSD cone under affine mapping
where tr(z2TX) > 0 is a halfspace in R"*" (except when z = 0)
® The PSD cone is convex since it is intersection of
® symmetry set, which is a finite set of (convex) linear equalities
® an infinite number of (convex) halfspaces in R™*"
® Notation: If X belongs to the PSD cone, we write X > 0
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Outline Separating hyperplane theorem
® Suppose that C, D C R™ are two non-intersecting convex sets
® Then there exists hyperplane with C' and D in opposite halves
® Definition and convex hull
e Examples of convex sets
o Convexity preserving operations
o Concluding convexity — Examples
» Separating and supporting hyperplanes Counter-example
Example D nonconvex
® Mathematical formulation: There exists s # 0 and r such that
sTe<r forallz € C
sTe>r forallz € D
® The hyperplane {z : sTo = r} is called separating hyperplane
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A strictly separating hyperplane theorem Consequence — C' is intersection of halfspaces
® Suppose that C, D C R™ are non-intersecting closed and convex ‘a closed convex set C'is the intersection of all halfspaces that contain it
sets and that one of them is compact (closed and bounded)
. . . . proof:
® Then there exists hyperplane with strict separation
e 0> gt . ® let H be the intersection of all halfspaces containing C
={@y:y227"2>0} ® =: obviouslyz e C =z € H
® < assume x ¢ C, since C closed and convex and {z} compact
singleton, there exists a strictly separating hyperplane, i.e., x ¢ H:
C={(z,y) 1y <0}
Example Counter example
C, D not compact
® Mathematical formulation: There exists s # 0 and r such that x
sta <r forallz € C
sTo>r forallz € D
=
34 35




Supporting hyperplanes

® Supporting hyperplanes touch set and have full set on one side:

® We call the halfspace that contains the set supporting halfspace
® s is called normal vector to C at z
e Definition: Hyperplane {y : sy = r} supports C at z € bd C if

sTe=r and sTy <rforallyeC

36

Supporting hyperplane theorem

Let C be a nonempty convex set and let = € bd(C). Then there exists
a supporting hyperplane to C' at z.

® Does not exist for all point on boundary for nonconvex sets

® Many supporting hyperplanes exist for points of nonsmoothness

37

Normal cone operator

® Normal cone to C' at z € bd(C') is set of normals at x

® Normal cone operator N¢ to C takes point input and returns set:
® 2 € bd(C)NC: set of normal vectors to supporting halfspaces
® z € int(C): returns zero set {0}
® z ¢ C: returns emptyset ()

® Mathematical definition: The normal cone operator to a set C' is

s:sT(y—z)<0forallyecC} ifzeC
Nc<x>={é (v—2) < vecy it

i.e., vectors that form obtuse angle between s and ally —z, y € C
® For all x € C: the N¢ outputs a set that contains 0
38




Convex Functions

Pontus Giselsson

Outline

» Definition, epigraph, convex envelope

e First- and second-order conditions for convexity

e First- and second-order conditions without full domain
o Convexity preserving operations

e Concluding convexity — Examples

e Strict and strong convexity

® Smoothness

Extended-valued functions and domain

® We consider extended-valued functions f : R” — RU {00} =: R
® Example: Indicator function of interval [a, b]

0 ifa<z<bd
l'[a,b]('r> =
oo else

® The (effective) domain of f : R™ — RU {co} is the set
dom f={zeR": f(z) < oo}

o (Will always assume domf # 0, this is called proper)

Convex functions

® Graph below line connecting any two pairs (z, f(x)) and (y, f(y))

convex function nonconvex function
e Function f : R™ — Riis convex if for all z,y € R™ and 6 € [0, 1]:
f0x+(1—=0)y) <O0f(x) + (1 -0)f()

(in extended valued arithmetics)
® A function f is concave if —f is convex

Epigraphs

® The epigraph of a function f is the set of points above graph
epif

® Mathematical definition:
epif = {(z,7) | f(z) <7}

® The epigraph is a set in R" x R

Epigraphs and convexity

o Let f : R" - RU{o0}
® Then f is convex if and only epif is a convex set in R” x R

epif

® fis called closed (lower semi-continuous) if epif is closed set

Convex envelope

® Convex envelope of f is largest convex minorizer

f(z) env f(z)

® Definition: The convex envelope env f satisfies: envf convex,

envf < f and envf > g for all convex g < f

Convex envelope and convex hull

® Assume f:R™ — RU{oo} is closed
® Epigraph of convex envelope of f is closed convex hull of epif

N

® epif in light gray, epienvf includes dark gray




Outline

o Definition, epigraph, convex envelope

o First- and second-order conditions for convexity

e First- and second-order conditions without full domain
e Convexity preserving operations

e Concluding convexity — Examples

e Strict and strong convexity

® Smoothness

Affine functions

® Affine functions f : R™ — R are of the form

f)=s"y+r

® Affine functions f: R" — R cut R™ X R in two halves

f)=sTy+r

(s, -1)

® s defines slope of function

® Upper halfspace is epigraph with normal vector (s, —1):

epif = {(y:):t=sTy+r} ={(y.0): (s, =) (y,) < —r}
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Affine functions — Reformulation First-order condition for convexity
® A differentiable function f : R™ — R is convex if and only if
> Ty —
® Pick any fixed 2 € R"; affine f(y) = sTy 4 r can be written as Fy) 2 f@) + V @) (y - o)
T for all z,y € R™
@) =f@)+s"(y—x) )
(since r = f(x) — sTx)
o f@) + V@) T (y -
f) = f(@)+s"(y —2) o f@)+ V@) (y—=)
(o, £(2))
(s,—1) ‘(Vf<z),71)
® Function f has for all z € R™ an affine minorizer that:
® Affine function of this form is important in convex analysis ® coincides with function f at
® has slope s defined by V f, which coincides the function slope
® s supporting hyperplane to epigraph of f
® defines normal (V f(z), —1) to epigraph of f
11 12
Second-order condition for convexity Outline
® A twice differentiable function is convex if and only if
V2f(x) =0
) o . o o Definition, epigraph, convex envelope
for all z € R™ (i.e., the Hessian is positive semi-definite) « First- and second-order conditions for convexity
® “The function h - ti ture”
© function has non-nega |veTCLirv5 ure . N  First- and second-order conditions without full domain
® Nonconvex example: f(z) =27 [§ %] @ with V2f(z) # 0 o Convexity preserving operations
e Concluding convexity — Examples
o Strict and strong convexity
® Smoothness
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First-order condition without full domain Second-order condition without full domain
® Suppose f : R™ — R U {co} is differentiable on domf
® Then f is convex if and only if
F) 2 f(2) + V@) (y - 2)
for all z,y € domf and domf is convex
vE o Fa) Yz x>0 ® Suppose f : R™ — RU {oco} is twice differentiable on dom f
xample f(z) = oo else ® Then f is convex if and only if
V2 f(z) = 0
for all z € domf and domf is convex
(V5(),~1) 1w
f(@) + V@) (y—2)
15 16




Outline

o Definition, epigraph, convex envelope

e First- and second-order conditions for convexity

e First- and second-order conditions without full domain
o Convexity preserving operations

e Concluding convexity — Examples

e Strict and strong convexity

® Smoothness

Operations that preserve convexity

® Positive sum

® Marginal function

® Supremum of family of convex functions
® Composition rules

® Prespective of convex function
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Positive sum Marginal function
® Assume that f; are convex for all j € {1,...,m} ® Let f:R" x R™ — RU {0} be convex
® Assume that there exists = such that f;(z) < oo for all j * Define the marginal function
® Then the positive sum o
g(a) = inf (. y)
m Yy
- tifs
f ; ifi ® The marginal function g : R" — R U {£00} is convex if f is!
with t; > 0 is convex
1t may be that g(z) = —ooc for all z € domg, we call such functions convex here.
19 20
Supremum of convex functions Scalar composition rule
® Point-wise supremum of convex functions from family {f;};c;:
f(x) = sup{f;(x) : j€J}
1 1, . n ‘
® Supremum is over functions in family for fixed x * Consider the function f: R" — R U {oc} defined as
® Example: [(z) = h(g(z))
where h: R — RU {oo} is convex and g : R® — R
® Suppose that one of the following holds:
fs ® h is nondecreasing and g is convex
’ ® h is nonincreasing and g is concave
[ ® g is affine
N Then f is convex
///\7\ i
® Convex since epigraph is intersection of convex epigraphs
21 22
Vector composition rule Perspective of function
® Consider the function f: R™ — R U {oo} defined as Let
® f:R" — R be convex
F(@) = h(g1(2), 92(), ., gu(2)) R R b
® { be positive, i.e, t € Ry
. Rk H .. RN —
where h: R™ — R U {OC} is convex and g; : R" — R . then the perspective function g : R™ x R — R, defined by
® Suppose that for each i € {1,...,k} one of the following holds:
® h is nondecreasing in the ith argument and g; is convex tf(z/t) ift>0
® h is nonincreasing in the ith argument and g; is concave g(z,t) == |
® g, is affine o0 else
Then f is convex is convex
23 24




Outline

o Definition, epigraph, convex envelope

e First- and second-order conditions for convexity

e First- and second-order conditions without full domain
e Convexity preserving operations

e Concluding convexity — Examples

e Strict and strong convexity

® Smoothness

Ways to conclude convexity

® Use convexity definition
® Show that epigraph is convex set
® Use first or second order condition for convexity

® Show that function constructed by convexity preserving operations
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onclude convexi y — S0ome examples xXampie — onvexi y Of norms
Conclud t S | E | C ty of
¢ From definition: Show that f(z) := ||z|| is convex from convexity definition
® indicator functi f c set C'
ndicator Tunction of convex ® Norms satisfy the triangle inequality
0 ifzeC
we(z) = {oo else [+ o] < Jlull + v
® norms: ||z|| ® For arbitrary 2,y and 6 € [0,1]:
® From first- or second-order conditions:
s Ox+(1—0)y)=|0x+(1-0
e affine functions: f(z) = s% x4 r Flor+( )y) = [0 + )l
* quadratics: f() = 27 Qu with Q positive semi-definite matrix < |0z + 111 = 0)yll
® From convex epigraph: =0l|z[| + (1 =)yl
Yl Y =0f(x) +(1-0)f(z
® matrix fractional function: f(z,Y) = {“L N II =0 F@)+( V()
o0 else
oF inal functi which is definition of convexity
rom marginal function: . ) .
® (shortest) distance to convex set C: distc(z) = infyec(|ly — z||) ® Proof uses triangle inequality and ¢ € [0, 1]
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Example — Matrix fractional function Example — Composition with matrix
Show that the matrix fractional function is convex via its epigraph
® The matrix fractional function
2TY—le ifY =0
fayy=4" 0 0 *Let _
00 else ® f:R™ — R be convex
® L € R™*™ be a matrix
® The epi h satisfi
© EPIEraph satishes then composition with a matrix
epif = {(z,Y,t): f(z,Y) <t} (o L)) = f(Le)
={(2,Y,t) : 2TY 'z <tand Y = 0} ’
® Schur complement condition says for Y - 0 that Is convex o ) ) ) )
® Vector composition with convex function and affine mappings
Y =z
2Ty lz < =
'Y x <t & I = 0
which is a (convex) linear matrix inequality (LMI) in (z,Y, )
® Epigraph is intersection between LMI and positive definite cone
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Example — Image of function under linear mapping Example — Nested composition
® Let
® f:R"™ — R be convex
® L eR™" be a matrix Show that: f(z) := elZ==bl3 is convex where L is matrix b vector:
then image function (sometimes called infimal postcomposition) o Let
e
(L)) = inf{f(y) : Ly =z} 0 fu<o
g1(u) = llullz,  g2(w) = { 3 ifu>0’ g3(u) = e€*
is convex w ifu>
® Proof: Define then f(z) = g3(g2(g1(Lz — b)))
hz,y) = f(y) + tioy(Ly — z) ® gi(Lz — b) convex: convex g; and Lz — b affine
o ) ® go(g1(La — b)) convex: cvx nondecreasing g2 and cvx g1 (Lz —b)
which is convex in (z,y), then ® f(x) convex: convex nondecreasing g3 and convex g>(gi(Lz — b))
(Lf)(x) = inf h(z,y)
v
which is convex since marginal of convex function
31 32




Example — Conjugate function

Show that the conjugate f*(s) := sup (s7x — f(x)) is convex:
zER"

® Define index set J and z; such that Ujes{z;} =R"

o Define ; := f(x;) and affine (in s): a;(s) == sTz; —r;

® Therefore f*(s) = sup{a;(s):j € J}

® Convex since supremum over family of convex (affine) functions

® Note convexity of f* not dependent on convexity of f

Outline

o Definition, epigraph, convex envelope

e First- and second-order conditions for convexity

e First- and second-order conditions without full domain
o Convexity preserving operations

e Concluding convexity — Examples

e Strict and strong convexity

® Smoothness
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Strict convexity Strong convexity
® A function f: R™ — R U {oo} is strictly convex if ® Leto>0
® A function f is o-strongly convex if f — || - |3 is convex
f(0x+ (1 =0)y) <0f(z)+(1—0)f(y) ® Alternative equivalent definition of o-strong convexity:
for each z,y € domf, z # y, and € (0,1) and domf is convex F(Oz+ (1= 0)y) <O0f(x) + (1 —0)f(y) — Z6(1—6)|x — ylI?
® “Convexity .definitic.m with strict inequality” holds for every 7,5 € R™ and 0 € [0, 1]
® No flat (affine) regions ® Strongly convex functions are strictly convex and convex
¢ Example: f(z) =1/z for x>0 ® Example: f 2-strongly convex since f — || - [|3 convex:
f(=)
”“' f@) —ll=[13
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Uniqueness of minimizers First-order condition for strict convexity
® Suppose f : R™ — R U {oo} is differentiable on domf
® Then f is strictly convex if and only if
f) > f@) + V@) (y - )
for all z,y € domf where z # y and domf is convex
f(y)
® Strictly (strongly) convex functions have unique minimizers
® Strictly convex functions may not have a minimizing point
f T(y—
® Closed strongly convex functions have a unique minimizing point gl F@) + Vi@ (v - =)
_x, f(x)
(Vf(z),-1)
® Function f has for all z € R™ an affine minorizer that:
® has slope s defined by V f
® coincides with function f only at =
® is supporting hyperplane to epigraph of f
® defines normal (V f(z), —1) to epigraph of f
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First-order condition for strong convexity Second-order condition for strict/strong convexity
® Suppose f : R™ — RU {oc} is differentiable on dom f
® Then f is o-strongly convex with o > 0 if and only if
fy) = f(2)+ V@) (y —2) + Sllz - yll3 Let f: R™ = RU{oo} be twice differentiable on domf, domf convex
for all z,y € domf and domf is convex ® fis strictly convex if
fy) n ’ V2f(z) =0
) @)+ V@) (y - 2) + §llz - yl3
for all 2 € domf (i.e., the Hessian is positive definite)
® fis o-strongly convex if
~ (f f(=)) V2 f(e) & of
(Vf(=), 1)
for all z € domf
® Function f has for all z € R™ a quadratic minorizer that:
® has curvature defined by o
® coincides with function f at x
® defines normal (V f(x), —1) to epigraph of f
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Examples of strictly/strongly convex functions

Strictly convex

® f(z)= {710g<-7?> ife>0

Proofs for two examples

00 else
. fe)= 1z ifz>0 Strict convexity of f(z) =e™*:
0o else e Vf(z)=—e2 Vf(z)=e®>0forallzeR
® fla)=e" Strong convexity of f(z) = 227 Qx with Q positive definite
Strongly convex * Vi(z) = Qz, V2f(z) = Q = Anin(Q)I where Apin(Q) > 0
* f(z) = 3lll3
¢ f(z) = 12TQx where Q positive definite
® f(z) = fi(z) + fo(z) where f; strongly convex and f> convex
® f(z) = fi(z) + f2(x) where fi, fo strongly convex
* f(z) = 22TQx + 1c(x) where Q positive definite and C' convex
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Outline Smoothness
® A function is called 8-smooth if its gradient is -Lipschitz:
IVf(@) = Viw)lz < Bllz—yll
for all 2,y € R™ (it is not necessarily convex)
o Definition, epigraph, convex envelope ® Alternative equivalent definition of S-smoothness
e First- and second-order conditions for convexity F0x+(1—0)y) > 0f(x) + (1 —0)f(y) — %9(1 — 0|z —y?
. ?rst— a‘nd second—‘order con(‘imons without full domain F0z+(1—0)y) <0f(x) + (1 —0)f(y)+ %6(1 — )|z — yHZ
t t
o Convexi -y preservm‘g operations hold for every 2,y € R” and 8 € [0, 1]
* Concluding convexity ~ Examples ® Smoothness does not imply convexity
o Strict and strong convexity ® Example:
® Smoothness
43 44
First-order condition for smoothness First-order condition for smooth convex
® fis -smooth with 8 > 0 if and only if ® fis S-smooth with 8 > 0 and convex if and only if
F) < F(2) + V) (y - 2) + Lz — y12 F) < f@) + V@) (y - 2) + Glle - yll3
F) = f(@) + V@) (y —2) = Gllz —yl3 F) 2 f(@) + V@) (y - 2)
for all z,y € R™ for all z,y € R™
| f@) + Vi@ Ty —2)+ 5lle -y} J@) + V@) (y —2)+ Sllz - yli3
[ W /
f(v)
@)+ V@) (y - )
(= £()
176+ 5@ o)~ e ol oy
' f(x) + z)' (y—=z)— 5llzr—y
2 2 ® Quadratic upper bounds and affine lower bound
® Quadratic upper/lower bounds with curvatures defined by 3 ® Bounds coincide with function f at =
® Quadratic bounds coincide with function f at x ® Quadratic upper bound is called descent lemma
45 46
Second-order condition for smoothness
Let f: R™ — R be twice differentiable
® fis -smooth if and only if .. .
Convex Optimization Problems
—BI X V2f(x) < BI
for all z € R™
® fis -smooth and convex if and only if
0= V*f(x) 2 BI
for all z € R™
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Composite optimization form

We will consider optimization problem on composite form
minimize f(Lz) 4+ g(x)
T

where f and g are convex functions and L is a matrix
Convex problem due to convexity preserving operations
Can model constrained problems via indicator function

This model format is suitable for many algorithms
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Subdifferentials and Proximal Operators

Pontus Giselsson

Outline

o Subdifferential and subgradient — Definition and basic properties
o Monotonicity

e Examples

o Strong monotonicity and cocoercivity

® Fermat'’s rule

e Subdifferential calculus

e Optimality conditions

e Proximal operators

2
Gradients of convex functions Subdifferentials and subgradients
® Recall: A differentiable function f : R™ — R is convex iff ® Subgradients s define affine minorizers to the function that:
F@) = f(2) + V(@) (y - )
for all z,y € R \
f(y)
P %
(5, =1) \
p Ty
A @)+ V@) - ) ® coincide with f at x
: ® define normal vector (s, —1) to epigraph of f
\"c’f(]’» ® can be one of many affine minorizers at nondifferentiable points =
‘(Vf(a:y, —1 ® Subdifferential of f: R™ — R at x is set of vectors s satisfying
T . )
® Function f has for all z € R™ an affine minorizer that: fly) > f(z) +s" (y—=) forallyeR", (1)
® has slope s defined by Vf ® Notation:
® coincides with function f at = ® subdifferential: 9f : R™ — 2% (power-set notation 2%")
® defines normal (V f(z), —1) to epigraph of f ® subdifferential at z: df(z) = {s: (1) holds}
® \What if function is nondifferentiable? ® elements s € df(x) are called subgradients of f at x
4
Relation to gradient Subgradient existence — Convex setting
‘ For finite-valued convex functions, a subgradient exists for every x
N ® In extended-valued setting, let f : R™ — RU {oo} be convex:
o N (i) Subgradients exist for all z in relative interior of dom f
“(Vfeg). -1 (ii) Subgradients sometimes exist for = on relative boundary of dom f
(i) No subgradient exists for = outside domf
® Examples for second case, boundary points of domf:
I I I I
e |f f differentiable at = and Of(x) # 0 then df(z) = {V f(z)} | | | |
® If f convex and Of(z) a singleton then 0f(z) = {V f(x)} ‘ . ‘ /
® |f f convex but not differentiable at € int domf, then v
Of(xz) = cl(convS(z))
—VI—a? 4+ 24
where S(x) is set of all s such that Vf(x) — s when z, — x # U@ ¥ -2 (@)
® In general for convex f: df(z) = cl(convS(z)) + Naoms(z) ® No subgradient (affine minorizer) exists for left function at 2 =1
6

Subgradient existence — Nonconvex setting

® Function can be differentiable at « but df(z) =0

® z1: 9f(x1) = {0}, Vf(z1) =0
® zo: Of(x2) =0, Vf(z2) =0
® 235 Of(xs) =0, Vf(z3) =0
® Gradient is a local concept, subdifferential is a global property

Outline

e Subdifferential and subgradient — Definition and basic properties
e Monotonicity

e Examples

e Strong monotonicity and cocoercivity

e Fermat's rule

o Subdifferential calculus

e Optimality conditions

e Proximal operators




Monotonicity of subdifferential

Subdifferential operator is monotone:
(50— sy) (x—y) 20
for all s, € 9f(x) and s, € Of (y)
Proof: Add two copies of subdifferential definition
) > f(z)+ s (y— )

with x and y swapped
® J9f : R — 2% Minimum slope 0 and maximum slope oo

of

Monotonicity beyond subdifferentials

® Let A:R™ — 28" be monotone, i.e.:
(u—v)T(@—y) 20

for all u € Az and v € Ay

® There exist monotone A that are not subdifferentials

9 10
Maximal monotonicity Minty’s theorem
o letdf :R* 28" and a >0
® Jf is maximally monotone if and only if range(al + 0f) = R
® Let the set gphdf := {(z,u) : u € df(z)} be the graph of 9f of Ofa
® O0f is maximally monotone if no other function g exists with [ ’/
gphdf C gphdy, 74' x R
with strict inclusion maximally monotone not maximally monotone
® A result (due to Rockafellar):
ofr +al Of2 +al
‘ f is closed convex if and only if 0f is maximally monotone J r
-z (N
full range not full range
® Interpretation: No “holes” in gphdf
11 12
Outline Example — Absolute value
® The absolute value:
f(@) ==
o Subdifferential and subgradient — Definition and basic properties
o Monotonicity
o Examples
o Strong monotonicity and cocoercivity o Subdifferential
® Fermat'’s rule ® For z > 0, f differentiable and Vf(z) =1, so df(z) = {1}
e Subdifferential calculus ® For z < 0, f differentiable and Vf(z) = —1, so df(z) = {—1}
. . L. ® For z =0, f not differentiable, but since f convex:
e Optimality conditions
« Proximal operators 9f(0) = cl(convS(0)) = cl(conv({—-1,1})) = [-1,1]
® The subdifferential operator:
of(x)
13 14
A nonconvex example Example — Separable functions
® Nonconvex function: . . n
® Consider the separable function f(z) =", fi(z;)
® Subdifferential
Of(x) ={s=(s1,...,8n) 1 8; € Ofi(x;)}
‘ ‘ ® The subgradient s € f(x) if and only if each s; € dfi(x;)
¢ b ® Proof:
® Subdifferential o Assume all s; € 9 fi(z:):
® For z > b, f differentiable and V f(z) =1, so df(z) = {1}
® For z < a, f differentiable and Vf(z) = —1, so 9f(z) = {1} B RS N ~ T,
® For z € (a,b), no affine minorizer, 8f(z) =0 f) =~ f@) = ;fl(yl) filz) 2 ;5'(‘% vi) =5 (y—2)
® For x = a, f not differentiable, df(z) = [—1,0] - -
® For z = b, f not differentiable, df(x) = [0,1] ® Assume s; & Of;(x;) and z; = y; for all i # j:
® The subdifferential operator: Fius) — F5(@5) < 5505 — )
J\Yi) — Ji\tj Si\Ys; — g
‘[ which gives
Q Fly) = flx) = fi(ys) — filz;) < sy — ;) = ST(U — )
15 16




Example — 1-norm

® Consider the 1-norm f(z) = ||z[1 = > i, |
® |t is a separable function of absolute values
® From previous examples, we conclude that the subdifferential is

si=—1 ifz; <0
Of(x) =< (s1,.--,8n) 1S 8, € [-1,1] ifa; =0
s; =1 ifx; >0

Example — 2-norm

e Consider the 2-norm f(z) = ||z|l2 = v/||=[|3
® The function is differentiable everywhere except for when z =0
® Divide into two cases; x = 0 and = # 0
® Subdifferential for = # 0: f(z) = {V f(z)}:
* Let h(u) = Vi and g(x) = [|z[3, then f(x) = (ho g)(x)
® The gradient for all  # 0 by chain rule (since h : Ry — R):

1 ;
gpo T
2¢/][[13 llll

Vf(z) = Vh(g(z))Vg(z) =

17 18
Example cont’d — 2-norm Outline
Subdifferential of ||z|2 at 2 =0
(i) educated guess of subdifferential from 9 f(0) = cl(conv.S(0)) . . ) L ) .
o recall S(0) is set of all limit points of (¥ (x))xcy when x — 0 . SubdlfFerfathlal and subgradient — Definition and basic properties
® let zj, = t*d with ¢ € (0,1) and d € R"\{0}, then V f(zx) = 1>  Monotonicity
® since d arbitrary, (V f(xx)) can converge to any unit norm vector e Examples
® 50.5(0) = {s: [ls|2 = 1} and Of(0) = {s : [|s]| S 137 i « Strong monotonicity and cocoercivity
(i) venfyLusmg subgracliqlentf definition f(y) > f(0) +sT(y—0) = sy o Fermat's rule
® let >1,t ,eg,y=2 . .
et [lsll2 enton &8y =2 o Subdifferential calculus
sTy =253 > 2lsll2 = f(y)  Optimality conditions
so such s are not subgradients * Proximal operators
® Let ||s|2 <1, then for all y:
sTy < lsllzllyllz < llyll2 = f(»)
so such s are subgradients
19 20
Strong convexity revisited Strong monotonicity
® Recall that f is o-strongly convex if f — Z|| - [|3 is convex ® If f o-strongly convex function, then Jf is o-strongly monotone:
e If fis o-strongly convex then (52 — 8) (& — ) > oz — yl|2
F@) > f@)+s"(y—2) + llz — ol for all s, € f(z) and s, € Of(y)
holds for all & € domdf, s € df(x), and y € R" ® Proof: Add two copies of strong convexity inequality
® The function has convex quadratic minorizers instead of affine fW) = f@) +st(y—2)+ 5z —yl3
fy) with z and y swapped
) fx2) + 55 5(y — x2) + §llz2 — 93 ® Jf is o-strongly monotone if and only if df — oI is monotone
/ ® J9f : R — 2% Minimum slope o and maximum slope oo
J fx2) + 531 (y — x2) + §llz2 — yl13
of
ya flx) +sT(y—21) + o1 — yll3
(al;’;l) 7ﬁq\(9f2 —1)
- < (s2,1, -1 z
® Multiple lower bounds at x5 with subgradients s3 1 and s3 2
21 22
Strongly convex functions — An equivalence Smooth convex functions
e A differentiable function f : R™ — R is convex and 3-smooth if
Fy) < f@) + V@) (y—2) + Sl - yll3
. . (o NT (01 o
The following are equivalent for f : R" — RU {oo} f) 2 fla) + V()" (y - )
. s closed and | hold for all z,y € R™
(i) fis closed and o-strongly convex ® f has convex quadratic majorizers and affine minorizers
(ii) Of is maximally monotone and o-strongly monotone
F@) + Vi) (y—21) + Sller - yll3
Proof: 1) F@2) + Vf(e2)T(y —w2) + § ez — wll3
(i)=(ii): we know this from before
(i)=(): (i) = 9f—ocl=0(f— %] |3) maximally monotone
= f— 5| - I3 closed convex
= f closed and o-strongly convex B (za), —1)
J/
(Vf(x2), ~1)
® Quadratic upper bound is called descent lemma
23 24




Cocoercivity of gradient Smooth convex functions — An equivalence

® Gradient of smooth convex function is monotone and Lipschitz
(V@)= V) (z—y) 20
IVf(y) = Vi@)l2 < Bllz -yl

® Vf:R — R: Minimum slope 0 and maximum slope /3

Vi(x)

Let f: R™ — R be differentiable. The following are equivalent:
(i) V[ is L-cocoercive
(i) V£ is maximally monotone and j3-Lipschitz continuous

(iii) f is convex and satisfies descent lemma (is 3-smooth)

‘ T

® Actually satisfies the stronger %-cocoercivity property:

(V@)= Vi) (@ —y) > 5IVI@) - V@3

due to the Baillon-Haddad theorem Will later connect smooth convexity and strong convexity via conjugates
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Smooth strongly convex functions Gradient of smooth strongly convex function
® Let f : R" — R be differentiable ® Gradient of $-smooth o-strongly convex function f satisfies

® fis S-smooth and o-strongly convex with 0 < o < 3 if
fy) < f@) + V@) (y—2) + 5o - yll3
F) = f(2) + V@) (y — )+ Sz —yl3

hold for all z,y € R™
® f has quadratic minorizers and quadratic majorizers

IVf(y) = Vi@)2 < Bllz = yll2
(Vf(z) = Vi) (@ —y) = ollz —yl3
so is -Lipschitz continuous and o-strongly monotone
e Vf:R — R: Minimum slope o and maximum slope 8

. S Vi)
| f(@)+ V@) (y—2)+ 5z -3
f(y) |
f@) +Vi@) (y —2) + Slle -yl
‘ x
(, f(z)) ® Actually satisfies this stronger property:
B (Vi(), 1) (V@) = Vi) (@ —y) > 575V - V@3 + 75z - yl3
® We say that the ratio g is the condition number for the function for all z,y € R™

27 28

Proof of stronger property QOutline

. . e a2
® fis o-strongly convex if and only if g := f — £ I[- 112 is convex o Subdifferential and subgradient — Definition and basic properties
® Since f is S-smooth and g convex, g is (3 — o)-smooth « Monotonicity
® Since g convex and (3 — o)-smooth, Vg is ﬁ—cocoercive: « Examples

(Vg(z) — Va(y) (z —y) > 75 1Vg(x) - V()3 e Strong monotonicity and cocoercivity

hich by using ¥ vr I i ® Fermat’s rule
c s = — es
Whieh by using Vg 758w e Subdifferential calculus
(VI(@) = Vi) (z—y) —ollz—yl3 > ﬁ”vf(fﬁ) —Vi(y) —olz—y)l3 e Optimality conditions

which by expanding the square and rearranging is equivalent to ¢ Proximal operators

(V@) = Vi) (@ -y) = 75V (@) - VIQ)IE + 25 llz -yl
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Fermat’s rule Fermat’s rule — Nonconvex example
Let f: R" — RU{oc}, then & minimizes f if and only if
0€df(x) ® Fermat’s rule holds also for nonconvex functions
® Example:
® Proof: x minimizes f if and only if
f) = f(z) = f(2) +07(y —x) forallyecR"
which by definition of subdifferential is equivalent to 0 € 0 f(x)
® Example: several subgradients at solution, including 0
x2
1

| (0, -1)

® df(xz1) = {0} and V f(z1) = 0 (global minimum)
® 9f(x2) =0 and Vf(z2) =0 (local minimum)

® For nonconvex f, we can typically only hope to find local minima

(0, -1)
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Outline

o Subdifferential and subgradient — Definition and basic properties
o Monotonicity

e Examples

o Strong monotonicity and cocoercivity

® Fermat’s rule

¢ Subdifferential calculus

e Optimality conditions

o Proximal operators

Subdifferential calculus rules

e Subdifferential of sum 9(f1 + f2)
® Subdifferential of composition with matrix d(g o L)

33 34
Subdifferential of sum Subdifferential of composition
If f1, fo closed convex and relint dom f; N relint dom fy # (: If f closed convex and relint dom(f o L) # 0:
O(fi+ f2) =0fi+0fs A(foL)(x) = LTof(Lx)
® One direction always holds: if x € domdf; N domdfs: ® One direction always holds: If Lz € domf, then
O(f1+ f2)(x) 2 0fi(z) + 0fa() (folL)(z) D LTof(Lx)
Proof: let s; € dfi(x), add subdifferential definitions: Proof: let s € 9f(Lx), then by definition of subgradient of f:
Hi@W) + f2(y) = fi(e) + fal@) + (s1 + 52) T (y — ) (foL)(y) > (foL)(x)+sT(Ly— Lz) = (f o L)(x) + (LT )T (y — x)
ie. s1+s2€0(f1+ f2)(x) ie., LTs € O(f o L)(x)
e If fi and f; differentiable, we have (without convexity of f) e If f differentiable, we have chain rule (without convexity of f)
V(ifi+ )=Vi+Vf V(folL)(z)=L'Vf(Lxz)
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Outline Composite optimization problems
o Subdifferential and subgradient — Definition and basic properties
¢ Monotonicity ® \We consider optimization problems on composite form
e Examples
o Strong monotonicity and cocoercivity nnmxmlzef(Lx) +g(x)
* Fermat's rule where f:R™ — RU{o0}, g: R" - RU {c0}, and L € R™*"
e Subdifferential calculus . N .
L . ® Can model constrained problems via indicator function
e Optimality conditions . . i K
. ® This model format is suitable for many algorithms
o Proximal operators
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A sufficient optimality condition A necessary and sufficient optimality condition
Let f:R™ 5 R, g:R" - &, and L € R™*" then: Let f:R™ =R, g :.]R” —R, Le ]R""X"” with f, g closed convex
and assume relint dom(f o L) Nrelint domg # () then:
inimi L ; 1
minimize f(Lz) + () &) minimize f(Lz) + g(z) (1)
is solved b € R”™ that satisfi
19 solved by every ¥ at satishes is solved by z € R™ if and only if z satisfies
0 LT0f(Lx)+0 2
f{Le) + O9(a) ) 0 € LTOf(Lx) + (=) @)
® Subdifferential calculus inclusions say: . . .
® Subdifferential calculus equality rules say:
0e€ LTof(Lz) +dg(z) CO(foL+g)z )
f(La) 9(x) (f 9)(@) 0 LTof(Lx) + dg(z) = d(f o L + g)(z)
hich by F t's rule i ivalent t lution to (1
. \II\IV LC_ (ly) erm: s ruel I: eqt:)lv: entto :v :O:hl(:n :. (f) @ which by Fermat's rule is equivalent to z solution to (1)
ore can have solution but no & exists that satisties o Algorithms search for z that satisfy 0 € LT9f(Lz) + dg(x)
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A comment on constraint qualification

® The condition
relint dom(f o L) N relint domg # ()

is called constraint qualification and referred to as CQ

® |t is a mild condition that rarely is not satisfied

Evaluating subgradients of convex functions

® Obviously need to evaluate subdifferentials to solve
0 LTof(Lx) + dg(x)

® Explicit evaluation:
® [f function is differentiable: V f (unique)
® If function is nondifferentiable: compute element in 0 f

e ® |mplicit evaluation:
® Proximal operator (specific element of subdifferential)
no solution solution solution
no CQ cQ
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Outline
o Subdifferential and subgradient — Definition and basic properties
o Monotonicity
« Examples Proximal operators
o Strong monotonicity and cocoercivity
e Fermat's rule
¢ Subdifferential calculus
o Optimality conditions
o Proximal operators
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Proximal operator — Definition Prox is generalization of projection
® Recall the indicator function of a set C'
® Proximal operator of g : R" — R U {oo} defined as: wela) = 0 ifzeC
: oo otherwise
i 1 2
prox,,(z) = argmin(g(z) + 55 [lz — 2(3)
z€R™ ® Then
where v > 0 is a parameter .
! e prox, () = argmin(}lz — 2[3 + 1o ())
® Evaluating prox requires solving optimization problem z
® |f g closed convex, prox is single-valued mapping from R™ to R™ = argmin{%Hx - zH% rx € C}
® Objective closed and strongly convex = unique minimizing point = argmin{||z — z||2 : z € C'}
=Tlc(z)
® Projection onto C equals prox of indicator function of C'
45 46

Prox computes a subgradient

® Fermat's rule on prox definition: = = prox,,(2) if and only if
0€dg@)+7  (z—2) < 7' (z—1)cag(x)

Hence, y~!(z — ) is element in dg(x)
® A subgradient dg(z) where x = prox,,(2) is computed

47

Prox is 1-cocoercive
® For convex g, the proximal operator is 1-cocoercive:

(2~ )" (prose (x) — pros. () > [[prox, ,(x) — pros; (u)[3
® Proof
® Combine monotonicity of dg, that for all z, € dg(u), z, € dg(v):
(2u — 20) (u—v) >0
® with Fermat's rule on prox that evalutes subgradients of g:
u = prox,, () if and only if 7 Nz —u) € dg(u)
v = prox,,(y) if and only if 7y —v) € Ag(v)
® which gives, by letting z, = v~ (z —u) and z, =y (y — v):
7@ —w) (g =) (u—v) 20
& (2= prox,,(z) — (y — prox,, ()7 (prox,(x) — prox,,(y)) > 0
& (=) (prox,,(2) — prox,,(y)) > ||prox, ,(z) — prox.,(y)II3
48




Prox is (firmly) nonexpansive

® We know 1-cocoercivity implies nonexpansiveness (1-Lipschitz)

l[prox.,,(2) — prox., ()2 < |z — yll2
which was shown using Cauchy-Schwarz inequality
® Actually the stronger firm nonexpansive inequality holds
l[prox, ¢ (x) — prox,, (v)ll3 < ll= - yli3
= ||z = prox, () — (y — prox,,(v))13

which implies nonexpansiveness
® Proof:
® take 1-cocoercivity and multiply both sides by 2:

2(x — y)" (prox,,, («) — prox. ((y)) > 2|[prox, , (z) — prox,; (y)]|2
® use the following equality with u = prox_,(z) and v = prox,/(y):

(@=9)"@w-v) =35 (le—yl3 +llu— ]} - |z —y - (w - v)|3)

Proximal operator — Separable functions

Let z = (21,...,%,) and g(z) = Y1 | gi(x;) be separable, then
prox,,(z) = (prox,,, (21), ..., prox,, (z»))

decomposes into n individual proxes

Why? Since also || - ||3 is separable:

prox.,(z) = argmin(g(z) + %Hz — 2|2

IéRﬂ
n
. ; . 1, 2
= argmin gi(z) + Z(Ll —z)
zER™ i—1

which gives n independent optimization problems

argmin(g; () + (¢ — 2)%) = prox, (=)
zi€
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Proximal operator — Example 1 Proximal operator — Example 1 cont’d
® Consider the function g with subdifferential dg: ¢ Let o <0, then Fermat's rule reads
0=—-1+yYz- N = /
<0 -1 ifx <0 e —2) r=aty
g(x) = '1 ' r= dg(x) ={[~1,0] ifz=0 which is valid (z < 0) if z < —
0 ifz>0 0 250 ® Let 2 = 0, then Fermat's rule reads
. . 0€e[-1,0]+~ 10—z
® Graphical representations [=1,0]+7( ?)
o(2) which is valid (z = 0) if z € [—7,0]
’ g(x) ® Let z > 0, then Fermat's rule reads
0=0+7"Yz—2) & z=2
— °* which is valid (z > 0) if 2 >0
(-1,-1) ® The prox satisfies
(=0.5, ,,{ 0, —1) (0, —=1)
® Fermat's rule for z = prox,,(2): 2ty fz<—y
prox,,(z) = ¢ 0 if z€[—7,0]
0€dg(x) +7 Mz —2) z ifz>0
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Proximal operator — Example 2 Computational cost
Let g(z) = %ZI,'TP.’L‘ + qTx with P positive semidefinite ® Evaluating prox requires solving optimization problem
® Gradient satisfies Vg(z) = Pz + ¢ prox.,(2) = argmin(g(x) + %“I —z||%)
® Fermat's rule for z = prox,,(2): v
. . ® Prox often more expensive to evaluate than gradient
0=Vg@@)+7 (-2 & 0=Prtg+y (v-2) ® Example: Quadratic g(z) = %mTPm +q"a:
& ([+P)z=z-7q .
o 2=I+7P) 'z =9 prox.,,(z) = (I +yP)" (2 =7q),  Vg(2) = Pz+gq
.5 7 py-1 ® But typically cheap to evaluate for separable functions
° proxw(z) = (I+yP) 7z =79) ® Prox often used for nondifferentiable and separable functions
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Conjugate Functions, Optimality
Conditions, and Duality

Pontus Giselsson

Outline

o Conjugate function — Definition and basic properties
e Examples

e Biconjugate

o Fenchel-Young's inequality

o Duality correspondence

e Moreau decomposition

e Duality and optimality conditions

e Weak and strong duality

1
Conjugate function — Definition
Conjugate Functions ® The conjugate function of f : R™ — R U {co} is defined as
f*(s) = sup (s"x - f())
x
® |mplicit definition via optimization problem
3
Conjugate function properties Conjugate interpretation
o Let au(s) :i= sTa — f(x) be affine function parameterized by a: ® Conjugate f*(s) defines affine minorizer to f with slope s:
f(x)
f*(s) = supaz(s)
is supremum of family of affine functions
® Epigraph of f* is intersection of epigraphs of (below three) a, Ta— f+(s)
o \/\ﬁ%
iy (s) IO
Az (s) where — f*(s) decides constant offset to get support
® Why?
s () [ (s) = sup (sTw - f(2)) & f*(s) > sTx — f(z) for all &
® f* convex: epigraph intersection of convex halfspaces epia, o flz) > Ty — f*(s) for all x
® f* closed: epigraph intersection of closed halfspaces epia, o Maximizing argument z* gives support: f(z*) = sTa* — f*(s)
® f* proper if Of (x) # () for some z € R™ (will always assume this) o We have f(z*) = s7a* — f*(s) if and only if s € Of (z*)
5 | |

Consequence

® Conjugate of f and envf are the same, i.e., f* = (envf)*

f(x) env f(x)

® Functions have same supporting affine functions
® Epigraphs have same supporting hyperplanes

Outline

e Conjugate function — Definition and basic properties
e Examples

o Biconjugate

e Fenchel-Young's inequality

e Duality correspondence

e Moreau decomposition

o Duality and optimality conditions

e Weak and strong duality




Example — Absolute value

® Compute conjugate of f(z) = |z|

® For given slope s: —f*(s) is point that crosses |z|-axis

f7(s)

Slope, s =—2 f*(s)

Example — Absolute value

e Compute conjugate of f(z) = |z|

® For given slope s: —f*(s) is point that crosses |z|-axis

|| f*(s)

00 -X---

Slope, s =—2 f*(s) = o0

Example — Absolute value

® Compute conjugate of f(z) = |z|
® For given slope s: —f*(s) is point that crosses |z|-axis

|| f*(s)

(=1,-1)

Slope, s =—1 f*(s)

Example — Absolute value

® Compute conjugate of f(z) = |z|
® For given slope s: —f*(s) is point that crosses |z|-axis

|| 1*(s)

(=1, -1)

Slope, s =—1 f*(s)=0

Example — Absolute value

® Compute conjugate of f(z) = |z|

® For given slope s: —f*(s) is point that crosses |z|-axis

|| f7(s)

Slope, s =—0.5  f*(s)

Example — Absolute value

e Compute conjugate of f(z) = |z|

® For given slope s: —f*(s) is point that crosses |z|-axis

|| f*(s)

¥
(—0.5, —1)

Slope, s =—0.5  f*(s) =0

Example — Absolute value

® Compute conjugate of f(z) = |z|
® For given slope s: —f*(s) is point that crosses |z|-axis

|| f*(s)

(0, —1)
Slope, s =0 f*(s)

Example — Absolute value

® Compute conjugate of f(z) = |z|
® For given slope s: —f*(s) is point that crosses |z|-axis

|| 1*(s)

(0, —1)
Slope, s =0 f*(s)=0




Example — Absolute value

® Compute conjugate of f(z) = |z|

® For given slope s: —f*(s) is point that crosses |z|-axis

|| f7(s)

X
(0.5, 1)

Slope, s =0.5 f*(s)

Example — Absolute value
e Compute conjugate of f(z) = |z|
® For given slope s: —f*(s) is point that crosses |z|-axis

Slope, s =0.5 f*(s)=0
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Example — Absolute value Example — Absolute value
® Compute conjugate of f(z) = |z| ® Compute conjugate of f(z) = |z|
® For given slope s: —f*(s) is point that crosses |z|-axis ® For given slope s: —f*(s) is point that crosses |z|-axis
ot f*(s) f 1*(s)
x S T S
(1, -1) (1, -1)
Slope, s =1 f*(s) Slope, s =1 f*(s)=0
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Example — Absolute value Example — Absolute value
® Compute conjugate of f(z) = |z| e Compute conjugate of f(z) = |z|
® For given slope s: —f*(s) is point that crosses |z|-axis ® For given slope s: —f*(s) is point that crosses |z|-axis
o f7(s) o e
S S
Slope, s =2 f*(s) Slope, s =2 f*(s) = o0
o Conjugate is f*(s) = ¢[_1,1)(s)
9 9
A nonconvex example A nonconvex example
® Draw conjugate of f (f(z) = oo outside points) ® Draw conjugate of f (f(z) = oo outside points)
f(=) f(x) £*(s)
—S S
-
N 0
® Draw all affine a,(s) and select for each s the max to get f*(s)
1*(s) = sup(sz — f(z)) = max(—s — 0,0s — 0.2,s — 0)
T
= max(—s,—0.2,5) = |s|
10 10




Example — Quadratic functions

Example — A piece-wise linear function

® Consider
Let g(z) = 327 Qx + pTx with Q positive definite (invertible) g9(x)
) o —z—-1 ifz<-1
. Gradlenvt satisfies Vg(z) = Qx +Tp - . gz) =0 ifoe[-1,1]
® Fermat's rule for g*(s) = sup, (s’ = — 527 Qv — p"z): e-1 fa>1
x
0=s5—Qr—p © z=Q '(s—p)
® Subdifferential satisfies
* So
" _ _ _ _ . dg(z
g'(5)=5"Q7 (s —p) — (s —p)"QT'QQ (s —p) —p" Q' (s — p) (-1} ife<-1 9(z)
=3(s-p"Q ' (s—p) [-1,0] ifz=—1
dg(z) = < {0} if v e (-1,1) T
0,1 ifz=1
{1} if x> 1
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Example cont’d Example — Separable functions
® Let f(x) = > i, fi(x;) be a separable function, then
n
® We use g*(s) = sz — g(x) if s € g(x): F(s) = Z £2(s0)
® x<—1: s=-1, hence g*(—1) = —lz — (—z —1) =1 =
® ¢ =—1: s€[-1,0] hence g*(s) = —s —0 = —s is al bl
® ze€(—1,1): s=0hence g*(0) =0z —0=0 S also separable
® z=1:5s€0,1] hence g*(s) =s—0=s ® Proof:
®r>1:s=1lhenceg*(l)=az—(z—1)=1 n
* — g T, _ (s
® That is f(s) = 51;]:)(8 x X;fl(x,))
im
. —s if s€[-1,0] = .
$) = = sup sixi — fi(x;
9'(s) {s if s €[0,1] @ (; @i = file:)
n
® Fors<—1lands>1, g*(s) = oo: = Zsup(si.’lri — fi(xs))
® s<—liletx=t— —ocoand g*(s) > ((s+ 1)t +1) = o0 i=1 "
® s>1:letz=t—o00and g*(s) > ((s—1)t+1) - o0 n
=" fi(s:)
i=1
13 14
Example — 1-norm Outline
o Let f(z) = |lzll = X1, |zi| be the 1-norm
® |t is a separable sum of absolute values . . L . .
N o Conjugate function — Definition and basic properties
® Use separable sum formula and that |- |* = L1,
e Examples
* . - 0 if max;[s;] <1  Biconjugate
f(s) = X;fi (si) = Z;L[fl-,l](‘s'i) - {oo else e Fenchel-Young's inequality
1= 1=
o Duality correspondence
® We have max; |s;| = ||s|oo, let e Moreau decomposition
Bao(r) = {s: ||s]lec <7} e Duality and optimality conditions
e Weak and strong duality
be the infinity norm ball of radius r, then
fr(s) = LBGQ(I)(S)
is the indicator function for the unit infinity norm ball
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Biconjugate Biconjugate and convex envelope
® Biconjuate f** := (f*)* is conjugate of conjugate
k(0N T *
(@) = sgp(m 5= [(5)) ® Biconjugate is closed convex envelope of f
® For every z, it is largest value of all affine minorizers )
xT
o Why?: o f** < fand f** = fif and only if f (closed and) convex
o 275 — f*(s): supporting affine minorizer to f with slope s
® f**(x) picks largest over all these affine minorizers evaluated at «
17 18




Biconjugate — Example

® Draw the biconjugate of f (f(x) = co outside points)
I ()

Biconjugate — Example

® Draw the biconjugate of f (f(x) = co outside points)
f(x) (@)

® Biconjugate is convex envelope of f
® We found before f*(s) = |s|, and now (f*)*(z) = ¢[_1,1)(2)
® Therefore also Yo s)=|s|

(since fr= (envf)* _ (f**)* = f***)

19 19
Outline Fenchel-Young's inequality
. ® Going back to conjugate interpretation:
e Conjugate function — Definition and basic properties @)
x
e Examples
o Biconjugate
e Fenchel-Young’s inequality
e Duality correspondence sz — f*(s)
o Moreau decomposition \/\gy
e Duality and optimality conditions \
o Weak and strong duality (-1
® Fenchel-Youngs's inequality: f(x) > sTa — f*(s) for all z,s
® Follows immediately from definition: f*(s) = sup, (s’ — f(x))
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Fenchel-Young's equality Proof — Fenchel-Young’s equality
® When do we have equality in Fenchel-Young? ‘f(x) = sTz — f*(s) holds if and only if s € 9f(x) ‘
f@) = 5Tz~ f*(s) _ . - .
® sc 9f(x) if and only if (by defintion of subgradient)
f@) fly) > f(@)+sT(y—x) forall y
& sTw — f(x) > sTy — f(y) for all y
< sTe — f(z) > sup (sy — f(y))
sTa = f7(s) . !
(52 1) which is Fenchel-Young's inequality with inequality reversed
S, —
® Fenchel-Young's inequality always holds:
® Fenchel-Young's equality and equivalence: Fs) > T (@)
s)>s x— f(z
‘f(z*) = s"a" — [*(s) holds if and only if s € 9/(") so we have equality if and only if s € 9f(x)
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A subdifferential formula for convex f Subdifferential formulas for f*
Assume f closed convex, then 0f(z) = Argmax,(s”z — f*(s)) ‘ ® For general f, we have that
f*(s) = Argmax(s”x — f**(2))
® Since f** = f, we have f(x) = sup,(z”s — f*(s)) and *
o c Arglnax(sz ) = f@) = oI F4(s) by previous formula and since f. closed and convex
s ® For closed convex f, we have, since f = f**, that
— s edf(x)
df*(s) = Argmax(sTz — f(x))
® The last equivalence is from previous slide v
24 25




Relation between 0f and 0f* — General case

‘s € Jf(z) implies that = € 9f*(s) ‘

® Since f** < f and s € 9f(z), Fenchel-Young's equality gives:
0=f*(s) + f(z) = sTa > f*(s) + f**(x) —sT2 >0

where last step is Fenchel-Young's inequality
® Hence f*(s) + f**(z) — sTz =0 and FY = x € 9f*(s)

Inverse relation between 0f and 0f* — Convex case

‘Suppose f closed convex, then s € 9f(z) <= x € df*(s) ‘

® Using implication on previous slide twice and f** = f:
s€df(x)=>ze€df(s)=scdf™(z)=scdf(x)
® Another way to write the result is that for closed convex f:
of = 0!

(Definition of inverse of set-valued A: € A~lu <= u € Ax)
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Example 1 — Relation between 0f and 0f* Example 1 — Relation between 0f and 0f*
® What is 9 f* for below Jf7 ® What is 9 f* for below 9 f7
-
S S
x x S
s € df(x) s€df(x)
x e df(s)
e Since 9f* = (0f)~!, we flip the figure
28
Example 2 — Relation between 0f and Jf* Outline
x
S
o Conjugate function — Definition and basic properties
e Examples
e Biconjugate
x E— S
e Fenchel-Young's inequality
sedf(x) o Duality correspondence
e Moreau decomposition
v e af(s) e Duality and optimality. conditions
e Weak and strong duality
® region with slope o in 9f(z) < region with slope L in 9f*(s)
® Implication: df o-strong monotone < df*(s) o-cocoercive?
(Recall: o-cocoercivity < L-Lipschitz and monotone)
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Cocoercivity and strong monotonicity Duality correspondance
Let f: R" — RU{oc}. Then the following are equivalent:
(i) f is closed and o-strongly convex
df : R™ — 28" maximal monotone and o-strongly monotone (ii) @f is maximally monotone and o-strongly monotone
. A (iii) Vf* is o-cocoercive
f= — * n n H T
0f* = Vf* :R* > R” single-valued and g-cocoercive (iv) Vf* is maximally monotone and i»Lipschitz continuous
(v) f* is closed convex and satisfies descent lemma (is 1-smooth)
® o-strong monotonicity: for all u € 9f(x) and v € df(y) )
where Vf* : R" - R"” and f*:R" = R
(u—0)T(x—y) > allz—yl3 (1) Comments:
or equivalently for all € df*(u) and y € 8f*(v) ® (i) < (i) and (iii) < (iv) < (v): Previous lecture
® Of* is single-valued: ® (ii) < (iii): This lecture
® Assume z € 9f*(u) and y € df*(u), then Ihs of (1) O and z =y ® Since f = f** the result holds with f and f* interchanged
® Vf*is o-cocoercive: plug z =V f*(u) and y = V f*(v) into (1) ® Full proof available on course webpage
® That df* has full domain follows from Minty's theorem
31 32




Example — Proximal operator is 1-cocoercive

Assume g closed convex, then prox., is l—cocoercive‘

9

® Prox definition prox, (z) = argmin, (g(z) + %Hx —z[1%)

® Let 7 =~g+ 1| - ||3, then

prox,(2) = argmin(g(z) + 2 lo — 2[3)

argipax(—W’g(J?) - %Hm - 23)
= arginax(zTﬂc - (Glz13 + (=)
= argmax(zz — r(z))
©
=Vr'(z)

where last step is subdifferential formula for r* for convex r

® Now, r is 1-strongly convex and Vr* = Prox. is 1-cocoercive

Example — Proximal operator for strongly convex g

Assume g is o-strongly convex, then prox. , is (1 + ~o)-cocoercive

® Let 7 =g+ 4| - 3, and use prox,,(z) = Vr*(z)
® 1 is (1 + yo)-strongly convex and Vr* is (1 + yo)-cocoercive
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Outline Moreau decomposition — Statement
e Conjugate function — Definition and basic properties
o Examples Assume g closed convex, then prox,(z) + prox,.(2) = z‘
o Biconjugate
e Fenchel-Young's inequality ® When g scaled by v > 0, Moreau decomposition is
e Duality correspondence .
« Moreau decomposition 2 = prox,;(z) + prox, g« (2) = prox, () + yprox,-1,. (v~ '2)
o Duality and optimality conditions (since prox. ). = YProx,-1,. ~v~1Id)
e Weak and strong duality ® Don't need to know g* to compute prox.,,.
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Moreau decomposition — Proof
o letu=z—x
® Fermat's rule: = = prox,(2) if and only if
0€dg(z)+e—2 &  z-z€dy(r) Optimality Conditions and Duality
& u € dg(x)
& z € 0g*(u)
& z—u € 0g*(u)
& 0€dg*(u)+u—=z
if and only if u = prox,.(2) by Fermat's rule
® Using z = = + u, we get
2 = x +u = prox,(z) + prox,.(z)
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Outline Composite optimization problem
e Conjugate function — Definition and basic properties
e Examples
« Biconjugate ® Consider primal composite optimization problem
o Fenchel-Young's inequality minimize f(Lz) + g(z)
e Duality correspondence
o Moreau decomposition where f, g closed convex and L is a matrix
« Duality and optimality conditions ® We will derive primal-dual optimality conditions and dual problem
e Weak and strong duality
39 40




Primal optimality condition

Let f:R™ =R, g:R” - R, L € R™*™ with f, g closed convex
and assume CQ, then:

minimize f(Lx) + g(x)

is solved by * € R™ if and only if 2* satisfies

0€ LTaf(La") + dg(x")

® Optimality condition implies that vector s exists such that
se€ LTof(Lz*) and — s € dg(z*)

® So CQ implies a subgradient exists for both functions at solution

Primal-dual optimality condition 1

® Introduce dual variable € 0f(Lz), then optimality condition
0 e LT 0f(Lx) +0g(x)
——
14
is equivalent to
wu € df(Lx)
—L p € dg(x)

® This is a necessary and sufficient primal-dual optimality condition

® (Primal-dual since involves primal x and dual p variables)
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Primal-dual optimality condition 2 Dual optimality condition
e Primal-dual optimality condition ® Using subdifferential inverse on other condition
T . . w(_ 1T
e of(La) —L" € 9g(x) = x € 0g*(—L" p)
—L"p € dg(x) gives equivalent primal dual optimality condition
® Using subdifferential inverse: Lz € 0f*(n)
- w(_ 7T
ne of(Lx) = Lz € 0f* (1) v €dg"(=L"p)
gives equivalent primal dual optimality condition ® This is equivalent to that:
« " T
La € 0" (1) 08/ ()~ LO" (7L u)
—L"p € dg(x) ’
which is a dual optimality condition since it involves only
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Dual problem Why dual problem?
® The dual optimality condition
0€df*(u) — Log*(—L"
) 9 ( 2 ® Sometimes easier to solve than primal
is a sufficient condition for solving the dual problem ® Only useful if primal solution can be obtained from dual
minimize f*(;1) + g* (=L 1)
® Have also necessity under CQ on dual, which is mild
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Solving primal from dual Optimality conditions — Summary
® Assume f, g closed convex and that CQ holds
® Assume f, g closed convex and CQ holds ® Problem min, f(Lz) + g(x) is solved by  if and only if
. . 9 £k o k(7T
. ASSl-Jme op-t|mal dual g kn<?wn. 0€df*(u) - Log*(—L [L? . 0e LTof(La) + dg(x)
® Optimal primal = must satisfy any and all primal-dual conditions:
® Primal dual necessary and sufficient optimality conditions:
j€0f(La) La € 0f*(n) , ,
—LTy € dg(x) —LTy € dg(x) u 6, ?f(LfI:) Lz e Af*(u)
—LT1 € 0g(w) —L"u € 0g(x)
j€f(La) La € 0f*(n) , ,
2 €dg* (=L ) x € dg* (=L ) ;1€8j(Lz1:)H Lz € 0f (;1,?‘
x € 0g* (=L ) x € 0g* (=L )
® If one of these uniquely characterizes x, then must be solution: o .
® g* is differentiable at —L” y for dual solution p ® Dual optimality condition
: f is differentiable at dual solution i and L invertible 0e Df*(ﬂ) _ Lag*(—LTu)
solves dual problem min,, f*(p) + ¢*(—L" 1)
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Outline

o Conjugate function — Definition and basic properties
e Examples

e Biconjugate

o Fenchel-Young's inequality

o Duality correspondence

e Moreau decomposition

e Duality and optimality conditions

e Weak and strong duality

Concave dual problem

® \We have defined dual as convex minimization problem
mini}}nize Fr(p) + g (=L )
® Dual problem can be written as concave maximization problem:
max}lmize —f () — 9" (=L p)
® Same solutions but optimal values minus of each other

® Concave formulation gives nicer optimal value comparisons

® To compare, we let the primal and dual optimal values be

p'=inf(f(Le) +g(x))  and - d* = sup(—f () - g (L")
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Weak duality Strong duality
. . Assume f, g closed convex, solution z* exists, and CQ
‘ Weak duality always holds meaning p* > d* ‘ then strong duality holds meaning p* = d*
¢ We have by Fenchel-Young's inequality for all 1 and x: ® Dual p* and primal z* solutions exist such that
() + 9" (=LTp) > p" Lo — f(La) + (—L" )" — g(x) w* € 9f(Lx*) and — LTy € dg(x™)
= —f(Le) - g(a) o
® \We have by Fenchel-Young's equality:
® Negate, maximize |hs over u, minimize rhs over z, to get . . .
P = f(La*) + g(a*)
d* = sup(—f*(n) — g*(—=L" p)) < inf(f(Lz) + g(z)) = p* R T, T x s 7T, %
N = W) La™ = f1(u) + (L7 p") 2t — g7 (=L )
=—f'(w) g (~LTp) = d"
51 52

Dual problem gives lower bound

® Consider again concave dual problem with optimal value

d* = sx;p(ff*(u) —g* (L")

® \We know that for all dual variables
pr>d > —f () — g (L p)

® So can find lower bound to p* by evaluating dual objective
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Proximal Gradient Method

Pontus Giselsson

Outline

o Introducing proximal gradient method and examples

e Solving composite problem — Fixed-points and convergence

e Application to primal and dual problems

2
Composite optimization problems Problem assumptions
® Proximal gradient method works, e.g., for problems that satisfy
® fis B-smooth f: R™ — R (not necessarily convex)
® We have introduced the composite optimization problem ¢ g is closed convex
® Recall that if S-smoothness implies that f satisfies
minimize f(Lz) + g(z)
b 3
fy) < f@) + V@) (y - )+ 5y — |3
R . - . . - 5
Need an algorithm that solves it - proximal gradient method f) > fl@) + V@) (y—z) — By - 2|2
® We will consider the simpler composite optimization problem
it has convex quadratic upper and concave quadratic lower bounds
mlmgmch(f) +9(x) ® If f in addition is convex, we instead have
that gives the former by letting f — fo L fy) < fla) + V@) (y—z) + %HU — |3
fy) = fl@) + V@) (y — =)
where the concave quadratic lower bound is replaced by affine
4
Minimizing upper bound Proximal gradient method
® Due to f-smoothness of f, we have ® Let us replace 8 by 7, ', = by a1, and v by zj41 to get:
F) +9() < f@) + V@) (y = 2) + 5lly = 2]3 + 9(y) .
2 Tp41 = argmin (f(”Ek) + V() (y — ) + ﬁ”y — x5 + g(y))
for all z,y € R”, i.e., r.h.s. is upper bound to lh.s. Y
_ : 1 ' 2
® Minimizing in every iteration the r.h.s. w.r.t. y for given x gives = arg;nln (g(y) + oy lly = (@ — kaf(zk))”Q)
v =argmin (f(z) + V(@) (y —2) + §lly — 2l13 + 9(»)) = prox,, o (w5 — 1V f(2x)
Yy
. 5 . ) ® This is exactly the proximal gradient method
- al;i]1111 (g(y) +ally - (-5 Vf(x))HQ) ® The method replaces f by quadratic approximation and minimizes
= proxg-1,(z — B7IVf(x)) ® (Note that we need an initial guess z to start the iteration)
Proximal gradient — Example Proximal gradient — Example
® Proximal gradient iterations for problem minimize %(:L‘ —a)? + 7| ® Proximal gradient iterations for problem minimize %(:t —a)? + |z|
T T
® f(z) = 1(z — a)? is smooth term and g(z) = || is nonsmooth ® f(z) = 1(z — a)? is smooth term and g(z) = || is nonsmooth
® lteration: zj41 = prox,,(zx — YV f(z)) ® lteration: 41 = prox,,(vx — YV f(2k))
® Note: convergence in finite number of iterations (not always)

® Note: convergence in finite number of iterations (not always)

zo
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Proximal gradient — Example

® Proximal gradient iterations for problem minimize 1 (z — a)? + ||
T

® f(z) = 3(z — a)? is smooth term and g(z) = || is nonsmooth

® lteration: xy11 = prox, (zr — YV f(zr))

® Note: convergence in finite number of iterations (not always)

/

Proximal gradient — Example

® Proximal gradient iterations for problem minimize 1 (z — a) + |z|
x

® f(z) = 3(z — a)? is smooth term and g(z) = || is nonsmooth
® lteration: xy11 = prox, (zx — YV f(zk))
® Note: convergence in finite number of iterations (not always)

/

Proximal gradient — Example
® Proximal gradient iterations for problem minimize %(:L‘ —a)? + |z|
T
® f(z) = 1(z — a)? is smooth term and g(z) = || is nonsmooth
® |teration: xp41 = proxﬁ,g(ack -V f(zk))
® Note: convergence in finite number of iterations (not always)

/

Proximal gradient — Example
® Proximal gradient iterations for problem minimize %(:t —a)? + |z|
T
® f(z) = 1(z — a)? is smooth term and g(z) = || is nonsmooth
® lteration: 41 = prox,,(zx — YV (o))
® Note: convergence in finite number of iterations (not always)

/

7
Proximal gradient — Special cases Outline
® Proximal gradient method:
® solves minimize(f(x) + g(x))
@
® iteration: Tj41 = proxng(mk -V f(zk))
® Proximal gradient method with g = 0: e Introducing proximal gradient method and examples
¢ solves mini;“ize(f(z)) e Solving composite problem — Fixed-points and convergence
® prox,, o(2) = argmin, (0 + 5= |lz — z[13) = 2 o Application to primal and dual problems
® iteration: Tji1 = prox%g(z;C -V f(zk)) = zk — eV f(zk)
® reduces to gradient method
® Proximal gradient method with f = 0:
¢ solves minimize(g())
® Vf(z)=0
® iteration: 41 = prox,,  (zr — WV f(2k)) = prox., (=)
® reduces to proximal point method (which is not very useful)
8 9

Proximal gradient method — Fixed-point set

® Proximal gradient step
Tht1 = prox,  (vr — 7V f(zr))
® If 2441 = xy, they are in proximal gradient fixed-point set
{z 12 = prox, (z —yVf(z))}
® Under some assumptions, algorithm will satisfy z;41 — xx — 0

® this means that fixed-point equation will be satisfied in limit
® what does it mean for x to be a fixed-point?

10

Proximal gradient — Optimality condition

® Proximal gradient step:

v = prox. ,(x — YV f(z)) = arginin(g(y) +5lly = @ =V f(@)]3)

h(y)

where v is unique due to strong convexity of h

® Fermat's rule (since CQ holds) gives v = prox, (z — vV f()) iff:

0 € 9g(v) + Oh(v)
=dg(v) +77 (v = (& =V f(2)))
= 0g(v) + V(@) + 7 (v —2)

since h differentiable

11




Proximal gradient — Fixed-point characterization

For v > 0, we have that

7 = prox,,(z — 7V f(z)) ifandonlyif 0€ dg(z)+ Vf(z)

Proof: the proximal step equivalence
v =prox,,(z —yVf(z)) << 0€dg(v)+Vf(z)+ v —2)
evaluated at a fixed-point © = v = T reads

T =prox, (7 -7Vf(z) < 0€dg(z)+Vf(z)

We call inclusion 0 € dg(z) + V f(Z) fixed-point characterization

Meaning of fixed-point characterization

® What does fixed-point characterization 0 € dg(z) + V f(Z) mean?
® For convex differentiable f, subdifferential 9f(z) = {V f(z)} and

0€0f(x)+d9(z) = (f + 9)(2)

(subdifferential sum rule holds), i.e., fixed-points solve problem
® For nonconvex differentiable f, we might have df(z) =0
® Fixed-point are not in general global solutions
® Points Z that satisfy 0 € dg(Z) + V f(&) are called critical points
® If g =0, the condition is V f(Z) = 0, i.e., a stationary point

® Quality of fixed-points differs between convex and nonconvex f

12 13
Conditions on v, for convergence Practical convergence — Example
® Logarithmic y axis of quantity that should go to 0 for convergence
® Linear = axis with iteration number
® \We replace in proximal gradient method f(y) by
T Ll — |12
flaw) + Vi(ze) (v — o) + 557 lly — 2z
and minimize this plus g(y) over y to get the next iterate 102
® We know from (-smoothness of f that for all =,y .
. . B
f@) < f(@) + V@) (y—2)+ Slly — 3
® If v € [e, %3] with € > 0, an upper bound is minimized ot
® Can use v € [e,% — €] and show convergence of some quantity B T s e T o s
iteration k- *10%
® Fast convergence to medium accuracy, slow from medium to high
® Many iterations may be required
14 15
Stopping conditions QOutline
® For $-smooth f : R™ — R, we can stop algorithm when
éuk = %(’Y;l(%k —2py1) + V(zrg) — VF(zg))
is small ) ) )
e This is the plotted quantity on the previous slide e Introducing proximal gradient method and examples
* We can use absolute o relative stopping conditions: e Solving composite problem — Fixed-points and convergence
® absolute stopping conditions with small €ans > 0 o Application to primal and dual problems
%Hﬂkﬂz < €abs or Llukllz < €apsv/n
® relative stopping condition with small €1, € > 0:
1 llwells
B Tonla A1 IV faplare = 6ol
® Problem considered solved to optimality if, say, %Hung <1076
e Often lower accuracy of 1073 or 10~* is enough
16 17
Applying proximal gradient to primal problems Applying proximal gradient to dual problem
pPplying p g P p Pplying p g P
Problem e f@) + g(): ® Let us apply the proximal gradient method to the dual problem
L] I .
Assumptions: minimize f* (1) + g% (— L7 )
® f smooth m
® g closed convex and prox friendly' A .
R ® Assumptions:
. C Xpaq = Pr TE — z
Algorithm: 241 pIOX"’W(”” WV f(@k)) ® f: closed convex and prox friendly
Problem minimize f(Lz) + g(z): ® g: o-strongly convex
J_E ® Why these assumptions?
® Assumptions: ® f*: closed convex and prox friendly
® f smooth (implies f o L smooth) ® g o—L": IZI3 _gmooth and convex
® ¢ closed convex and prox friendly* . 7
. T ® Algorithm:
® Gradient V(fo L)(x) = L'V f(Lx)
. T
® Algorithm: zp4q = prox%g(fck — . LTV f(Lxy)) Hk+1 = PIOX,, p« (e — v V(g* o —L" ) (ur))
! Prox friendly: proximal operator cheap to evaluate, e.g., g separable
18 19




Dual proximal gradient method — Explicit version 1

® We will make the dual proximal gradient method more explicit
fis1 = prox,, g (e — V(g™ 0 —LT)(ux))
® Use V(g* o —LT) () = —LVg*(—=LT ) to get

ap, = Vg (=L )
prt1 = prox, g (ke + e Lag)

Dual proximal gradient method — Explicit version 2

® Restating the previous formulation
z = Vg  (—LT )
Pr1 = prox., g (pik + e L)
® Use Moreau decomposition for prox:
prox. ;- (v) = v — 7prox,),,1f(ﬁ/’lv)
to get
w = Vg (~L" i)
Vg = p + YLk

3 I /71 )
L1 = Vg — ,kproxwflf('\,k V)

20 21
Dual proximal gradient method — Explicit version 3 Dual proximal gradient method — Primal recovery
* Restating the previous formulation ® Can we recover a primal solution from dual prox grad method?
xp = Vg (=L ) ® Let us use explicit version 1
v = g + L *
k= Mk T VLT . ax = Vg (=L )
Hhlt1 = Uk — 'y;gproxﬂ‘,;lf(’yk Uk) Prs1 = prox, p. (pk + L)
R . . . - o
Use subdifferential formula, since ¢g* differentiable: and assume we have found fixed-point (, &): for some 7 > 0,
V * V) = argmax I/TJ,‘ - x = arO'lnin xTr) — l/TI
g*(v) g ( 9(z)) g (9(x) ) 7= Vg (—-LTh)
with v = —LT i, to get i = proxs . (it + YLT)
x = argmin(g(z) 4 (ux)? Lz) ® Fermat's rule for proximal step
x
o = pu + L 0€df* (m) +7 " (5 — (n+7Lx)) = 0f* () — LT
. . —1
Het1 = Uk %pmx"/{lfm’“ vk) is with Z = Vg*(—L"[1) a primal-dual optimality condition
® Can implement method without computing conjugate functions ® So xy will solve primal problem if algorithm converges
22 23
Problems that prox-grad cannot solve Problems that prox-grad cannot solve efficiently
® Problem minimize f(z) + g(Lz)
® Assumptions:
® f smooth
® Problem minimize f(z) + g(x) ® g nonsmooth convex
T N ) .
® Assumptions: f and g convex but nondifferentiable L arbltrary.structured. matrix
® No term differentiable, another method must be used: * Can apply proximal gradient method
® Subgradient method Troi = aremi L Ly = (2 — vV F(z )12
® Douglas-Rachford splitting Tt g}, 0(g(Ly) + 3y 1y = (2 = wVF(20))12)
® Primal-dual methods
but proximal operator of go L
PIOX, (41 (2) = argmin(g(La) + g | — 2[13)
often not “prox friendly”, i.e., it is expensive to evaluate
24 25




Algorithms and Convergence

Pontus Giselsson

Outline

e Algorithm overview
o Convergence and convergence rates

e Proving convergence rates

What is an algorithm?

® We are interested in algorithms that solve composite problems
minimize f(z) + g(z)
z

® An algorithm:
® generates a sequence (z)ren that hopefully converges to solution
® often creates next point in sequence according to

Tpt1 = Apxp

where
® A, is a mapping that gives the next point from the current

® Ay = prox,, ;o (I =, V[) for proximal gradient method

Deterministic and stochastic algorithms

® \We have deterministic algorithms
Trt1 = Apxg

that given initial 2o will give the same sequence (z1)ken
® \We will also see stochastic algorithms that iterate

g1 = A ()i

where £ is a random variable that also decides the mapping
® (x)ken is a stochastic process, i.e., collection of random variables
® when running the algorithm, we evaluate £ and get a realization
o different realization (zx)ren every time even if started at same zg

Stochastic algorithms useful although problem is deterministic

Optimization algorithm overview

® Algorithms can roughly be divided into the following classes:
® Second-order methods
® Quasi second-order methods
® First-order methods
® Stochastic and coordinate-wise first-order methods

® The first three are typically deterministic and the last stochastic

® Cost of computing one iteration decreases down the list

Second-order methods

Solves problems using second-order (Hessian) information

Requires smooth (twice continuously differentiable) functions

Example: Newton's method to minimize smooth function f:

T = o — (V2 (1)) TV f (1)

Constraints can be incorporated via barrier functions:

® Use sequence of smooth constraint barrier functions

Make barriers increasingly well approximate constraint set

For each barrier, solve smooth problem using Newton's method
Resulting scheme called interior point method

(Can be applied to directly solve primal-dual optimality condition)

Computational backbone: solving linear systems O(n?)

Often restricted to small to medium scale problems
® We will cover Newton's method

Quasi second-order methods

Estimates second-order information from first-order

Solves problems using estimated second-order information

Requires smooth (twice continuously differentiable) functions
® Quasi-Newton method for smooth f

Thy1 = Tk — W BV f(2k)

where By, is:
® estimate of Hessian inverse (not Hessian to avoid inverse)
® cheaply computed from gradient information

® Computational backbone: forming By and matrix multiplication
® Limited memory versions exist with cheaper iterations

® Can solve large-scale smooth problems

Will briefly look into most common method (BFGS)

First-order methods

Solves problems using first-order (sub-gradient) information

Computational primitives: (sub)gradients and proximal operators
® Use gradient if function differentiable, prox if nondifferentiable

Examples for solving minizmizc f(@) +g(z)
® Proximal gradient method (requires smooth f since gradient used)
Tr41 = prox, g (zx — YV f(xk))
® Douglas-Rachford splitting (no smoothness requirement)
Zhtl = %zk + %(Zproxw — I)(2prox,; — 1)z
and 7 = prox,)/(zk) converges to solution
® |teration often cheaper than second-order if function split wisely

® Can solve large-scale problems
® Will look at proximal gradient method and accelerated version




Stochastic and coordinate-wise first-order methods

® Sometimes first-order methods computationally too expensive
® Stochastic gradient methods:

® Use stochastic approximation of gradient

® For finite sum problems, cheaply computed approximation exists
® Coordinate-wise updates:

® Update only one (or block of) coordinates in every iteration:

® via direct minimization
® via proximal gradient step

® Can update coordinates in cyclic fashion
® Stronger convergence results if random selection of block
® Efficient if cost of updating one coordinate is 1/n of full update

® Can solve huge scale problems

Will cover randomized coordinate and stochastic methods

Outline

o Algorithm overview
o Convergence and convergence rates

e Proving convergence rates
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Types of convergence

Let z* be solution to composite problem and p* = f(z*) + g(z*)

® \We will see convergence of different quantities in different settings

For deterministic algorithms that generate (zj)ren, we will see
® Sequence convergence: xj — x*
® Function value convergence: f(zx) + g(zx) — p*
® |f g =0, gradient norm convergence: ||V f(zy)|l2 — 0

® Convergence is stronger as we go up the list

® First two common in convex setting, last in nonconvex

11

Convergence for stochastic algorithms

® Stochastic algorithms described by stochastic process (zj)ken
® \When algorithm is run, we get realization of stochastic process
® \We analyze stochastic process and will see summability, e.g., of:

o

® Expected distance to solution: Y2  E[[|zr — z*[|2] < co

® Expected function value: > 7% E[f(zx) + g(zx) — p*] < 00

® If g =0, expected gradient norm: 7% E[[|V f(2)||5] < 0o

® Sometimes arrive at weaker conclusion, when g = 0, that, e.g.,:

® Expected smallest function value: E[ min }f(zl) -pl—=0
1€{0,....k

® Expected smallest gradient norm: E| {min }HVf(z/)Hg] -0
1€{0,....k

® Says what happens with expected value of different quantities

12

Algorithm realizations — Summable case

® Will conclude that sequence of expected values containing, e.g.,:
Bllzr —a*[l2] or E[f(zx) +g(zx) —p"] or E[IVf(ak)l2]

is summable, where all quantities are nonnegative
® What happens with the actual algorithm realizations?
® We can make conclusions by the following result: If
® (Z)ken is a stochastic process with Z; > 0
¢ the sequence (E[Zy])ren is summable: Y77 (E[Z;] < oo
then almost sure convergence to 0:

P(lim 2, =0) =1

i.e., convergence to 0 with probability 1

13

Algorithm realizations — Convergent case

® Will conclude that sequence of expected values containing, e.g.,:

E[ min ) —p*] or E[ min |Vf(z

[le{(),..,,k}f( 0=l [ze{o ..... k} IV Foll2]
converges to 0, where all quantities are nonnegative

® \What happens with the actual algorithm realizations?

® \We can make conclusions by the following result: If

® (Zy)ken is a stochastic process with Z; > 0
® the expected value E[Z;] — 0 as k — oo

then convergence to 0 in probability; for all € > 0

lim P(Z, >¢)=0
k—ro0

which is weaker than almost sure convergence to 0

14

Convergence rates

® \We have only talked about convergence, not convergence rate
® Rates indicate how fast (in iterations) algorithm reaches solution
Typically divided into:

® Sublinear rates

® Linear rates (also called geometric rates)

® Quadratic rates (or more generally superlinear rates)

® Sublinear rates slowest, quadratic rates fastest

® |inear rates further divided into Q-linear and R-linear

Quaderatic rates further divided into Q-quadratic and R-quadratic

15

Linear rates

® A Q-linear rate with factor p € [0,1) can be:

fare1) + g(@ri1) — p* < p(f(xx) + g(zr) —p*)
E[[|xgs1 — 2%[|2] < pE[lzx — 2*||2]

® An R-linear rate with factor p € [0,1) and some C' > 0 can be:
llz = 2*[|2 < p*C

this is implied by Q-linear rate and has exponential decrease
® Linear rate is superlinear if p = p; and p — 0 as k — oo
® Examples:
® (Accelerated) proximal gradient with strongly convex cost
® Randomized coordinate descent with strongly convex cost
® BFGS has local superlinear with strongly convex cost
® but SGD with strongly convex cost gives sublinear rate

16




Linear rates — Comparison

® Different rates in log-lin plot

10° — p=0.99
10 — p=0.96
p=0.93
107
— p=10.90
107
107
10°
10°
0 200 400 600 800 1000

® Called linear rate since linear in log-lin plot
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Quadratic rates

® Q-quadratic rate with factor p € [0,1) can be:

f@rin) + g(zen) = p* < p(f (@) + glax) — p*)°
lzrsr — 272 < plle — 2|3
® R-quadratic rate with factor p € [0,1) and some C' > 0 can be:

ok — a*]l2 < p*'C

Quadratic (pzk) vs linear (p*) rate with factor p = 0.9:

o
c
©
o
=
o
=g
a
T
S
o
o

SRS |5
SSOoOSOSD
OCOCO00O—
R UITIONI000D

SERCOCOSD
S ssss's]

=

Example: Locally for Newton's method with strongly convex cost
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Quadratic rates — Comparison

® Different rates in log-lin scale

100 — p=0.99
— p=0.96

p=0.93
— p=0.90

® Quadratic convergence is superlinear

19

Sublinear rates

A rate is sublinear if it is slower than linear
® A sublinear rate can, for instance, be of the form

IN
Q

f(xr) + g(wx) — p*
o1 — i3 <

i () []12
Jin B[V f(@)]2]

<
Z|

A
<
=

IN
<
=

where C' > 0 and v decides how fast it decreases, e.g.,
® (k) = log k: Stochastic gradient descent v = ¢/k
(k) = Vk: Stochastic gradient descent: optimal
(k) = k: Proximal gradient, coordinate proximal gradient
(k) = k*: Accelerated proximal gradient method

with improved rate further down the list
® We say that the rate is O(ﬁ) for the different 1)
® To be sublinear 1) has slower than exponential growth

20

Sublinear rates — Comparison

® Different rates on log-lin scale

10°

-

5]
0
Bl

~——

- K

Ty

10°®
0 2000 4000 6000 8000 10000

® Many iterations may be needed for high accuracy
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Rate vs iteration cost

Consider these classes of algorithms

® Second-order methods

® Quasi second-order methods

® First-order methods

® Stochastic and coordinate-wise first-order methods

® Rate deteriorates and iterations increase as we go down the list |}
® |teration cost increases as we go up the list

® Performance is roughly (# iterations) x (iteration cost)

® This gives a tradeoff when selecting algorithm

® Rough advise for problem size: small (1) medium (114}) large ({})

22
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¢ Proving convergence rates
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Proving convergence rates

® To prove a convergence rate typically requires

® Using inequalities that describe problem class
® Using algorithm definition equalities (or inclusions)
® Combine these to a form so that convergence can be concluded

® Linear and quadratic rates proofs conceptually straightforward

® Sublinear rates implicit via a Lyapunov inequality

24




Proving linear or quadratic rates

® |f we suspect linear or quadratic convergence for Vj, > 0:
Vi1 < oV

where p € [0,1) and p =1 or p =2 and V}, can, e.g., be

Vi =lloe —2*lla or Vi = flax) +g(xx) —p* or Vi =|[Vf(@r)l2

® Can prove by starting with Vi41 (or V2,) and continue using
® function class inequalities
® algorithm equalities
® propeties of norms
L]

Sublinear convergence — Lyapunov inequality

® Assume we want to show sublinear convergence of some Ry > 0
® This typically requires finding a Lyapunov inequality:

Vi1 < Vi + Wi — By,

where
® (Vi)ken, (Wk)ken, and (Rkﬁg]\] are nonnegative real numbers
® (Wi)ken is summable, i.e., W :=>"p2 Wi < 0o
® Such a Lyapunov inequality can be found by using
® function class inequalities
® algorithm equalities
® propeties of norms
L]
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Lyapunov inequality consequences Concluding sublinear convergence
® From the Lyapunov inequality:
Vi1 < Vi + Wi — Ry ® Lyapunov inequality consequence restated
we can conclude that k k
® V. is nonincreasing if all Wy, =0 ZRZ <Vo+ Z W, < Vo+W
® V) converges as k — oo (will not prove) -0 =0
® Recursively applying the inequality for I € {k,...,0} gives ) )
. . . ® \We can derive sublinear convergence for
= ® Best Ry: (k+1)minego,.. »y Rt < Zkf R
<V - < -SSR =0
Vi s Vot ; W ;Rl sVot+W ;Rl ® Last Ry, (if Ry, decreasing): (k+1)Rx < 3% R
o B - B ® Average Ry: Ry = k%rl Z;“:U R
where W is infinite sum of Wy, this implies . .
. . . ® et Ry be any of these quantities, and we have
_ / W & _
;stvo Vk+1+;msvo+;msvo+w fe < Sholu Vot W
=0 =0 =0 -~ k+1 T k+1
from which we can
® conclude that Ry — 0 as k — oo since Ry > 0 which shows a O(1/k) sublinear convergence
® derive sublinear rates of convergence for Ry towards 0
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Deriving other than O(1/k) convergence (1/3) Deriving other than O(1/k) convergence (2/3)
® Other rates can be derived from a modified Lyapunov inequality: ® Restating the consequence: Zf:o MR < Vo+W
i ® \We can derive sublinear convergence for
V}H'l < Vi + Wi = ARy ® Best Ry: Ulinle(o _____ K} Ry 2;;0 A < Zf:() MRy
with A > 0 when we are interested in convergence of Ry, then * Laslt Ry, (if Ry decreasing): Ry zl:‘:f’ )"kg Do MR
® Weighted average Ry: Rk = = — S0 MR
1=0
k k .
Z)\ZRI <Vi+ ZWl <Vo+ W ® Let Ry be any of these quantities, and we have
1=0 =0 B < Zf:o N Ry < V0+W
: o S Sy
® We have R, — 0 as k — x if, e.g., ’11;11\’ A >0 PIHRPY PIAIPY
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Deriving other than O(1/k) convergence (3/3) Estimating ¢ via integrals
® Assume that A\, = ¢(k), then (k) < Ef:o ¢(1) and
® How to get a rate out of: P < Sl o MR <V + W
=R <
_ e ¥(k)
W Tl
e < SIY ® To estimate 1), we use the integral inequalities
2icoN ® for decreasing nonnegative ¢:
k , . o k
* Assume (k) < 31— \i, then ¢)(k) decides rate: /k s(t)dt + o(k) < 3" o(1) < /k S(t)dt + $(0)
t=0 — t=0
k T 1=0
Rk < M < M ® for increasing nonnegative ¢:
Zz:o Al (k) k k k
o(t)dt + ¢(0) <> (1 g/ o(t)dt + p(k)
which gives a O(ﬁ) rate /t:l) ) ) ; ® t=0 )
® If A = cis constant: ¥ (k) = c(k + 1) and we have O(1/k) rate ® Remove ¢(k), ¢(0) > 0 from the lower bounds and use estimate:
® |f \r is decreasing: slower rate than O(1/k) .
® |If A\x is increasing: faster rate than O(1/k) ) rk
k)= [ s)dt <o)
=0 1=0
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Sublinear rate examples

® For Lyapunov inequality Vi1 < Vi + Wi — ARy, we get:

k

where A = ¢(k) and ¥(k) = / o(t)dt
Ji=0

A Vo+W
<
"= (k)

® Let us quantify the rate ¢ in a few examples:
® Two examples that are slower than O(1/k):

® N\, =¢(k) =c/(k+ 1) gives slow O(lo;ik) rate:

k c
0) = [t = llog(t + Dl = clog(k + 1)
1

® A= ¢(k) =c/(k+ 1) for a € (0,1), gives faster O(;7=7) rate:

k ¢ =+ =1k c 1-a
v = [ et = A o = (kD1 - )

® An example that is faster than O(1/k)
® N = ¢(k) = c(k + 1) gives O(5) rate:

.
b(k) = /H] ot + )t = efL(t + 1)%]5_g = E((k+1)? — 1)
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Stochastic setting and law of total expectation

In the stochastic setting, we analyze the stochastic process
Tpp1 = Ar (&)
We will look for inequalities of the form
E[Vit1|zk] < E[Vi|zg] + E[Wk|zk] — AE[Ry|zk]

to see what happens in one step given ;. (but not given &)
We use law of total expectation E[E[X|Y]] = E[X] to get

E[Viey1] < E[Vi] + E[Wi] — ME[Ry]

which is a Lyapunov inequality
We can draw rate conclusions, as we did before, now for E[Ry]
For realizations we can say:

® If E[Ry] is summable, then Rj, — 0 almost surely
® If E[Rx] — 0, then Rr — 0 in probability

34

Rates in stochastic setting

® Lyapunov inequality E[Vj41] < E[Vi] + E[Wj] — A\yE[Ry] implies:

k k
STNER]) < Vo + Y EW] < Vo+ W

=0 1=0

® Same procedure as before gives sublinear rates for
® Best E[Ry]: mineqo,...x) E[R] S5 o M < 25, ME[RI]
® Last E[Ry] (if E[Rx] decreasing): E[Rx] S5 o M < S°F ME[R)]

® Weighted average: E[Ri] = Zf‘;lg = o ME[RI]

® Jensen's inequality for concave min; in best residual reads

E[ min R]< min E[R]
1€{0,...k} 1€{0,....k}

® |et I;’.k be any of the above quantities, and we have
Vo + w

B[R] < 25—
Zfzo Al
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Proximal Gradient Method

Pontus Giselsson

Outline

e A fundamental inequality
e Nonconvex setting

o Convex setting

e Strongly convex setting
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o Stopping conditions

e Accelerated gradient method
e Scaling

Proximal gradient method

® \We consider composite optimization problems of the form
minimize f(z) +g(z)
® The proximal gradient method is
o = axgmin (@) + VI @) (v =2+ 2y = ol + o))
= arguin (g(y) + 2y — (o~ 99 ) 13)

= prox,, o(zr — %V f(zk))

Proximal gradient — Optimality condition

® Proximal gradient iteration is:

Tppt1 = prox,, o (vx — 1V f(zn))

= argmin(g(y) + 2 |y — (ex — VL))
Y

h(y)
where x4 is unique due to strong convexity of h
® Fermat'’s rule gives, since g convex, optimality condition:
0 € 9g(xk41) + Oh(Tpi1)
= 0g(@rr1) + 77 (@rer — (@6 — WV f (1))

since h differentiable
® A consequence is that dg(xj1) is nonempty

3
Proximal gradient method — Convergence rates Assumptions for fundamental inequality
(z) f:R™ — Ris continuously differentiable (not necessarily convex)
(i3) For every x), and xy1; there exists By € [7,77], n € (0,1]:
® We will analyze proximal gradient method in different settings: T 3 N
o Nonconvex f(@rt1) < flaw) + VEar)" (@ — 2x) + Flloe — zrrllz
® O(1/k f d residual a . .
e C (1/k) convergence for squared residua where ) is a sort of local Lipschitz constant
onvex .
® O(1/k) convergence for function values (iii) g:R™ = RU {oco} is closed convex
¢ Strongly convex (iv) A minimizer 2* exists and p* = f(z*) 4+ g(«*) is optimal value
.1 . .
Linear convergence in distance to solution <v> Proximal gradient method parameters 7 > 0
® First two rates based on a fundamental inequality for the method
® Assumption (i7) satisfied with 8, > 3 if f is S-smooth
® Assumptions will be strengthened later
5

A fundamental inequality

For all z € R™, the proximal gradient method satisfies

F@rsn) + 9(@iin) < Fan) + V@) (z - a1) — 22 oy — a3

+9(2) + gy (lew = 2113 = llwrsr — 2[13)

where x4, = prox,,  (zx — WV f(zr))

A fundamental inequality — Proof (1/2)

Using
(a) Upper bound assumption on f, i.e., Assumption (i)
(b) Prox optimality condition: There exists si4+1 € Og(x)t1)

0= sks1+ % (@hs1 — (@n — WV F(z1)))
() Subgradient definition: Vz, g(z) > g(zk41) + sp, 1 (2 — Tht)

f(@re1) + 9(@rs1)
(a) p 5
< flan) + V@) (@rer — ox) + Ellznrn — 23 + glers)

< fla) + VI @) @t — 20) + Ll — 2l + 9(2)
- SkT-+1(Z — Tp41)

© flar) + VFen) @ — 21) + 2 zrn — 2l + g(2)
3 (@t — (ox = WV F @) (2 — wpe)

= flan) + V@) (2 — 2x) + Lllzpgr — 2ll3 + g(2)

9 (@rr1 — 1) T (2 — @pgn)




A fundamental inequality — Proof (2/2)

® The proof continues by using the equality
(w1 —2)7 (2 = 2pg)
= Lllew — 213 = lansr — 213 = lwnrs — 2l3)
® Applying to previous inequality gives
F(@ip) + 9(@h1a)
< faw) + V@) (2 = 2x) + Fllwre — 2l +g(2)
7 (@rrr — 20) T (2 — 2psn)
= fl@r) + V()" (2 = o) + Fllzee — a3+ 9(2)
+ o (ln = 203 = lewer = 213 = ller = 2ria]2)

which after rearrangement gives the fundamental inequality
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Nonconvex setting Nonconvex setting — Assumptions
(i) f:R™ — Ris continuously differentiable (not necessarily convex)
) ) ) (i4) For every zj, and xy41 there exists 85, € [n,n7!], n € (0,1]:
® We will analyze the proximal gradient method
Faran) < flan) + V@) T (@ee — o) + 2 llok — 2ra 13
Tq1 = prox,,  (vx — 1V f(2r))
) g § i where 3, is a sort of local Lipschitz constant
n a nonconvex setting for solvin .
: vex setting ving (174) g:R™ — R U {oco} is closed convex
minimize f(z) + g(x) (v) A minimizer 2* exists and p* = f(a*) + g(x*) is optimal value
v) Algorithm parameters v, € [e, = — €], where € > 0
® Will show sublinear O(1/k) convergence (v) Alg P € lep, —
® Analysis based on A fundamental inequality
® Differs from assumptions for fundamental inequality only in (v)
® Assumption (ii) satisfied with 5, > 5 if f is S-smooth
11 12
Nonconvex setting — Analysis Step-size requirements
® Step-sizes 7, should be restricted for inequality to be useful:
- Bk
F@en) + 9(@en) < flan) +9(er) = (vt = B)llwre — eell3
® Requirements 8, € [n,77}] and 7 € [e, é —¢:
® Use fundamental inequality ® upper bound 7y, < % — € can be written as
T ) e Bie < nc
F(@rr1) + 9(@re1) < flan) + V@) (2 — zr) — 25 wpr — 23 WS gisy,  where 6= (E,) >S5 20 >0
2 2 Br
+9(2) + g (e = 203 = lzrer — 213) , o,
) since upper bound B < 1" gives B €22 —e>0 and € >0
® Set z = xy, to get ® Inverting upper step-size bound and letting § := "Tz‘ < Op:
_ Bl 1S Bet20k S B “1_ Bk~ 5
J(@rs1) + g(@nrr) < flan) + gl@r) — (7 = ) llwner — w13 T2 T 2 4 = Vi 2 20>0
® This implies, by subtracting p* from both sides to have V}, > 0,
f@rp) + gwra) — p* < flax) + g(zn) — p* = bllwrer — =3
Vi1 Vi Ry
where bounds on ~; imply that all R are nonnegative
13 14
Lyapunov inequality consequences Lyapunov inequality consequences — g =0
® For g =0, then z441 = 25 — 7V f(zk) and
® Restating Lyapunov inequality ) i )
lzrer = el =l VF(@e)lz  and  Re = 0%lIVf(20)ll
F@ir1) + g(zin) —p° < flar) + g(an) —p" = dllars — a3 : . o
® Lyapunov inequality consequences in this setting:
Vit Vi B ® Gradient converges to 0 (since v > €): ||V f(xk)]]2 — 0
e Consequences: ® Smallest gradient norm square converges as:
. anction'value'is decreasing sequence (may not converge to p*) min |V f(z)]3 < f(xo) —p*
® Fixed-point residual converges to 0 as k — oo i€{0,....k} = 52:":0 42
[Zk+1 — @kll2 = [[prox,, 4 (zx — WV f(zk)) — zhll2 = 0 ® |f, in addition, f is S-smooth and v, = }%
3 ixed-poi i : .
Best fixed-point residual norm square converges as O(1/k): i T 28(f(x0) — p*)
. s _ f(wo) + g(zo) — p* 1€{0,. K} k+1
min [|zigr — mil|2 < B —
1640, k} sincethenﬂk:/ﬁandw;l—%‘:§:6>0
® So, will approach local maximum, minimum, or saddle-point
15 16




Fixed-point residual convergence — Implication

What does |prox., ,(z — vV f(2)) — zll2 — 0 imply?
® By prox-grad optimality condition and ||zi41 — zk|[2 — O:
g(ansn) + V(1) 375 (@ — wier) = 0
as k — oo (since v, > ¢ ie, 0 < 'y,:] < e 1) or equivalently

09(wr+1) + VF(wrt1) 275 (@r — zpg1) + Vi (@psr) — VF(ar) =0

up

where uj, — 0 is concluded by continuity of V f
® Critical point definition for nonconvex f satisfied in the limit

Outline
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e Accelerated gradient method
e Scaling

17 18
Convex setting Convex setting — Assumptions
(¢) f:R™ — R is continuously differentiable and convex
(ii) For every x), and @y there exists By € 9,771, n € (0,1]:
o . . - . B :
We will analyze the proximal gradient method Fxrsr) < flzp) + vf(mk)T<-73k+l — ) + By — zp1ll2
T41 = prox,, o (vx — %V f(xk)) where S, is a sort of local Lipschitz constant
in the convex setting for solving (i1i) g :R" — RU {oo} is closed convex
(iv) A minimizer z* exists and p* = f(z*) 4+ g(z*) is optimal value
minimize f(z) + g(z) (v) Algorithm parameters v, € [e, ﬁ% — €], where € >0
® Will show sublinear O(1/k) convergence for function values
® Analysis based on A fundamental inequality
® Assumptions as for fundamental inequality plus
® convexity of f
® restricted step-size parameters i (as in nonconvex setting)
® Assumption (i7) satisfied with 8, > 3 if f is S-smooth
19 20
Convex setting — Analysis Lyapunov inequality — Convex setting
® Use fundamental inequality with z = 2*, where z* is solution
f@rgn) + g(@rr) < o) + V()" (@ — )
e =B ® The last inequality on previous slide is Lyapunov inequalit
B P |gppy — a3+ g(a?) quality on p yap quatty
1 . )12 2 .
+ o (e — 2713 = lzkr — 27[13) [or41 — 213 < lze = 2*|5+ (Beve — Dllowsr — @3
. —_— —— —— —
® and convexity of f Vit Vie Wi
f@*) > flar) + Vi(zr) (@ — ) = 2% (f(@k41) + 9(@pt1) — p*)
® This gives R
—1_ . ® Will divide analysis two cases: Short and long step-sizes
) . < Y e —Br L I2 *
fl@pg1) + g(zpgr) < f(11> 3 HQIHl x5 + QZ(I ) * Step-sizes v € [e, 2 : gives Be < 1 and Wi < 0
* * <
+ m(HTk -z Hz - szﬂ - Hz) ® Step-sizes v € [f% % —¢|: gives Bryr > 1 and Wy, >0
which, by multiplying by 2y and using p* = f(z*) + g(«*), gives since W}, contribute differently
lonss — 213 < llzw — 213 + Beme — Dz — oull3
= 27(f (2rt1) + g(Ths1) = P7)
21 22
Short step-sizes Long step-sizes
. . o ® For step-sizes y; € [4, 2 — €], the Lyapunov inequality is:
® For step-sizes 7, € [e, é] the Lyapunov inequality implies: P K [d‘” B ] yap 4 Y
o 2 . i1 =13 < o — 273+ Breme = Dllwwsr — wll3
L 2 _om (f _ - 2 -~ - C
lzrar — 2"l < Jlow = 2%|l5 =29 (f (2rt1) + 9(@h41) — P7) " P B
—_— —— k+1 k K
Vi v o =29 (f (we41) + 9(@p41) — p*)
where we have used W}, = 0 (which is OK since W}, < 0) Ri
® Nonconvex analysis says function value decreases in every iteration ® From nonconvex analysis can conclude that W}, is summable
® Consequences: ® We showed for 1 € [e, % — €], (|lzkr1 — z||3)ken is summable
® Distance to solution ||z} — z*||2 converges as k — 0o ® Since Bk bounded, also (Wi )ren is summable
® Function value decreases to optimal function value as: ® Let us define W =37 /Wy
o ® Consequences:
F(@rar) + glani) —p* < llzo — a3 ® Distance to solution ||z — 2*||2 converges as k — oo
T2 Z’,;O ¥i ® Function value decreases to optimal function value as:
if f is B-smooth and = L then converges as O(1/k): —
iy =3 verges as O(1/k) R
Bllzo — 2*|2 fl@rsr) + g(p) —p* < T
f(@rgr) + g(zrar) —p" < W im0 o
for B-smooth f with v, = %, denominator replaced by Li“)
23 24
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Strongly convex setting

® We will analyze the proximal gradient method
Tpt1 = prox,, o (vk — 1V f (1))
in a strongly convex setting for solving
minimize f(z) 4 g(x)

® Will show linear convergence for distance to solution |z) — z*|2
® Two ways to show linear convergence, we can:

(i) Base analysis on A fundamental inequality
(ii) Start by ||zk+1 — 2*||3 and expand (which is what we will do)
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Strongly convex setting — Assumptions Strongly convex setting — Analysis
Use that
(a) * = prox g (z* — 7V f(z*)) for all y >0
(i) f:R™ — R is continuously differentiable and o-strongly convex (b) the proximal operator is nonexpansive
(i) fis B-smooth (c) gradients of 8-smooth o-strongly convex functions f satisfy
(73i) g : R™ — RU{oo} is closed convex (Vi@) = Vi) (@ —y) > ﬁ”vf(-’”) - Vil + 3+g”* yll3
(iv) A minimizer z* exists and p* f( *) + g(x*) is optimal value to get
(v) Algorithm parameters ;. € [e, = — €], where € > 0 lzrsr — %2
(@) * NP
= [Iproxy, o @k — 7V (2k)) = prox, (@ — 1V F(z"))lI3
® Assumptions as for fundamental inequality plus “é) (@r — VY F(@r) — (@ — WV Fa*)2
® g-strong convexity of f . .
® [-smoothness of f instead of upper bound for zx41 and = sz -z Hz - 2’7’A‘<Vf(fk'> - Vf(l )) (vp — )
® restricted step-size parameters 7, (as in (non)convex setting) IV S (@) = V()3
® But will not use fundamental inequality in analysis (e) s s
< ok = alI3 = 5 (IVF () = VI @)E + oBllas — 27|13)
. +2lV () = V(@) ”s
2B .
= (1= D)oy — 2[5 - (gl — IV F(@) = V)3
Lyapunov inequality — Strongly convex setting Short step-sizes
® Lyapunov inequality
lwxer = 2*|5 < (1= 23522) |y, — 2™
2 ’ N
® Lyapunov inequality from previous slide is - "/k(m =)V f(zk) = V(@)
; P . Wi
ke — 2" |3 < (1 — 222 szz*l\é . 2] mpi ’
_ 2 B . or Yk € |6, 515 implies Wi, > 0
(g2 — IV Fxr) = V()3 ® Strong monotonicity with modulus o of V f implies
Wi
* IVF(@r) = V()2 = ollex — 272
® Will divide analysis into two cases: Short and long step-sizes . .
. - ® So we have linear convergence since
® Step-sizes i € [, 3fr”]: gives Wy, >0 o
® Step-sizes v, € [H” = —¢€]: gives W, <0 lzksr — 2 Hz (1- W'f; - UQ’Yk(ﬁ% = v)|lzr — L*Hg
= (1 - 252 4 o%o]) e — 2|13
= (1 —omw)’llex — 2*3
where (1 — o;)? € [0,1) for full range of 7
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Long step-sizes Unified rate
® Lyapunov inequality
loxer — [ < (1= 238%0) ey — 2"
_ ’Yk(ﬁ — IV f () — V()2 ® By removing the square and checking sign, we have
! ® for step-sizes y; € [e, ,Ha]
Wi
1 — 2 ||l2 < (1 — oy y — 2"
for 7, € [525. 2 — ¢ implies Wy, < 0 lzss = all2 < (1 = om)llzs — a7 |l2
® That f is S-smooth implies V f is S-Lipschitz continuous: ® for step-sizes i € [535, 5 —€|:
Hvﬂ‘Lk) - Vf(‘L*)Hz < 3““”» - :L‘*Hz |zerr — 2|2 < (Bye — D)||ze — 2|2
® So we have linear convergence since ® The linear convergence result can be summarized as
Tpp1 —a¥]|3 < (1— 228 _ 52, (2 — T —z*||3
e =7l = (g~ FCig — )Ml =7l ks — ol < max(1 — 03, B — i —
= (1 — 28D 4 202 g — |3
= (1 - By)?lee — 27|13
where (1 — B7;)? € [0,1) for full range of 73
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Optimal step-size

® For fixed-step-sizes 7, = 7, the rate result is

ek — 2*ll2 < max(1 — oy, By — 1) [k — 2*2
max(l -0y v —1)
"

® Optimal 7 that gives smallest contraction is 7 = 73
® (1 — ov) decreasing in ~, optimal at upper bound v = -2

Bio
® (B~ —1) increasing in vy, optimal at lower bound v = %
® Bounds coincide at v = FZU to give rate factor p = /TZ
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Choose f3;, and ~; Choose f;, and 7, — Backtrackin
/
. ® Backtracking: choose x > 1, B0 € [7,77!], let I, = 0, and loop
® |n nonconvex and convex analysis, we assume [ known such that 9
1. choose i € [e, B T €]
oLy
_ Br _ 2 2. compute zy11 = prox.,  (zr — vV f(zk))
T < flar) + V()T (@ ) + Ty — Tpytl|2 + V19 b
F@ra) < f) o) @ )+ 2 +ll 3. if descent condition (DC) satisfied
for consecutive iterates 24 and Ty set /j —k+1 // increment algorithm counter
o . i set I < Ui // store final backtrack counter
® This is an assumption on the function f set B < Broy // store final f variable
® We call it descent condition (DC) break backtrack loop
® |f fis B-smooth, then (8 = 3 is valid choice since else .
set Bk, +1 < KPri, // increase backtrack parameter
. T 8 2 set lp <+l +1 // increment backtrack counter
1) < 1) + V@ @ - ) + Sz — gl g
for all ,y, then we can select 7, € [¢, 3 — ¢ ® Larger S, gives smaller upper bound for step-size i
® Forwardtracking on (3 ;,, backtracking for v, upper bound
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When to use backtracking Outline
. A fund tal i lit,
® fis -smooth but constant 8 unknown: * undamenta .|nequa "y
® initialize Bx,0 = By_1,7, , to previously used value ¢ Nonconvex setting
® then (Bk)ren nondecreasing o Convex setting
® fi Br > B (i .
finally £ = B (if needed), thezn , o Strongly convex setting
® step-size bound y;, € [¢, 5— — €] makes (DC) hold directly i
. TRk o e Backtracking
® so will have constant 3}, after finite number of algoritm iterations ) .
® V[ locally Lipschitz and sequence bounded (as in convex case): « Stopping conditions
o initialize Br.0 = 3, for some pre-chosen B>0 o Accelerated gradient method
® reset to same value 3 in every algorithm iteration o Scaling
® will find a local Lipschitz constant
37 38
When to stop algorithm? When to stop algorithm — Scaled problem
Let @ > 0 and solve equivalent problem minimize af(x) + ag(x):
z
® Denote algorithm parameter v, = "Tk
® Consider minimize f(x) + g(x) ¢ Algorithm satisfies:
x
® Apply proximal gradient method @541 = prox.,,  (vx — vV f(2r)) Tpy1 = ProxX, , o0(Tk — YakVaf(xx)) = prox,,  (zx — %V f(zx))
® Algorithm sequence satisfies . .
i.e., the same algorithm as before
09(wrt1) + Vf(Tri1) 2 7’;1(% —op41) + VI(@r41) = VF(ar) = 0 ® However, u, j in this setting satisfies
Uk —
Ua ks = Yo h(Tk — Tht1) + Vaf (@e11) — Vaf ()
. ) . it -
is ||lug||2 small a good measure of being close to fixed-point? = a(v; @k — 2s1) + VI (@er1) — VI(ae)
= auy
i.e., same algorithm but different optimality measure
® Optimality measure should be scaling invariant
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Scaling invariant stopping condition

® For 3-smooth f, use scaled condition %uk

Fu = (0 (@ — 241) + VS (wr41) = V(1))

that we have seen before
® Let us scale problem by a to get minimize af(x) + ag(z), then
® smoothness constant 3, = af scaled by a = use ya,x = 2=
® optimality measure éua,k = u%auk = %uk remains the same
so it is scaling invariant
® Problem considered solved to optimality if, say, %|Juy|l2 < 1076

e Often lower accuracy 1072 to 10~% is enough

Example — SVM

® (Classification problem from SVM lecture, SVM with
® polynomial features of degree 2
® regularization parameter A = 0.00001

41 42
Example — Optimality measure Example — SVM higher degree polynomial
® Plots 8~ ugll2 = 87 v M@k — Trgr) + Vi (@ri1) — VI(@r) |2 L Classifilcation. ;l)rfoblem fr(;rz SVM6Iecture, SVM with
® Shows 37! |lug||2 up to 20'000 iterations ® polynomial features of degree
WS | ”, sll2 up ® regularization parameter A = 0.00001
® Quite many iterations needed to converge
3
D U O TR O
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Example — Optimality measure Outline
® Plots 87 Jurlla = 87" Iy (@ — 2a1) + Vi (2r41) = VF () |2
® Shows 371 ||lug||2 up to 200'000 iterations (10x more than before)
® Many iterations needed for high accuracy o A fundamental inequality
ot o Nonconvex setting
7 o Convex setting
e Strongly convex setting
10 o Backtracking
=0 o Stopping conditions
T;m! e Accelerated gradient method
= e Scaling
S e s w o -
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Accelerated proximal gradient method Accelerated proximal gradient method — Parameters
® Consider convex composite problem ® Accelerated proximal gradient method
minimize f(z)+g(x) o = a0+ On (25 — 251)
where Try1 = Prox.,(yx — YV I (yr))
® f:R"™ — Ris B-smooth and convex . X 1
e g:R" = RU {oo} is closed and convex ® Step-sizes are restricted v € (0, Tf]
® Proximal gradient descent ® The 6 parameters can be chosen either as
k=1
Thy1 = Prox, (v — YV f(2r)) Ok = 553
achieves O(1/k) convergence rate in function value or B = =121 where
v tr
® Accelerated proximal gradient method "
/14487
Yk = Tk + Ok (2 — T—1) = —Y5—-=1
Th1 = Prox, g (e = YV F(yr)) these choices are very similar
(with specific 0),) achieves faster O(1/k?) convergence rate ® Algorithm behavior in nonconvex setting not well understood
48
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Not a descent method

® Descent method means function value is decreasing every iteration
® We know that proximal gradient method is a descent method

® However, accelerated proximal gradient method is not

Accelerated gradient method — Example

® Accelerated vs nominal proximal gradient method
® Problem from SVM lecture, polynomial deg 6 and A = 0.0215
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Accelerated gradient method — Example Outline
® Accelerated vs nominal proximal gradient method
® Problem from SVM lecture, polynomial deg 6 and A = 0.0215 o A fundamental inequality
oo e Nonconvex setting
— Accelerated o Convex setting
107 . .
Nominal e Strongly convex setting
2
m o Backtracking
w3 e Stopping conditions
104 e Accelerated gradient method
0% e Scaling
10
o ’0 2000 4000 6000 8000 10000
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Scaled proximal gradient method

® Proximal gradient method:

ok = argnin ( f(on) + V100 =) + sty ~ aulf +a(0))

Yy

o ()

approximates function f(y) around xj, by ﬁ,;k(y)
® The better the approximation, the faster the convergence
® By scaling: we mean to use an approximation of the form

P W) = Fx) + Vi @n) (y — 2x) + gy — el

where H € R"™ ™ is a positive definite matrix and ||z||3;, = 27 Hx

52

Gradient descent — Example

® Gradient descent on -smooth quadratic problem

minimiz(\l T Tro1 —o01 T
z 2 |2 —0.1 1 T

® Step-size 7 = § and norm || - ||z in model

Gradient descent — Example

® Gradient descent on 3-smooth quadratic problem

o 1] [0l —01] [o
TEEE 9 |za —0.1 1 T

® Step-size 7 = % and norm | - [|2 in model

Gradient descent — Example

® Gradient descent on 3-smooth quadratic problem
o 1] [0l —01] [o
e 5 e, |01 1 | |ag

® Step-size v = £ and norm || - ||z in model




Gradient descent — Example

® Gradient descent on -smooth quadratic problem

minimizv1 1 fTo1 —01 o1
2 o | |01 1 | |

® Step-size ¥ = % and norm || - ||z in model

Gradient descent — Example

® Gradient descent on -smooth quadratic problem

inimige L [#1] [0 —0.1] [
z 2 |2 —-0.1 1 To

® Step-size 7 = & and norm || - ||z in model

Gradient descent — Example

® Gradient descent on 3-smooth quadratic problem

o 1] [0l —01] [o
Hninze 2 |z2 —0.1 1 T

® Step-size 7 = % and norm | - [|2 in model
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Scaled gradient descent — Example

® Gradient descent on 3-smooth quadratic problem

o 1 [am]T [0l —01] [o
T 9 lan] 01 1 ] [

® Scaling H = diag(V?2f), ~ is inverse smoothness w.r.t. || - ||

Scaled gradient descent — Example

® Gradient descent on -smooth quadratic problem

minimizv1 o1 "To1 —01 o1
2 o 2| |01 1 | |

® Scaling H = diag(V?f), v is inverse smoothness w.r.t. | - || i

Scaled gradient descent — Example

® Gradient descent on -smooth quadratic problem

inimige L [#1] [0 —01] [
z 2 |2 —0.1 1 To

® Scaling H = diag(V?f), v is inverse smoothness w.r.t. | - ||u

Scaled gradient descent — Example

® Gradient descent on 3-smooth quadratic problem

o 1] [0l —01] [o
TEEE 9 |za —0.1 1 T

® Scaling H = diag(V?f), v is inverse smoothness w.r.t. | - ||z

Scaled gradient descent — Example

® Gradient descent on 3-smooth quadratic problem

o 1] [0l —01] [o
T 9 lan] 01 1 ] [

® Scaling H = diag(V?2f), ~ is inverse smoothness w.r.t. || - ||




Scaled gradient descent — Example

® Gradient descent on -smooth quadratic problem

minimizv1 1 fTo1 —01 o1
z 2 |z —0.1 1 To

® Scaling H = diag(V?f), v is inverse smoothness w.r.t. | - ||u

Smoothness w.r.t. || - ||z

What is || - [|#?

® Requirement: H € R"*™ is symmetric positive definite (H > 0)
® The norm ||2||% = 2T Hx, for H = I, we get ||z||? = ||z|3

Smoothness
® Function f:R" — R is S-smooth if for all z,y € R™:
f) < f@) + V@) (y—2) + Gl —yl3
F@) = f@) + V@) (y—=2) - 5llz—yl3
® We say f By-smoothness w.r.t. scaled norm || - || if
Fy) < f@) + V@) (g — o)+ Flle —yll
Fy) = f@) + V@) (g~ o)~ Flle — gl

for all z,y € R™

o If fis smooth (w.r.t. || - ||2) it is also smooth w.r.t. || - ||z
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Example — A quadratic Scaled proximal gradient for quadratics
o Let f(z) = 22T Hax = 1|z} with H >0
® fis l-smooth w.r.t || - ||z (with equality):
I+l € ) o Let f(z) = 22T Hx with H > 0, which is I-smooth w.r.t. || - ||z
F@) + V@) (y— )+ 5lle -yl ® Approximation with scaled norm || - ||z and vy, = 1 satisfies Vay:
1.7 T 1 2
=3a Hr+ (Hz)' (y —x)+ 3lle —yl% 5 . L N
, ; Jor () = fan) + V(@) (y — 2r) + 5llze =yl = fy)
— LT Ha + (Ha)" (y — o) + 3(lal% — 2(Ha)Ty + yl3)
_ %HZ}HfI = f(y) since f is 1-smooth w.r.t. || - ||z with equality
® An iteration then reduces to solving problem itself:
which holds also if adding linear term ¢”z to f R
® [ is Amax(H)-smooth (w.r.t. || - ||2), continue equality: Th41 = “Hginin(fwk(y) +9(y) = arglllnin(f(y) +9(v))
T 2 Lo .
fy) =f@)+ V() (y—2)+ %Hz —yllE ® Model very accurate, but very expensive iterations
Amax (H p
< @)+ V@) (g - o) + e o — g3
much more conservative estimate of function!
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Scaled proximal gradient method reformulation Computational cost
® Proximal gradient method with scaled norm || - ||
) r L ) ® Assume that H is dense or general sparse
Th+1 = argmin (f(Tk) + Vi ar) (g —2) + E“y — el + g(y)) ® H~' dense: cubic complexity (vs maybe quadratic for gradient)
Y ® H~! sparse: lower than cubic complexity
= argmin (g(y) + ﬁ”v — (x — 7/A4H*1Vf(xk)|\§1) ® prox!! . difficult optimization problem
v " » ® Assume that H is diagonal
=: proxy, o (zx — wH V(@) ® H~': invert diagonal elements — linear complexity
° H . :
where H — I gives nominal method prox,, o (.)fte.n_as cheap as nominal prox (e.g_., for separable g)
® this gives individual step-sizes for each coordinate
¢ Computatlon.al dlfFerenlce per iteration: ® Assume that H is block-diagonal with small blocks
L. Need to invert /™" (or s.olve Hdy, = vf(”)) ® H~': invert individual blocks — also cheap
2. Need to compute prox with new metric . prox:’kq: often quite cheap (e.g., for block-separable g)
proxf:lky(z) := argmin(g(z) + i”l —z||%) ® If H = I, method is nominal method
that may be very costly
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Convergence Example — Logistic regression
® Logistic regression with § = (w, b):
® We get similar results as in the nominal H = I case N .

N ) @) +b T Al l12
® We assume [ smoothness w.r.t. |- || i mlnlemlzeZk)g(l + e 2@ g (wT (a;) + b) + sllwllz
® We can replace all || - || with || - ||z and V£ with H-1V f: =t

* Nonconvex setting with v, = - on the following data set (from logistic regression lecture)
# ® Polynomial features of degree 6, Tikhonov regularization A = 0.01
min V@) < 2Bu (f (w0) + g(z0) — p*) ® Number of decision variables: 28
1{0,...,k} k+1 A
® Convex setting with v, = ;H L
. . o Ballwo — a5 .
* ) —pt <
flax) +glax) —p" < Sk 1) .
® Strongly convex setting with f or-strongly convex w.r.t. || - || -
N “
lzrsr = 2" [|lm < max(Buy — 1,1 = ouy)llee — 27| u
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Algorithms

Compare the following algorithms, all with backtracking:
1. Gradient method
2. Gradient method with fixed diagonal scaling
3. Gradient method with fixed full scaling

Fixed scalings

® Logistic regression gradient and Hessian satisfy with L = [X| 1]
Vi) =L (o(LO) = Y) + A0 V2f(0) = LTo'(LO)L + I,

where o is the (vector-version of) sigmoid, and I,,(w,b) = (w,0)
® The sigmoid function o is 0.25-Lipschitz continuous
® Gradient method with fixed full scaling (3.) uses

H=025L"L+ ),
® Gradient method with fixed diagonal scaling (2.) uses

H = diag(0.25LT L + \,,)

62 63
Example — Numerics Example — Numerics
e Logistic regression polynomial features of degree 6, A = 0.01 o Logistic regression polynomial features of degree 6, A = 0.01
o Standard gradient method with backtracking (GM) e Gradient method with diagonal scaling (GM DS)
o — Sos
64 64
Example — Numerics Comments
e Logistic regression polynomial features of degree 6, A = 0.01
« Gradient method with full matrix scaling (GM FS) ® Smaller number of iterations with better scaling
® Performance is roughly (iteration cost)x (number of iterations)
® We have only compared number of iterations
® Iteration cost for (GM) and (GM DS) are the same
o N ® |teration cost for (GM FS) higher
o o — gm bs ® Need to quantify iteration cost to assess which is best
® |n general, can be difficult to find H that performs better
64 65




Least Squares

Pontus Giselsson

Outline

e Supervised learning — Overview

o Least squares — Basics

® Nonlinear features

o Generalization, overfitting, and regularization
e Cross validation

® Feature selection

e Training problem properties

Machine learning

® Machine learning can very roughly be divided into:
® Supervised learning
® Unsupervised learning
® Semisupervised learning (between supervised and unsupervised)
® Reinforcement learning

® We will focus on supervised learning

Supervised learning

® Let (z,y) represent object and label pairs
® Object z € X CR"
® Label y € Y CR¥
® Available: Labeled training data (training set) {(z;,v:)}¥,
® Data z; € R", or examples (often n large)
® labels y; € RE, or response variables (often K = 1)
Objective: Find a model (function) m(x):

® that takes data (example, object) = as input

® and predicts corresponding label (response variable) y
How?:

® learn m from training data, but should generalize to all (z,y)

Relation to optimization

Training the “machine” m consists in solving optimization problem

Regression vs Classification

There are two main types of supervised learning tasks:

® Regression:

® Predicts quantities
® Real-valued labels y € ¥ = R¥ (will mainly consider K = 1)

® (Classification:

® Predicts class belonging
® Finite number of class labels, e.g., y € Y = {1,2,...,k}

Examples of data and label pairs

Data Label R/C
text in email spam? C
dna blood cell concentration R
dna cancer? C
image cat or dog C
advertisement display click? C
image of handwritten digit digit C
house address selling cost R
stock price R
sport analytics winner C
speech representation spoken word C

R/C is for regression or classification

In this course

Lectures will cover different supervised learning methods:

® Classical methods with convex training problems

® Least squares (this lecture)
® Logistic regression
® Support vector machines

® Deep learning methods with nonconvex training problem
Highlight difference:

® Deep learning (specific) nonlinear model instead of linear




Notation

® (Primal) Optimization variable notation:
® Optimization literature: z,y, z (as in first part of course)
® Statistics literature: 3
® Machine learning literature: 6,w,b

® Reason: data, labels in statistics and machine learning are x,y
® Will use machine learning notation in these lectures
® We collect training data in matrices (one example per row)

af ul
X=|: Y =
oy vn
® Columns X of data matrix X = [X3,..., X,,] are called features

Outline

e Supervised learning — Overview

o Least squares — Basics

® Nonlinear features

o Generalization, overfitting, and regularization
e Cross validation

® Feature selection

e Training problem properties

9 10
Regression training problem Supervised learning — Least squares
® Objective: Find data model m such that for all (z,y):
m(z) —y~0
e Let model output u = m(z); Examples of data misfit losses ® Parameterize model m and set a linear (affine) structure
o) — Ly a2
Lu,y) = 5(u—y) m(z;0) = wlz +b
L(u,y) = [u—y|
L ) where § = (w,b) are parameters (also called weights)
Lu—y)? if lu—v| <c . ) . .
L(u,y) = ® Training: find model parameters that minimize training cost
c(lu—y|—c/2) else
N N
minigmizc Z L(m(z;;0),y:) = % (whz; +b—y;)?
i=1 i=1
u—y i U=y T U=y (note: optimization over model parameters )
Square L-norm Huber ® Once trained, predict response of new input = as § = w”z + b
® Training: find model m that minimizes sum of training set losses
N
inimi L(m(x;),1
IIllIlbl;[llZGZ (m(z4),yi) u 12
i=1
Example — Least squares Example — Least squares
® Find affine function parameters that fit data: ® Find affine function parameters that fit data:
L P
*
| * -
*
= *ox * ES
ar * 1 b
c * c
Q * o
L % ¥ ]
*
L * 1
*
*
variable z variable z
e Data points (,y) marked with (%), LS model wz + b (—)
Example — Least squares Solving for constant term
® Find affine function parameters that fit data:
® Constant term b also called bias term or intercept
® What is optimal b7
N
S T 2
; mngguzc 5 Z(ur i +b—yi)
2 i=1
2
8 ® Optimality condition w.r.t. b (gradient w.r.t. b is 0):
N
0=Nb+ Z(me,- —y) o b=g-—uw'z
i=1
; 7= LN ) j— LN
variable = where T = 5 > 7., @i and § = § >_;_, yi are mean values
o Data points (z,y) marked with (%), LS model wz + b (—)
o Least squares finds affine function that minimizes squared distance 13 14




Equivalent problem

® Plugging in optimal b = 5 — w” in least squares estimate gives

N N
minimize P =g (e 0

i=1 i=1
® let #; = x; — T and §; = y; — g, then it is equivalent to solve
N
P | T~ _ ~\2_ 1 2
minimize 3 Z(w Z; — )" = 5| Xw-Y|3
i=1
where X and Y now contain all &; and g; respectively
® Obviously Z; and §; have zero averages (by construction)
® Will often assume averages subtracted from data and responses

Least squares — Solution

® Training problem
e 1 2
minimize 5[] Xw — Y3
w

® Strongly convex if X full column rank
® Features linearly independent and more examples than features
® Consequences: X7 X is invertible and solution exists and is unique

® Optimal w satisfies (set gradient to zero)
0=X"Xw-X"Y

if X full column rank, then unique solution w = (X7 X))~ !XTy

15 16
Outline Nonaffine example
® What if data that cannot be well approximated by affine mapping?
o Supervised learning — Overview L o* 1
e Least squares — Basics
* Nonlinear features
o Generalization, overfitting, and regularization S . 1
(3
e Cross validation gl N i
Q.
e Feature selection ¢ *
e Training problem properties * N
r . * 4
L x % 1
*
variable z
17
Nonaffine example Nonaffine example
® What if data that cannot be well approximated by affine mapping? ® What if data that cannot be well approximated by affine mapping?
|- * 4
= =
o P
2 2
2 2
¢ g
variable x variable z
18
Adding nonlinear features Least squares with nonlinear features
. . . . . e C f th li feat
® A linear model is not rich enough to model relationship an, of course, use other Qon inear reature maps @ .
. ® Gives models m(z;60) = 87 ¢(x) with increased fitting capacity
L] . .
Try, e.g., a quadratic model ® Use least squares estimate with new model
n noi N N
m(z;0) = b+ Z wiT; + Z Z QijTiT; minimize 1 Z(m(zi; 0) —y)’ =1 Z((}T(b(zi) —y;)?
i=1 i=1 j=1 0 i=1 i=1
where & = (21,...,2,) and parameters § = (b, w, q) which is still convex since ¢ does not depend on 6!
e For z € R2, the model is ® Build new data matrix (with one column per feature in ¢)
: ; o)
m(x;0) = b+ wizy + woms + g1} + Q12122 + g2o23 = 07 () X = .
where z = (z1,22) and d(zn)T
0 = (b, w1, w2, q11, 12, G22) to arrive at least squares formulation
o(x) = (1,21, 29,27, 2129, 73) minimize X0 -Y3
® Add nonlinear features ¢(x), but model still linear in parameter 0 ® The more features, the more parameters 6 to optimize (lifting)
19 20




Nonaffine example

® Fit polynomial of degree k to data using LS (.J is cost):

Nonaffine example

® Fit polynomial of degree k to data using LS (J is cost):

k=1,J = 0.635, 6]z = 0.60

*
ES ) >
] * ]
1 | §_
g * ¢
*
*
L % i
*
L x % i
*
variable = variable =
21
Nonaffine example Nonaffine example
® Fit polynomial of degree k to data using LS (] is cost): ® Fit polynomial of degree k to data using LS (J is cost):
k=2,J=0.113,]|0]2 = 0.94 k=3,J=0.112, 0]z = 0.96
EXS &
[ Q
2| <l
o o
& &
el i<
L h L
variable = variable =
21 21
Nonaffine example Nonaffine example
® Fit polynomial of degree k to data using LS (.J is cost): ® Fit polynomial of degree k to data using LS (J is cost):
‘ ‘ © k= 4,J=0.108, ]2 = 0.83 ‘ ‘ " k=5,J=0.105, 0] = 1.27
ESE [
Q Q
2] 21
o o
[N o
] ¢
variable = variable =
21 21
Nonaffine example Nonaffine example
® Fit polynomial of degree k to data using LS (J is cost): ® Fit polynomial of degree k to data using LS (J is cost):
k=6,J = 0.075, 0] = 5.4 k=7, =0.028, ||l = 22.5
[ ) & )
[ Q
2| ] g | i
o o
& &
el | ¢ |
variable = variable =
21

21




Nonaffine example

® Fit polynomial of degree k to data using LS (.J is cost):

k=8,J = 0.026, ||6]|2 = 26.6

response y

I
variable

Nonaffine example

® Fit polynomial of degree k to data using LS (J is cost):

k=09,J = 0.001,]8]2 = 147.5

response y

variable =
21 21
Nonaffine example Outline
® Fit polynomial of degree k to data using LS (] is cost):
k= 10,J = 0.000,0]|> = 167.8 ) ) )
| etk | o Supervised learning — Overview
o Least squares — Basics
[ | ¢ Nonlinear features
oF 4 o Generalization, overfitting, and regularization
4 e Cross validation
g J
g o Feature selection
[ 7 e Training problem properties
variable =
21 22
Generalization and overfitting Tikhonov Regularization
® Example indicates: Reducing ||f]|2 seems to reduce overfitting
® | east squares with Tikhonov regularization:
® Generalization: How well does model perform on unseen data s . :
o ) o P minimize 3| X0 — Y3 + 316]13
® OQverfitting: Model explains training data, but not unseen data 6
® How to reduce overfitting/improve generalization? ® Regularization parameter A > 0 controls fit vs model expressivity
® Optimization problem called ridge regression in statistics
® (Could regularize with [|0||2, but square easier to solve)
® (Don't regularize b — constant data offset gives different solution)
23 24

Ridge Regression — Solution

® Recall ridge regression problem for given A:

minigmize HIx0—Y3+ 30603
® Objective A-strongly convex for all A > 0, hence unique solution
® Objective is differentiable, Fermat's rule:

0=XT(X0-Y)+ )\ = (XTX + 210 = XTY
= 0=XTX+A)'XTY

25

Ridge Regression — Example

® Same problem data as before
® Fit 10-degree polynomial with Tikhonov regularization
® )\: regularization parameter, J LS cost, ||0||2 norm of weights

- * 4
oF 1
° *

@
c | 1
[ *
I3
@ *
~ L 4
*
*
L * 1
*
L * % 1
*
. . . . . . .
variable =




Ridge Regression — Example

® Same problem data as before
® Fit 10-degree polynomial with Tikhonov regularization
® \: regularization parameter, J LS cost, |62 norm of weights

A=10"°,J =0.017,]|0||2 = 20.2

response y

Ridge Regression — Example

® Same problem data as before
® Fit 10-degree polynomial with Tikhonov regularization
® \: regularization parameter, J LS cost, ||]|2 norm of weights

A=6.0-1075,J =0.023, [|f]2 = 12.2

response y

variable variable
26 26
Ridge Regression — Example Ridge Regression — Example
® Same problem data as before ® Same problem data as before
® Fit 10-degree polynomial with Tikhonov regularization ® Fit 10-degree polynomial with Tikhonov regularization
® )\: regularization parameter, J LS cost, ||0||2 norm of weights ® )\: regularization parameter, J LS cost, ||0||2 norm of weights
A=36- 1‘0*4, J= 0,04,‘||9H2 —6.21 A=22. 10‘*3, J- 0.064,‘ 16]l2 9243
> =
p o
g2l 2|
[} o
a a
¢ ¢
variable z variable =
26 26
Ridge Regression — Example Ridge Regression — Example
® Same problem data as before ® Same problem data as before
® Fit 10-degree polynomial with Tikhonov regularization ® Fit 10-degree polynomial with Tikhonov regularization
® \: regularization parameter, J LS cost, ||f||2 norm of weights ® \: regularization parameter, J LS cost, ||f]|2 norm of weights
‘ A=13-10"2,J = 0.086, 0] = 1.10 ‘ L A=77-1072,7 = 0.109, |6]) = 0.63
> 7 > 7
o * Q *
2 i g i
g * 8_ *
g g
X*
* *
L * - L * -
* *
r * * - I * * -
* *
variable variable =
26 26
Ridge Regression — Example Ridge Regression — Example
® Same problem data as before ® Same problem data as before
® Fit 10-degree polynomial with Tikhonov regularization ® Fit 10-degree polynomial with Tikhonov regularization
® )\: regularization parameter, J LS cost, ||0||2 norm of weights ® )\: regularization parameter, J LS cost, ||0||2 norm of weights
" A =046, = 0.15, |02 = 0.43 A =287 =0.29, |0]2 = 0.26
> =
p o
g2l 2|
[} o
a a
¢ ¢
= * * B = * * B
* *
variable z variable =
26
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Ridge Regression — Example

® Same problem data as before
® Fit 10-degree polynomial with Tikhonov regularization
® \: regularization parameter, J LS cost, |62 norm of weights

A=16.7,J = 0.68,]|6||2 = 0.091

Ridge Regression — Example

® Same problem data as before
® Fit 10-degree polynomial with Tikhonov regularization
® \: regularization parameter, J LS cost, ||]|2 norm of weights

A =100,J = 0.92,]6]|2 = 0.019

L * 4 L * 4
= =0 4
o o *
2 g i
2 2 *
*
- * 4
*
r * * - I * * -
* *
variable = variable z
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Outline Selecting model hyperparameters
o Supervised learning — Overview
e Least squares — Basics
® Nonlinear features ® Parameters in machine learning models are called hyperparameters
e Generalization, overfitting, and regularization ® Ridge model has polynomial order and ) as hyperparameters
* Cross validation ® How to select hyperparameters?
® Feature selection
e Training problem properties
27 28
Holdout Holdout — Comments
® Randomize data and assign to train, validate, or test set
Train Validate |  Test ® Typical division between sets 50/25/25 (or 70/20/10)
® Sometimes no test set (then no assessment of final model)
Training set: ® |f no test set, then validation set often called test set
® Solve training problems with different hyperparameters ® Can work well if lots of data, if less, use (k-fold) cross validation
Validation set:
® Estimate generalization performance of all trained models
® Use this to select model that seems to generalize best
Test set:
® Final assessment on how chosen model generalizes to unseen data
® Not for model selection, then final assessment too optimistic
29 30
k-fold cross validation 4-fold cross validation — Graphics
Train/Validate Test
® Similar to hold out — divide first into training/validate and test set
® Divide training/validate set into k data chunks . . . .
® Train k models with & — 1 chunks, use k:th chunk for validation Train | rain’ ( Train Validatg ~ Test
® Loop
1. Set hyperparameters and train all k& models
2. Evaluate generalization score on its validation data Train | Train |Validate Train Test
3. Sum scores to get model performance
® Select final model hyperparameters based on best score
® Simpler model with slightly worse score may generalize better Train Malidatg Train | Train Test
® Estimate generalization performance via test set
Validate Train | Train | Train Test
32
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Evaluate generalization score/performance

® Ridge regression example generalization, validation data (©)
® \: regularization parameter, J; train cost, J, validation cost

Evaluate generalization score/performance

® Ridge regression example generalization, validation data (©)
® \: regularization parameter, J; train cost, J, validation cost

A=10"%J; = 0.017, J, = 0.422

L * 4 L 4
<
L o A L J
<
=S 7 > 7
o * o
2 ] 2 ]
2 * 2
] * ¢
L o J L J
%
F M <© * * - F -
*
F % * 3 4 = 4
*
variable = variable =
33
Evaluate generalization score/performance Evaluate generalization score/performance
® Ridge regression example generalization, validation data (<) ® Ridge regression example generalization, validation data (<)
® \: regularization parameter, J; train cost, J,, validation cost ® \: regularization parameter, J; train cost, .J, validation cost
A=6.0-102,J, = 0.023, J, = 0.358 A=36-10%,J, = 0.04, J, = 0.203
> 7 >
3 2
c | 4 St
o o
[=N aQ
¢ ¢
variable = variable z
33 33
Evaluate generalization score/performance Evaluate generalization score/performance
® Ridge regression example generalization, validation data (©) ® Ridge regression example generalization, validation data (©)
® \: regularization parameter, J; train cost, J, validation cost ® \: regularization parameter, J; train cost, J, validation cost
A=22. 10‘*3, Ji = 0.064, Jp = 0.260 A=13 10‘*2, Ji = 0,086, Jy = 0.252
L L o -
<
> > 7
o o *
2 2 ]
2 2 *
] g
L L o J
|- F M <© * % -
*
L - * * o -
*
variable = variable =
33 33
Evaluate generalization score/performance Evaluate generalization score/performance
® Ridge regression example generalization, validation data (<) ® Ridge regression example generalization, validation data (<)
® \: regularization parameter, J; train cost, J, validation cost ® )\: regularization parameter, J; train cost, .J, validation cost
A=7.7-10-2,J, = 0.109, J, = 0.260 X =046, J; = 0.18, J, = 0.300
L o |- L
<
> 7 >
] * ]
c | 4 St
2 * 2
3 3
L o J L
F ° 4 * Y - F
*
L * % < B E * * <© B
* *
variable = variable z
33
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Evaluate generalization score/performance

® Ridge regression example generalization, validation data (©)
® \: regularization parameter, J; train cost, J, validation cost

A= 28, J, = 0.29, J, = 0.429

response y

Evaluate generalization score/performance

® Ridge regression example generalization, validation data (©)
® \: regularization parameter, J; train cost, J, validation cost

A=16.7,J; = 0.68, J, = 0.716

response y

- * * < B = * * <& B
* *
variable = variable =
33 33
Evaluate generalization score/performance Selecting model
® Ridge regression example generalization, validation data (©) ® Average tra!ning and test error vs model complexity
® \: regularization parameter, J; train cost, J,, validation cost ® Average training error sma'ller than average test error
® Large A (left) model not rich enough
X =100, J; = 0.92, J, = 0.887 ® Small A (right) model too rich (overfitting)
*
F J —
N —— Train error |
[ < —— Test error
o L 1
SF J
] * :
2
2 * i 5
L C e, * ] - — i
* — 4
b * * < e 4
*
variable = Increasing model complexity, A N\,
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Outline Feature selection
e Supervised learning — Overview
o Least squares — Basics
¢ Nonlinear features ® Assume X € R™*™ with m < n (fewer examples than features)
o Generalization, overfitting, and regularization ® \Want to find a subset of features that explains data well
e Cross validation ® Example: Which genes in genome control eyecolor
¢ Feature selection
e Training problem properties
35 36
Lasso Example — Lasso
e Data X € R30%290 | asso solution for different A
0.25 T T T T T T T
® Feature selection by regularizing least squares with 1-norm:
PPN 2 ,
minimize s Xw = Y5 + Mw|
where X € RV*™ often has more features than examples n > N g
® Problem can be written as :
n 2 1
mingnize% Zw,,X,', Y| +Awl: 1
i=1 2 ,
if w; =0, then feature X; not important 1
® The 1-norm promotes sparsity (many 0 variables) in solution 1
® It also reduces size (shrinks) w (like || - ||3 regularization .
) ( ) w( I+ Iz reg ) ® For large enough A solution w =0
® Problem is called the Lasso problem ® More nonzero elements in solution as \ decreases
® For small A, 30 (nbr examples) nonzero w; (i.e., 170 w; = 0)
38
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Lasso and correlated features

® Assume two equal features exist, e.g., X1 = X, lasso problem is
2

(w1 + w2) X1 + szxi -Y

i=3

minimize é

2
® Assume w* solves the problem and let A := w} + w3 > 0 (wlog)
® Then all wy € [0, A] with we = A — w; solves problem:

® quadratic cost unchanged since sum w; + ws still A

® the remainder of the regularization part reduces to

min A\(Jwr| + |A —wq])
wy

0 A

® For almost correlated features:
® often only wy or wa nonzero (the one with slightly better fit)
® however, features highly correlated, if X explains data so does X

+ MJuwn ] + [wa] + [[wsnl|1)

Elastic net

® Add Tikhonov regularization to the Lasso

minimize § || Xw — Y||? + A1 ||w wl|2

|1+%|

® This problem is called elastic net in statistics

® Can perform better with correlated features

39 40
Elastic net and correlated features Group lasso
® Assume equal features X; = X» and that w* solves the elastic net
R * — - A . .
® Let A :=wj +wj > 0 (wlog), then w} = wj = 5 ® Sometimes want groups of variables to be 0 or nonzero
° i i Wo = — ith w
Data flt cost still ur\chf'anged fOl"lbg A —w; with wy € [0,4] e Introduce blocks w = (wy, ..., w,) where w; € R™
® Remaining (regularization) part is EE
, , ® The group Lasso problem is
min A (Jwi| + |A — w1]) + A2 (wi + (A —w1)7)
o »
o L 2
minimize 5| Xw — Y3 + /\Z [Jwi]l2
i=1
(note || - ||2-norm without square)
| | e With all n; = 1, it reduces to the Lasso
0 A . .
® Promotes block sparsity, meaning full block w; € R™ would be 0
which is minimized in the middle at w1 = w2 = %
® For highly correlated features, both (or none) probably selected
41 42
Outline Composite optimization
® |east squares problems are convex problems of the form
e Supervised learning — Overview
o Least squares — Basics minymize F(X0)+9(0),
® Nonlinear features
. - L where
o Generalization, overfitting, and regularization o f— L. Y| is data misfit term
=1 -v|3
¢ Cross validation ® X is training data matrix (potentially extended with features)
o Feature selection ® g is regularization term (1-norm, squared 2-norm, group lasso)
o Training problem properties ® Function properties
® fis 1-strongly convex and 1-smooth and f o X is || X||3-smooth
® g is convex and possibly nondifferentiable
® Gradient V(fo X)(0) = XT(X0-Y)
43 44




Logistic Regression

Pontus Giselsson

Outline

¢ Classification

e Logistic regression

e Nonlinear features

o Overfitting and regularization
o Multiclass logistic regression

e Training problem properties

1 2
Classification Binary classification
® Let (z,y) represent object and label pairs
® Object z € ¥ C R" . ® Labels y = 0 or y = 1 (alternatively y = —1 or y = 1)
® Label y € Y ={1,..., K} that corresponds to K different classes .
. . . N ® Training problem
® Available: Labeled training data (training set) {(z;,y;)}iv,
Objective: Find parameterized model (function) m(z;6): min%nizezL(m(:z;i:ﬂ),y,)
® that takes data (example, object) x as input i=1
® and predicts corresponding label (class) y € {1,..., K} ® Design loss L to train model parameters 6 such that:
How?: ® m(xzi;0) <0 for pairs (wi,y:) where y; =0
® m(xz;0) > 0 for pairs (zi,y:) where y; =1
® learn parameters ¢ by solving training problem with training data ® Predict class belonging for new data points z with trained 6*:
N ® m(x;0") < 0 predict class y = 0
minimizcz L(m(z:;0),v:) ' UL(.LQ )>0 pr'edlct c'Ias's y : 1
0 = objective is that this prediction is accurate on unseen data
with some loss function L
3 4
Binary classification — Cost functions Binary classification — Cost functions
® Different cost functions L can be used: ® Different cost functions L can be used:
® y = 0: Small cost for m(z;0) < 0 large for m(z;0) > 0 ® y =0: Small cost for m(z;0) < 0 large for m(z;60) > 0
® y = 1: Small cost for m(z;0) > 0 large for m(z;0) < 0 ® y = 1: Small cost for m(z;0) > 0 large for m(z;0) < 0
L(m(z;0),0) L(m(x;0),1) L(m(x;0),0) L(m(z;0),1)
F——— m(x;0) — s m(z;0) m(z; 0) m(z; 0)
nonconvex (Neyman Pearson loss) L(u,y) = max(0,u) — yu
5 5
Binary classification — Cost functions Binary classification — Cost functions
® Different cost functions L can be used: ® Different cost functions L can be used:
® y = —1: Small cost for m(z;0) < 0 large for m(z;0) > 0 ® y = —1: Small cost for m(z;0) < 0 large for m(z;6) > 0
® y =1: Small cost for m(z;8) > 0 large for m(z;6) < 0 ® y = 1: Small cost for m(x;8) > 0 large for m(x;0) < 0
L(m(z:0),-1) L(m(z;0),1) L(m(z:0),-1) L(m(x;0),1)
m(x;6) m(x;6) m(xz;6) m(x; 0)
L(u,y) = max(0,1 — yu) (hinge loss used in SVM) L(u,y) = max(0,1 — yu)? (squared hinge loss)
5 5




Binary classification — Cost functions

e Different cost functions L can be used:

® y =0: Small cost for m(z;0) < 0 large for m(z;60) > 0
® y = 1: Small cost for m(z;0) > 0 large for m(z;0) < 0

L(m(x;0),0) L(m(x;0),1)

m(z;0) m(x;0)

L(u,y) = log(1 + €“) — yu (logistic loss)

Outline

¢ Classification

o Logistic regression

e Nonlinear features

o Overfitting and regularization
o Multiclass logistic regression

e Training problem properties

Logistic regression

® Logistic regression uses:
® affine parameterized model m(z;0) = w”z + b (where 0 = (w, b))
® loss function L(u,y) = log(1 + e") — yu (if labels y =0, y = 1)
® Training problem, find model parameters by solving:

N N
minigmizez L(m(xi;0),y;) = Z (log(l + ezrw“’) —yi(xFw + b))
i=1

i=1

® Training problem convex in 8 = (w, b) since:
® model m(x;0) is affine in 6
® loss function L(u,y) is convex in u

L(u,0) L(u,1)

Prediction

® Use trained model m to predict label y for unseen data point z
® Since affine model m(x;0) = w”z + b, prediction for  becomes:
o If w'z +b < 0, predict corresponding label y = 0
o If wlz +b> 0, predict corresponding label y = 1
o If w'x +b=0, predict either y =0 or y = 1
® A hyperplane (decision boundary) separates class predictions:

H:={z:wlz+b=0}

7
Training problem interpretation Training problem interpretation
® Every parameter choice 6 = (w, b) gives hyperplane in data space: ® Every parameter choice § = (w, b) gives hyperplane in data space:
H:={z:w s +b=0} = {z:m(z;0) = 0} H:={z:w'z+b=0} = {z:m(z;0) = 0}
® Training problem searches hyperplane to “best” separates classes ® Training problem searches hyperplane to "best” separates classes
® Example — models with different parameters 6: ® Example — models with different parameters 6:
* *
N .  m(z;61) . L m(a;01)
H *
* *
¥ *
s ¥
* * m(x;02)
* *
* *
* Hx * Hx
9

Training problem interpretation

® Every parameter choice 6 = (w, b) gives hyperplane in data space:
H:={z:w s +b=0} = {z:m(z;0) = 0}

® Training problem searches hyperplane to "best” separates classes
® Example — models with different parameters 6:

*
« m(x;01)
* *
=
*
_ **
. m(x; 02)
- ) T m(x;03)
*
*
%

Training problem interpretation

® Every parameter choice 6 = (w, b) gives hyperplane in data space:
H:={z:w's+b=0} = {z:m(z;0) = 0}

® Training problem searches hyperplane to "best” separates classes
® Example — models with different parameters 6:

*
N « m(x;01)
.«
T
*
e ¢ _— m(x;04
— ¥ m(z; 02
* * - m(x;03)
*
*
**




Training problem interpretation

® Every parameter choice 6 = (w, b) gives hyperplane in data space:

H:={z:w s +b=0} = {z:m(z;0) =0}

What is “best” separation?

® The "best” separation is the one that minimizes the loss function
® Hyperplane for model m(-; 6) with parameter § = 6;:

*
« m(z:601) =0
-

® Training problem searches hyperplane to “best” separates classes * N
® Example — models with different parameters 6: *
K ™
*
* * *
m(z; 01) *
* ’ *
* m(x;6%) *
® Training loss:
L(m(x;61),0) L(m(x;61),1)
m(x; 04
m(x; 02
— m(z;03)
m(x;01) m(x;61)
4.287 + 0.20876
9 =4.49576 10
What is “best” separation? What is “best” separation?
® The “best” separation is the one that minimizes the loss function ® The “best” separation is the one that minimizes the loss function
® Hyperplane for model m(+; ) with parameter 6 = 05: ® Hyperplane for model m(-;0) with parameter 6 = 05:
* *
* x * * x F
* *
* *
* m(x;02) =0 %
* “ * * ~ m(z;03) =0
* *
* *
¥ H
® Training loss: ® Training loss:
L(m(x;02),0) L(m(x;02),1) L(m(x;03),0) L(m(x;03),1)
m(z; 02) m(z; 02) m(z; 03) m(z; 03)
9.21489 + 1.27733 2.77849 + 3.80417
=10.49222 10 =6.58266 10
What is “best” separation? What is “best” separation?
® The "best” separation is the one that minimizes the loss function ® The "best” separation is the one that minimizes the loss function
® Hyperplane for model m(-; ) with parameter 6 = 6,: ® Hyperplane for model m(-; 6) with parameter § = 6*:
* *
* W * m(z;60*) =0
*
* ¢ m(z;04) =0
X
* X
*
*
H
® Training loss: ® Training loss:
L(m(z;64),0) L(m(x;64),1) L(m(z;6%),0) L(m(x;6%),1)
m(x;04) m(z; 04) m(x; 6%) m(x; 6%)
0.33203 + 4.09265 0.95554 + 0.99332
=4.42468 10 =1.94885 10

Fully separable data — Solution

® Let § = (w,b) give model that separates data:
~ m(z;0) =0

o Let Hy := {z : m(x;0) = w'z +b = 0} be hyperplane separates
® Training loss:

L(m(z;0),0) L(m(x;0),1)
m(z;0) m(z; 0)
2.5077 + 2.30927
=4.90697

11

Fully separable data — Solution

® Also 20 = (2w, 2b) separates data:
~ m(z;20) =0

® Hyperplane Hyj := {z : m(z;20) = 2(wTz+b) = 0} = Hy same
® Training loss reduced since input m(z;260) = 2m(x; 0) further out:

L(m(x;26),0) L(m(x;20),1)
m(z;20) m(x;20)
1.30894 + 1.27458
=2.58353

11




Fully separable data — Solution

® And 30 = (3w, 3b) also separates data:
_ m(x;30) =0

3o*
® Hyperplane Hyj := {z : m(z;30) = 3(w”z + b) = 0} = Hj same

® Training loss further reduced since input m(z;30) = 3m(z; 0):

L(m(z;30),0) L(m(z;30),1)

Fully separable data — Solution

® And 30 = (3w, 3b) also separates data:
m(x;30) =0

*
* -

3%
® Hyperplane Hyj := {z : m(x;30) = 3(w"x 4 b) = 0} = Hy same
® Training loss

L(m(z;30),0) L(m(z;30),1)

m(z; 30) f m(z; 30) m(z; 30) T m(z; 30)
0.70746 + 0.78403 0.70746 + 0.78403
=1.49149 =1.49149
e Let @ =t and t — oo, then loss — 0 = no optimal point
11 11
The bias term Bias term gives shift invariance
® Assume all data points shifted xf := x; + ¢
® \We want same hyperplane to separate data, but shifted
® The model m(x;0) = w”z + b bias term is b
® |east squares: optimal b has simple formula
® No simple formula to remove bias term here!
® Assume 0 = (w,b) is optimal for {(z;,v:)}Y,
® Then 0. = (w,b.) with b. = b — w’c optimal for {(z§,v;)}Y,
® Why? Model outputs the same for all z;:
® m(xz;;0) = wlz; +b
o m(z5;0:) = whaf +be = wlai +b+wl(c—c)=wla; +b
12 13
Another derivation of logistic loss Outline
® Assume model is instead o(w”z +b), with o(u) = 2=
® Binary cross entropy applied to model with sigmoid output:
—ylog(o(u)) — (1 —y)log(1 — o(u)) .
1 ® Classification
= —ylog(m) = (1 -y)log(1l - m) e Logistic regression
) et L ) e~ U * Nonlinear features
=Y Og(l T @u) -(1-y) Og(l T cfu) o Overfitting and regularization
= —y(u—log(l+e"))+ (1 —y)log(l+e") e Multiclass logistic regression
= log(1 + €") — yu (= logistic loss) e Training problem properties
® Two equivalent formulations to arrive at same problem:
® Real-valued model m(z;0) and logistic loss log(1 + €*) — yu
® (0,1)-valued model o(m(z;60)) and binary cross entropy
® Prefer previous formulation
® easier to see how deviations penalized
® easier to conclude convexity of training problem
14 15
Logistic regression — Nonlinear example Logistic regression — Example
R . . .
® Logistic regression tries to affinely separate data Seems ||n.ear n feature‘2 a.nd quadratic in feature 1
. . - . ® Add a third feature which is feature 1 squared
® Can nonlinear boundary be approximated by logistic regression?
® Introduce features (perform lifting)
I
[
E
&
16
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Logistic regression — Example

® Seems linear in feature 2 and quadratic in feature 1
® Add a third feature which is feature 1 squared

<——Feature 3——~
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Logistic regression — Example

® Seems linear in feature 2 and quadratic in feature 1
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Logistic regression — Example

® Seems linear in feature 2 and quadratic in feature 1
® Add a third feature which is feature 1 squared

<——Feature 3——~

Logistic regression — Example

® Seems linear in feature 2 and quadratic in feature 1
® Add a third feature which is feature 1 squared

<——Feature 3—~
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Logistic regression — Example Logistic regression — Example
® Seems linear in feature 2 and quadratic in feature 1 ® Seems linear in feature 2 and quadratic in feature 1
® Add a third feature which is feature 1 squared ® Add a third feature which is feature 1 squared
I I
[ [
E E
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17
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Logistic regression — Example

® Seems linear in feature 2 and quadratic in feature 1
® Add a third feature which is feature 1 squared

<——Feature 3——~

Logistic regression — Example

® Seems linear in feature 2 and quadratic in feature 1
® Add a third feature which is feature 1 squared

Ry 3“3 # s w03
oo TRITE,
! "'; o

3
3
4
i
::‘
<——Feature 3—~
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Logistic regression — Example Logistic regression — Example
® Seems linear in feature 2 and quadratic in feature 1 ® Seems linear in feature 2 and quadratic in feature 1
® Add a third feature which is feature 1 squared ® Add a third feature which is feature 1 squared
o Data linearly separable in lifted (feature) space o Data linearly separable in lifted (feature) space
17
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Logistic regression — Example

® Seems linear in feature 2 and quadratic in feature 1
® Add a third feature which is feature 1 squared

o Data linearly separable in lifted (feature) space
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Logistic regression — Example

® Seems linear in feature 2 and quadratic in feature 1
® Add a third feature which is feature 1 squared

o Data linearly separable in lifted (feature) space

Logistic regression — Example

® Seems linear in feature 2 and quadratic in feature 1
® Add a third feature which is feature 1 squared

T Y
0 R e
RS O N
L R T SR o o
ARSI ) S o

S SR R N Tt

R TSAL R A4 % SR LN < TR
LR oA S R A SN I

AT R

o Data linearly separable in lifted (feature) space

17 17
Logistic regression — Example Logistic regression — Example
® Seems linear in feature 2 and quadratic in feature 1 ® Seems linear in feature 2 and quadratic in feature 1
® Add a third feature which is feature 1 squared ® Add a third feature which is feature 1 squared
% "»
VRS
RV AR e
e wiiE
LR i
e g Y T
R R
ot
; 4 .3§
o Data linearly separable in lifted (feature) space o Data linearly separable in lifted (feature) space
17 17
Logistic regression — Example Nonlinear models — Features
® Seems linear in feature 2 and quadratic in feature 1
® Add a third feature which is feature 1 squared ) o
® Create feature map ¢ : R™ — RP of training data
® Data points z; € R™ replaced by featured data points ¢(z;) € R?
® New model: m(z;0) = w?¢(z) + b, still linear in parameters
® Feature can include original data x
® We can add feature 1 and remove bias term b
® | ogistic regression training problem
N T
miniamizcz (log(l + @) Wy () Tw + b))
i=1
same as before, but with features as inputs
o Data linearly separable in lifted (feature) space
17 18
Graphical model representation Polynomial features
® A graphical view of model m(z;0) = w¢(x):
o(4)
)
® Polynomial feature map for R™ with n = 2 and degree d = 3
O(x) = (21,72, 27, w122, 03, 23, 273, 1103, 3)
—
3 m(xi; 0) - ;
8 ¢ (note that original data is also there)
® New model: m(xz;0) = wT¢(x) + b, still linear in parameters
® Number of features p+ 1 = (”j;d) = % grows fast!
® Training problem has p + 1 instead of n + 1 decision variables
® The input z; is transformed by fixed nonlinear features ¢
® Feature-transformed input is multiplied by model parameters 6
® Model output is then fed into cost L(m(z;;6),y)
® Problem convex since L convex and model affine in 6
19 20




Example — Different polynomial model orders

e “Lifting” example with fewer samples and some mislabels

o Logistic regression (no regularization) polynomial features of degree:

*
* * * *

* *

*
* * *
* *
*
* *
* w5 *
*
o * +
*
* * "
* %
* *
**

*

PR M

. '

*

21

Example — Different polynomial model orders

e “Lifting” example with fewer samples and some mislabels

o Logistic regression (no regularization) polynomial features of degree: 2

21

Example — Different polynomial model orders

o "Lifting” example with fewer samples and some mislabels
e Logistic regression (no regularization) polynomial features of degree: 3

21

Example — Different polynomial model orders

o “Lifting” example with fewer samples and some mislabels
e Logistic regression (no regularization) polynomial features of degree: 4

*
*
*
* *
* *
*
*
* oo
% *
*
*
*
%
**
*
*
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Example — Different polynomial model orders

e “Lifting” example with fewer samples and some mislabels

o Logistic regression (no regularization) polynomial features of degree: 5

21

Example — Different polynomial model orders

e “Lifting” example with fewer samples and some mislabels

o Logistic regression (no regularization) polynomial features of degree: 6

*
*
*
*
*
*e
*
*
*

21

Outline

e Classification

o Logistic regression

® Nonlinear features

o Overfitting and regularization
o Multiclass logistic regression

o Training problem properties

22

Overfitting

e Models with higher order polynomials overfit

o Logistic regression (no regularization) polynomial features of degree 6

*
*
*
*
*
*e
*
*
*

e Tikhonov regularization can reduce overfitting

23




Tikhonov regularization

Regularized problem:
N T
mini@mizez (log(l + e 0t —yi(aTw + b)) + A|w|3
i—1

Regularization:

® Regularize only w and not the bias term b
® Why? Model looses shift invariance if also b regularized

Problem properties:

® Problem is strongly convex in w = optimal w exists and is unique
® Optimal b is bounded if examples from both classes exist

Example — Different regularization

o Regularized logistic regression and polynomial features of degree 6

e Regularization parameter A, training cost J, # mislabels in training

A J # mislabels
0.00001 4.60 1
*
*
*
*
* *
* »
*
* 8y

**

*
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Example — Different regularization Example — Different regularization
o Regularized logistic regression and polynomial features of degree 6 o Regularized logistic regression and polynomial features of degree 6
o Regularization parameter A, training cost J, # mislabels in training o Regularization parameter A, training cost J, # mislabels in training
by J # mislabels by J # mislabels
0.00006 6.83 5 0.00036 9.94 5
* * * *
* * * *
a
« ¥
« ¥ ¥ *
Y %
¥ *
¥ ¥
* *, * *
' '
25 25
Example — Different regularization Example — Different regularization
o Regularized logistic regression and polynomial features of degree 6 e Regularized logistic regression and polynomial features of degree 6
o Regularization parameter A, training cost J, # mislabels in training e Regularization parameter A, training cost J, # mislabels in training
# mislabels # mislabels
6 7
* *
« ¥
B «
« «
* *
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Example — Different regularization Example — Different regularization
o Regularized logistic regression and polynomial features of degree 6 o Regularized logistic regression and polynomial features of degree 6
o Regularization parameter A, training cost J, # mislabels in training o Regularization parameter A, training cost J, # mislabels in training
by J # mislabels by J # mislabels
* * * *
¥ ¥
¥ *
Y %
¥ *
¥ ¥
*% **
25
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Example — Different regularization

o Regularized logistic regression and polynomial features of degree 6

e Regularization parameter A, training cost J, # mislabels in training

Py J # mislabels

Generalization

® |nterested in models that generalize well to unseen data

® Assess generalization using holdout or k-fold cross validation

25 26
Example — Validation data Example — Validation data
o Regularized logistic regression and polynomial features of degree 6 o Regularized logistic regression and polynomial features of degree 6
o J and # mislabels specify training/test values o J and # mislabels specify training/test values
by J # mislabels by J # mislabels
0.00001 4.60/38.5 1/7 0.00006 6.83/25.7 5/7
) )
< <
o o
o o 3
o 9 A o 0 °
< <
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Example — Validation data Example — Validation data
o Regularized logistic regression and polynomial features of degree 6 e Regularized logistic regression and polynomial features of degree 6
e J and # mislabels specify training/test values e J and # mislabels specify training/test values
A J # mislabels A J # mislabels
0.00036 9.94/13.4 5/8 0.0021 12.1/8.70 6/5
0 3
) )
<o M
<o M
M 12
o 9 ° o © °
< <
27 27
Example — Validation data Example — Validation data
o Regularized logistic regression and polynomial features of degree 6 o Regularized logistic regression and polynomial features of degree 6
o J and # mislabels specify training/test values o J and # mislabels specify training/test values
by J # mislabels by J # mislabels
0.013 13.6/8.12 7/2 0.077 15.4/10.2 8/3
¢ ¢ 9 ¢ 9
13 8 13 8
3 o
< 4 <@
¢ ¢ o ¢ o
3 < o
<>°8 N ° <>°8 3
% o % o
o
o ¢ o
o ° o 0 o o ° 4
¢ < ¢ <
<
27 27




Example — Validation data

o Regularized logistic regression and polynomial features of degree 6

e J and # mislabels specify training/test values

Py J # mislabels
0.46 19.2/15.2 /4

Example — Validation data

o Regularized logistic regression and polynomial features of degree 6

e J and # mislabels specify training/test values

# mislabels
8

27 27
Test vs training error — Cost Test vs training error — Classification accuracy
® Decreasing A gives higher complexity model ® Decreasing A gives higher complexity model
® Qverfitting to the right, underfitting to the left ® Overfitting to the right, underfitting to the left
® Select lowest complexity model that gives good generalization ® Cost often better measure of over/underfitting
Training vs test cost Number of misclassifications
\
— train — train
— test — test
Increasing model complexity, A N\, Increasing model complexity, A N\,
28 29
Outline What is multiclass classification?
R e o
C|aS'SIf'IC3tI0n ) ® We have previously seen binary classification
* Logistic regression ® Two classes (cats and dogs)
¢ Nonlinear features ® Each sample belongs to one class (has one label)
o Overfitting and regularization ® Multiclass classification
¢ Multiclass logistic regression ® K classes with K > 3 (cats, dogs, rabbits, horses)
« Training problem properties ® Each sample belongs to one class (has one label)
ep prop ® (Not to confuse with multilabel classification with > 2 labels)
30 31
Multiclass classification from binary classification Multiclass logistic regression
® 1-vs-1: Train binary classifiers between all classes
® Example: . -
o catvsdog, ® K classes in {1,..., K} and data/labels (z,y) € X x Y
® cat-vs-rabbit ® Labels: y € Y = {eq,...,ex} where {¢;} coordinate basis
¢ cat-vs-horse ® Example, K = 5 class 2: y = e» = [0,1,0,0,0]"
® dog-vs-rabbit
® dog-vs-horse ® Use one model per class m;(z;0;) for j € {1,...,K}
¢ rabbit-vs-horse e Objective: Find 6 = (01,...,0) such that for all models j:
® Prediction: Pick, e.g., the one that wins the most classifications . . _ . .
® Number of classifiers: L{\;U .. 7-77](.v,9j) > 0. iflabel y.— s and s (x:0) <0y 7 es
. ? . .
® 1-vs-all: Train each class against the rest Training problem loss function:
® Example X
® cat-vs-(dog,rabbit,horse) _ u T
® dog-vs-(cat,rabbit,horse) L(w,y) = log Z e’ | —uy
® rabbit-vs-(cat,dog,horse) j=1
® horse-vs-(cat,dog, rabbit)
® Prediction: Pick, e.g., the one that wins with highest margin where label y is a “one-hot” basis vector, is convex in u
® Number of classifiers: K
® Always skewed number of samples in the two classes
32 33




Multiclass logistic loss function — Example
® Multiclass logistic loss for K =3, u1 =1, y = ¢
L((1,u2,u3),1) = log(e' + e 4+ ¢e"2) — 1

® Model outputs us < 0, ug < 0 give smaller cost for label y = e;

Multiclass logistic loss function — Example
® Multiclass logistic loss for K =3, us = —1, y = e1
L((ur, —1,u3),1) = log(e™ + ™" + ") —uy

® Model outputs u; > 0 and us < 0 give smaller cost for y = e;

35
Multiclass logistic regression — Training problem Multiclass logistic regression — Prediction
® Affine data model m(z;0) = w”x + b with
w:[wl,.‘.,wK]ER"XK, b=[b1,.‘.,bK]T€RK
® One data model per class
mi(z;61) wlz + by ® Assume model is trained and want to predict label for new data =
m(z;0) = : _ : ® Predict class with parameter 6 for x according to:
. Uy
my (z;0k) wicx + by argmax my;(z;0)
. je{1,... K
® Training problem: iet !
N = i.e., class with largest model value (since trained to achieve this)
PP Tai+b T/ T
mlmemlzeZlog Zewf TF ) — i (w4 D)
i=1 j=1
where y; is “one-hot” encoding of label
® Problem is convex since affine model is used
e (Alt.: model o(w?z + b) with o softmax and cross entropy loss)
36 37
Special case — Binary logistic regression Example — Linearly separable data
. . ® Problem with 7 classes
® Consider two-class version and let
® Au=u; —uz, Aw = w; — wo, and Ab=b; — by
® Au = mupin(x;0) = ma(x;61) — ma(x;02) = AwTx + Ab L L. s
® yoin=1ify = (1,0) and yoin = 0 if y = (0, 1) e e e
® Loss L is equivalent to binary, but with different variables: e o * L
L(u,y) = log(e" +€"*) — yru1 — yauz . R Pt . .
= log <1 + ) +log(e"?) — yrur — yous . S e
=log (1 +6A"> —yiur — (y2 — Due M
LSS . i
A o »‘n * . P
=log (142" ) — ypnAu L . "
38 39
Example — Linearly separable data Example — Quadratically separable data
® Problem with 7 classes and affine multiclass model e Same data, new labels in 6 classes
‘»‘ 4 ’: + é* ) ’ :} '
. + ’ . ’ b K «
A e e 1‘$ ,“** +
*:» . :‘ X . .
S ’ .
40
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Example — Quadratically separable data

e Same data, new labels in 6 classes, affine model

Example — Quadratically separable data

e Same data, new labels in 6 classes, quadratic model

40 40
Features Outline
® Used quadratic features in last example
® Same procedure as before:
® replace data vector z; with feature vector ¢(z;)
® run classification method with feature vectors as inputs o Classification
o Logistic regression
(i) . ® Nonlinear features
% e Overfitting and regularization
N 5 e Multiclass logistic regression
; — = o Training problem properties
F— °
41 42
Composite optimization — Binary logistic regression Gradient and function properties
Regularized (with g) logistic regression training problem (no features) ® Gradient of h;(u;) =log(1 + €") — yiu; is:
et
N Vhi(u;) = —Yi = —— —vi = o(w) —yi
minimize Z (log (1 + ewT"H’) —yi(wlz; + b)) +9(9) L+ew Ltemm
0 i=1 where o(u;) = (1 + e~ %)~ ! is called a sigmoid function
can be written on the form ® Gradient of (f o L)(0) satisfies:
minigmize F(LO) + g(0), V(fo -V Z hi(L:6) Z LIV hi(L:6)
1
where -
=N (log(1 + ¢") — y;u;) is data misfit term = Z [1} (o(zTw +b) — y;)
. L = [X 1] where training data matrix X and 1 satisfy ile
X
o7 1 = LT] (c(Xw+b1)-Y)
X = : 1= N N :
i where last o : RN — R" applies ;-1 to all [Xw + b1},
TN 1 ® Function and sigmoid properties:
e ¢ is regularization term ® sigmoid o is 0.25-Lipschitz continuous:
g g ® fis convex and 0.25-smooth and f o L is 0.25||L||3-smooth
44
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Support Vector Machines

Pontus Giselsson

Outline

¢ Classification

o Support vector machines

® Nonlinear features

o Overfitting and regularization
e Dual problem

o Kernel SVM

e Training problem properties

2
Binary classification Binary classification — Cost functions
) ® Different cost functions L can be used:
® Labels y = 0 or y = 1 (alternatively y = —1 or y = 1) ® y = 0: Small cost for m(z;0) < 0 large for m(z;6) > 0
® Training problem ® y =1: Small cost for m(z;0) > 0 large for m(z;0) < 0
N
minimize L(m(z;;0),y;
o ; (m{asi ), 84) L(m(x;6),0) L(m(x;6),1)
® Design loss L to train model parameters 6 such that:
® m(z;;0) <0 for pairs (xi,y;) where y; =0
® m(x;;0) > 0 for pairs (xi,y;) where y; =1
® Predict class belonging for new data points z with trained 6: m(w;0) m(;6)
® m(z;0) < 0 predict class y =0
® m(x;0) > 0 predict class y = 1 L(u,y) =log(1 + e*) — yu (logistic loss)
4
Binary classification — Cost functions Binary classification — Cost functions
® Different cost functions L can be used: ® Different cost functions L can be used:
® y = 0: Small cost for m(x;6) < 0 large for m(x;0) > 0 ® y = 0: Small cost for m(z;6) < 0 large for m(x;0) > 0
® y =1: Small cost for m(x;0) > 0 large for m(z;0) < 0 ® y =1: Small cost for m(z;0) > 0 large for m(x;0) < 0
L(m(x;0),0) L(m(x;0),1) L(m(x;0),0) L(m(x;0),1)
> m(2;0) — m(z;0) m(x;0) m(x;0)
nonconvex (Neyman Pearson loss) L(u,y) = max(0,u) — yu
4
Binary classification — Cost functions Binary classification — Cost functions
® Different cost functions L can be used: ® Different cost functions L can be used:
® y = —1: Small cost for m(x;0) < 0 large for m(z;6) > 0 ® y = —1: Small cost for m(xz;8) < 0 large for m(z;60) > 0
® y =1: Small cost for m(z;6) > 0 large for m(x;60) < 0 ® y =1: Small cost for m(z;6) > 0 large for m(x;6) < 0
L(m(z;0),—1) L(m(x;0),1) L(m(z;0),—1) L(m(z;0),1)
m(x;0) m(x; 0) m(x;0) m(x;0)

L(u,y) = max(0,1 — yu) (hinge loss used in SVM)

L(u,y) = max(0,1 — yu)? (squared hinge loss)




Outline

e Classification

e Support vector machines

® Nonlinear features

e Overfitting and regularization
e Dual problem

e Kernel SVM

e Training problem properties

Support vector machine

® SVM uses:
® affine parameterized model m(z;0) = w” z + b (where 6 = (w, b))
® loss function L(u,y) = max(0,1 — yu) (if labels y = —1, y = 1)
® Training problem, find model parameters by solving:
N N
miniQmizcz L(m(z;0),y;) = Zma.x(o. 1 —yi(whaz; + 1))
i=1 i=1
® Training problem convex in 6 = (w,b) since:
® model m(z;0) is affine in 6
® loss function L(u,y) is convex in u

L(u,—1) L(u,1)

u u

Prediction

® Use trained model m to predict label y for unseen data point x
e Since affine model m(x;6) = w?xz + b, prediction for x becomes:
o If w2z + b < 0, predict corresponding label y = —1
o If wz + b > 0, predict corresponding label y = 1
o If wlz+b=0, predict either y = —1 or y = 1
® A hyperplane (decision boundary) separates class predictions:

H:={z:wlz+b=0}

Training problem interpretation

® Every parameter choice § = (w, b) gives hyperplane in data space:
H:={z:wlz+b=0}={x:m(z;0) = 0}

® Training problem searches hyperplane to "best” separates classes

® Example — models with different parameters 6:

w« m(x;01)
m(z; 0*)

m(x; 04
m(z; 02
— m(x;03)

What is “best” separation?

® The "best” separation is the one that minimizes the loss function
® Hyperplane for model m(-;6) with parameter 6 = 6:

*

. » m(z;01) =0
*
*
H*
»
*
*
*
*
*
%
® Training loss:
L(m(z;61), 1) L(m(;61),1)
m(x;01) T s (x; 01)
5.69992 + 0.0
=5.69992

What is “best” separation?

® The “best” separation is the one that minimizes the loss function
® Hyperplane for model m(-;6) with parameter § = 0s:

* * *
*
*
* ™
* m(x;02) =0
*
*
*
*
*
® Training loss:
L(m(z;02), 1) L(m(;62),1)
m(x; 02) m(z;02)
12.31264 + 0.52513
=12.83777

What is “best” separation?

® The “best” separation is the one that minimizes the loss function
® Hyperplane for model m(-;6) with parameter § = 6:

*
* + =
*
*
*
#
o, m(a;05) = 0
*
*
H
® Training loss:
L(m(z;03), —1) L(m(z;03),1)
m(z; 03) m(z;03)
3.66974 + 5.13803

=8.80777

What is “best” separation?

® The “best” separation is the one that minimizes the loss function
® Hyperplane for model m(-;6) with parameter § = 6,:

*
* % F
*
*
* # m(z;04) =0
*
* e
*
*
*
® Training loss:
L(m(z;04),—1) L(m(z;04),1)
m(z;04) m(x;04)
0.0 + 5.90926
=5.90926




What is “best” separation?

® The “best” separation is the one that minimizes the loss function
® Hyperplane for model m(-;6) with parameter § = 0*:

Fully separable data — Solution

® Let O = (w,b) give model that separates data:
m(x;0) =0

e Let Hy := {z: m(x;0) = wTx +b = 0} be hyperplane separates
® Training loss:

L(m(z;0),—1) L(m(z;0),1)
® Training loss:
L(m(x;6*%),—1) L(m(x;6*%),1)
m(z;0) m(x;0)
1.54938 + 1.78937
=3.33875
m(xz; 0%) m(xz;0*)
0.0 + 0.0
=0.0 9 10
Fully separable data — Solution Fully separable data — Solution
® Also 20 = (2w, 2b) separates data: ® And 30 = (3w, 3b) also separates data:
. ***N,, m(x;20) = 0 . ***N,, m(x;30) =0
e
- e, S
® Hyperplane Hyj := {z : m(x;20) = 2(w"z +b) = 0} = Hj same ® Hyperplane Hyj := {x : m(x;30) = 3(w”x + b) = 0} = Hj same
® Training loss reduced since input m(z; 20) = 2m(x; 6) further out: ® Training loss further reduced since input m(z; 360) = 3m(x;6):
L(m(x;20), —1) L(m(x;20),1) L(m(z;30), —1) L(m(z;30),1)
m(x;20) m(x;20) m(x; 30) m(z;30)
0.20813 + 0.30518 0.0 + 0.0
=0.5133 =0.0
10 10
Fully separable data — Solution Margin classification and support vectors
® And 30 = (3w, 3b) also separates data: ® Support vector machine classifiers for separable data
* m(;30) =0 ® Classes separated with margin, o marks support vectors
>
A
DD
S
® Hyperplane Hyy := {z : m(x;30) = 3(w'z +b) = 0} = Hy same S
® Training loss /
L(m(z;36), —1) L(m(x;30),1)
*
*
m(z; 30) T m(x; 30)
0.0 + 0.0
=0.0 *
e As soon as [m(z;;6)| > 1 (with correct sign) for all z;, cost is 0
10 11
Outline Nonlinear example
® Can classify nonlinearly separable data using lifting
® Classification * L N «
e Support vector machines " -
* Nonlinear features . *
o Overfitting and regularization * . Lt
e Dual problem <L, o
* Kernel SVM . . o, *
e Training problem properties X, * *
12 13




Adding features

Create feature map ¢ : R” — RP? of training data
Data points x; € R™ replaced by featured data points ¢(z;) € RP
Example: Polynomial feature map with n = 2 and degree d =3

é(x) = (21,0, 2%, 2120, 3, 23, 2209, 1125, 23)

] )
nj;d) _ % grows fast!

Number of features p + 1 = (
SVM training problem

inimize ax(0,1 — 0T (s b
IlllnlnglZ(—‘;HldX( , yi(w” d(z;) +b))

still convex since features fixed

Nonlinear example — Polynomial features

e SVM and polynomial features of degree 2

14 15
Nonlinear example — Polynomial features Nonlinear example — Polynomial features
e SVM and polynomial features of degree 3 e SVM and polynomial features of degree 4
* * *
*
«
«
* * *
.
* * * *, .
*
15 15
Nonlinear example — Polynomial features Nonlinear example — Polynomial features
® SVM and polynomial features of degree 5 e SVM and polynomial features of degree 6
* i
*
15 15
Nonlinear example — Polynomial features Nonlinear example — Polynomial features
e SVM and polynomial features of degree 7 e SVM and polynomial features of degree 8
" *
*
.
*
15 15




Nonlinear example — Polynomial features

e SVM and polynomial features of degree 9

Nonlinear example — Polynomial features

e SVM and polynomial features of degree 10

15 15
Outline Overfitting and regularization
o Classification * SVM is‘pro‘ne to ‘overfitting if modelltoo expreszive
L] . - |5
« Support vector machines Regularization using || - ||; (for sp:rsny) or || -3
o Nonlinear features lehon(?v regular‘lzatlon with || - || es.peaally important for SVM
« Overfitting and regularization ® Regularize only linear terms w, not bias b
® Training problem with Tikhonov regularization of w
e Dual problem
e Kernel SVM N , \ ,
e Training problem properties mlnlgmlchmax(O, 1—yi(w” o(z:) + b)) + 5‘ wilz2
i=1
(note that features are used ¢(z;))
16 17
Nonlinear example revisited Nonlinear example revisited
o Regularized SVM and polynomial features of degree 6 e Regularized SVM and polynomial features of degree 6
o Regularization parameter: A\ = 0.00001 o Regularization parameter: A = 0.00006
18 18
Nonlinear example revisited Nonlinear example revisited
o Regularized SVM and polynomial features of degree 6 o Regularized SVM and polynomial features of degree 6
o Regularization parameter: A = 0.00036 o Regularization parameter: A\ = 0.0021
18 18




Nonlinear example revisited

e Regularized SVM and polynomial features of degree 6
o Regularization parameter: A\ = 0.013

Nonlinear example revisited

e Regularized SVM and polynomial features of degree 6
o Regularization parameter: A = 0.077

N
18 18
Nonlinear example revisited Nonlinear example revisited
o Regularized SVM and polynomial features of degree 6 o Regularized SVM and polynomial features of degree 6
e Regularization parameter: A = 0.46 o Regularization parameter: A =2.78
* *
18 18
Nonlinear example revisited Outline
o Regularized SVM and polynomial features of degree 6
o Regularization parameter: A\ = 16.7
' T, o Classification
" * o Support vector machines
. ® Nonlinear features
* o Overfitting and regularization
. e Dual problem
* o Kernel SVM
M e Training problem properties
e )\ and polynomial degree chosen using cross validation/holdout 1o
SVM problem reformulation Dual problem
® Consider Tikhonov regularized SVM:
N ® Let L = [Xy4,y,Y] and write problem as
s ) o T a2
mmize Z max(0, 1 —yi(w” é(z:) +b)) + 3wl minimize 17 max(0,1 — (X yw + VD)) + 3w
’ i=1 w,b _ N——
. . F(L(w,b)) g(w,b)
® Derive dual from reformulation of SVM:
o7 A 5 where
minimize 17 max(0,1 — (Xg,yw + ¥b)) + 3[lwl o F(0) =N, fi(w) and fi(t) = max(0,1 — 15,) (hinge loss)
) ® g(w,b) = %”’LLH% i.e., does not depend on b
where max is vector valued and ® Dual problem
y T
yié(a1) Yy minimize f*(v) + ¢*(~L"v)
Xoy = : : Vi=1: Y
yno(an)T YN
20 21




Conjugate of ¢

* Conjugate of g(w,b) = 3|lw[|3 =: g1(w) + g2(b) is
9" (s 1) = 95 (pt) + 93 (1) = 35 | 13 + 2503 (10)

® Evaluated at —L7v = —[X4 v, V] v

« « X7
5 - =" (= [ Y] ) = 1= XErlB 4 (Y T)

= %VTXG;,YX(ZYV + {0} (YTV)

Conjugate of f

® Conjugate of f;(1;) = max(0,1 — ;) (hinge-loss):

v, if—=1<1;<0
Ji (i) :{

oo else

® Conjugate of f(¢) = Zfll fi(1;) is sum of individual conjugates:

N
)= fi) =1"v 4y 1,0(v)
i=1

22 23
SVM dual Primal solution recovery
® Meaningless to solve dual if we cannot recover primal
® The SVM dual is - . A .
® Necessary and sufficient primal-dual optimality conditions
minimize f*(v) + ¢* (=L v
ynize f*(0) +¢"(=L7) o Jor @) - Liwb)
® [Inserting the above computed conjugates gives dual problem dg*(—=LTv) = (w,b)
minimize Zl\il Vi + ﬁVTX«‘).YngV ® From dual solution v, find (w,b) that satisfies both of the above
subjgct to —-1<v<0 ’ ® For SVM, second condition is
YTv=0 1
o 9" (—LTv) = {g(*Xo}%{/)} S m
® Since Y € RY, YTv = 0 is a hyperplane constraint Loy (=Y ) )
® |f no bias term b; dual same but without hyperplane constraint which gives optimal w = _§X£'yl/ (since unique)
® Cannot recover b from this condition
24 25
Primal solution recovery — Bias term Outline
® Necessary and sufficient primal-dual optimality conditions
of*(v) — L(w,b)
0e I
g*(—=LTv) — (w,b) e Classification
o Support vector machines
® For SVM, row i of first condition is 0 € Of;(v;) — Li(w, b) where o Nonlinear features
[—00,1] ifu=—1 o Overfitting and regularization
bl T
. Dual problem
N RS if —1<v;<0 _ T * P
U=\ 10)  ifvi—0 o Li=wilsled 1] * Kernel SVM
0 else e Training problem properties
® Pick i with v; € (—1,0), then unique subgradient df;(v;) is 1 and
0=1—y;(w'é(x;) +b)
and optimal b must satisfy b = y; — w”¢(x;) for such i
26 27
SVM dual — A reformulation SVM dual — Kernel formulation
® Dual problem
minimize Zﬁl v; + iVTXd,,yXIny
j —-1<rv<
subject to Y%V*IO* 0 ® Dual problem with Kernel matrix
P R N 1T qs .
o Let i := ¢(z;)Té(z;) and rewrite quadratic term: minimize Yty vi+ axv diag(Y)K diag(Y)v
‘ T subjectto —-1<v<0
B(21) YTy =0
uTXé_yX;jyu =vdiag(Y) : [@(zl) (:vN)] diag(Y)v ] )
dlan)T ® Solved without evaluating features, only scalar products:
K11 K1N Kij = O(ﬂvi)T(ﬁ(l’j)
=vdiag(Y) | : o | diag(Y)v
KN1 -0 KNN
—_——
K
where K is called Kernel matrix
28 29




Kernel methods

® We explicitly defined features and created Kernel matrix

® \We can instead create Kernel that implicitly defines features

Kernel operators

® Define:
® Kernel operator x(z,y) : R x R" - R
® Kernel shortcut ki; = k(xi,x;)
® A Kernel matrix

® A Kernel operator k£ : R” x R™ — R is:
® symmetric if k(z,y) = k(y, )
® positive semidefinite (PSD) if symmetric and

"
> aiar(zi ;) > 0
ij

forallm e N, o, a5 € R, and 24, z; € R"
® All Kernel matrices PSD if Kernel operator PSD

30 31
Mercer’s theorem Kernel SVM dual and corresponding primal
® Assume & is a positive semidefinite Kernel operator
® Mercer's theorem: ® SVM dual from Kernel x with Kernel matrix K;; = s(x;, 2;)
There exists continuous functions {e;}°2, and nonnegative RV N . .
j=1 ! 4 L
{132, such that minimize Y oim1 Vi + syvdiag(Y) K diag(Y)r
subjectto —-1<v<0
S YTy =0
w(z,y) = 3 Aes(@)e; (v)
j=1 ® Due to Mercer's theorem, this is dual to primal problem
o Let ¢(z) = (VAre1(z), v/ Aeea(x), ...) be a feature map, then N
minimize Z max(0, 1 — yi((w, ¢(x:)) + b)) + 3wl
k(@ y) = (6(x), 6(y)) O
where scalar product in ¢, (space of square summable sequences) with potentially an infinite number of features ¢ and variables w
® A PSD kernel operator implicitly defines features
32 33
Primal recovery and class prediction Valid kernels
® Assume we know Kernel operator, dual solution, but not features
® Can recover: Label prediction and primal solution b
® Cannot recover: Primal solution w (might be infinite dimensional)
® Primal solution b = y; — w ¢ (x;):
® Polynomial kernel of degree d: #(x,y) = (14 z7y)¢
T -
yro(e1) Yrkoi ® Radial basis function kernels:
T 1,,T 1,7 . 1,T 2
)= —47x, ) =-1 : )=-1 llz—yll
w () 3V Xovle:) N o é(@) N : ® Gaussian kernel: k(z,y) =€ 202 *
yno(rN) YNENi . o=yl
® Laplacian kernel: k(z,y) =e -
® Label prediction for new data x (sign of w”¢(x) + b): ® Bias term b often not needed with Kernel methods
y1o(1)"o(x) vik(z1, )
wlo(z) +b= 7§I/T +b= 7§VT +0b
ynd(zn) " o(x) ynk(TN, T)
® We are really interested in label prediction, not primal solution
34 35
Example — Laplacian Kernel Example — Laplacian Kernel
o Regularized SVM with Laplacian Kernel with o =1 o Regularized SVM with Laplacian Kernel with o =1
o Regularization parameter: A = 0.01 o Regularization parameter: A\ = 0.035938
« ¥
¥ ¥
* «
¥ s
K 3
* % " * *, "
' '
¥ ¥
36 36




Example — Laplacian Kernel

o Regularized SVM with Laplacian Kernel with 0 =1
o Regularization parameter: A\ = 0.12915

Example — Laplacian Kernel

e Regularized SVM with Laplacian Kernel with o =1
o Regularization parameter: A = 0.46416

36 36
Example — Laplacian Kernel Example — Laplacian Kernel
o Regularized SVM with Laplacian Kernel with o =1 o Regularized SVM with Laplacian Kernel with o =1
e Regularization parameter: A = 1.6681 o Regularization parameter: \ = 5.9948
« ¥
¥ ¥
¥ ¥
* «
«
* * *
K * 3
* * N * . % . *
* * * * * *
** **
¥ ¥
36 36
Example — Laplacian Kernel Example — Laplacian Kernel
« Regularized SVM with Laplacian Kernel with o = 1 o What if there is no structure in data? (Labels are randomly set)
o Regularization parameter: \ = 21.5443
* * * *
* * * *
* * *
* 4 *
* * *
. PR * *
* ; *
* « ¥
% * N
* * *
* " . *
* * " *e
* * *
* * . *, **
«
** *
. *
36 37
Example — Laplacian Kernel Outline
e What if there is no structure in data? (Labels are randomly set)
e Regularized SVM Laplacian Kernel, regularization parameter: A\ = 0.01
¢ Classification
e Support vector machines
* Nonlinear features
o Overfitting and regularization
o Dual problem
® Kernel SVM
e Training problem properties
o Linearly separable in high dimensional feature space
o Can be prone to overfitting = Regularize and use cross validation
38




Composite optimization — Dual SVM

Dual SVM problems
inimi N 1T T
minimize Dimivi+ v XeyXgyv
subjectto —-1<v<0
YTv=0
can be written on the form

minimize by (V) + ho (=X yv),
v ,

where

® (V) =1Tv+ _1,0)(¥) + ¢} (Y V)
® First part 170 + t[~1,0](v) is conjugate of sum of hinge losses
® Second part L{[)}(YTV> comes from that bias b not regularized

® ha(u) = o||ull3 is conjugate to Tikhonov regularization % |lwl|3

39

Gradient and function properties

® Gradient of (hy 0 —X7 ) satisfies:

V(hs o 7X3;y)(u) =V (ﬁl/TXéfngyyu) = &X@yXiyl/
= 1 diag(Y)K diag(Y)v

where K is Kernel matrix
® Function properties

. _ . IX 2
® }, is convex and A\~ '-smooth, hy o —ng is I “’A‘YH‘—smooth

® hy is convex and nondifferentiable, use prox in algorithms

40




Deep Learning

Pontus Giselsson

QOutline

o Deep learning

e Learning features

o Model properties and activation functions
e Loss landscape

® Residual networks

o Overparameterized networks

o Generalization and regularization

o Generalization — Norm of weights

® Generalization — Flatness of minima
o Backpropagation

o Vanishing and exploding gradients

Deep learning

® Can be used both for classification and regression

® Deep learning training problem is of the form

N
minigmize E L(m(x;;0),v:)
i=1
where L is same as in convex regression and classification models
® Difference to previous convex methods: Nonlinear model m(z;6)

® Deep learning regression generalizes least squares
® DL classification generalizes multiclass logistic regression
® Nonlinear model makes training problem nonconvex

Deep learning — Model

Nonlinear model of the following form is often used:

m(z;0) := Wnon-1(Wn-10n—2(--- (Waor(Wiz + b1) +b2) -+ ) + bp—1) +bn
where 6 contains all W; and b;

Each activation o constitutes a hidden layer in the model network

We have no final layer activation (is instead part of loss)
Graphical representation with three hidden layers

oa(")

® Some reasons for using this structure:
® (Assumed) universal function approximators
® Efficient gradient computation using backpropagation

4
No final layer activation in classification Activation functions
® In classification, it is common to use ® Activation function o; takes as input the output of W;(-) + b;
. ) L ; ¢
Softmax final layer activation ® Often a function ; : R — R is applied to each element
® Cross entropy loss function -
® Equivalent to 5 . Gj(u1)
® Example: 0; : R® = R? is 0;(u) = |5;(u2)
® no (identity) final layer activation &, (us)
L Iticlass logistic | . . . .
multiclass logistic loss ) ® We will use notation over-loading and call both functions o
® We will not have activation in final layer
6

Examples of activation functions

Name o(u) Graph

Sigmoid H%

Tanh :ifj;c - %,
B
—
e

ReLU max(u,0)

LeakyReLU  max(u, au)

if >
ELU u ifu>0
ale" —1) else

Examples of affine transformations

® Dense (fully connected): Dense W;

® Sparse: Sparse W;
® Convolutional layer (convolution with small pictures)
® Fixed (random) sparsity pattern

® Subsampling: reduce size, W; fat (smaller output than input)
® average pooling




Loss functions

® The most common loss functions are
® Regression: least squares loss
® Binary classification: logistic loss
® Multiclass classification: multiclass logistic loss
which gives generalizations of LS and (multiclass) logistic
regression
® Can also use
® Regression: Huber loss, 1-norm loss
® Binary classification: hinge loss (as in SVM)
® Multiclass classification: Multiclass SVM loss functions

Prediction

® Prediction as for convex methods
® Assume model m(x;6) trained and “optimal” 6* found
® Regression:
® Predict response for new data x using § = m(z;0*)
® Binary classification
® Predict class beloning for new data z using sign(m(z;6*))
® Multiclass classification (with no final layer activation):

® We have one model m;(z;0*) output for each class
® Predict class belonging for new data z according to

argmax my;(z;0)
JE{Le K}

i.e., class with largest model value (since loss designed this way)

9 10
Outline Learning features
o Deep learning »
L ing feat ® Convex methods use prespecified feature maps (or kernels)
e Learning features
. - . ® Deep learning instead learns feature map during training
o Model properties and activation functions « Define parameter dependent feature vector:
o Loss landscape
® Residual networks O(x;0) := on—1(Wn-10n-2(-- - (Waor(Wiz+b1)+b2) - - ) +bn—1)
o Overparameterized networks ® Model becomes m(z;6) = W, (z;6) + bn
o Generalization and regularization ¢ Inserted into training problem:
o Generalization — Norm of weights N
N .. L(Who(xi;0 [
® Generalization — Flatness of minima mlmsmlze; (Wnd(@i;0) + bn yi)
e Backpropagation
Vanishi d lodi dient same as before, but with learned (parameter-dependent) features
e Vanishing and exploding gradients ) o o
® |earning features at training makes training nonconvex
11 12
Learning features — Graphical representation Design choices
® Fixed features gives convex training problems
= Many design choices in building model to create good features
8
g ® Number of layers
® Width of layers
® Learning features gives nonconvex training problems = ® Types of layers
o(+10) (xi;0) é ® Types of activation functions
’ < . .
.‘ ) N o Different model structures (e.g., residual network)
.ﬁ\";@(‘l‘ 1. 5)
- SRS ERLLD 4 S
RG22 0—CO g
TSRO
0\\\‘.///'<
® Output of last activation function is feature vector 13 14

Outline

o Deep learning

o Learning features

o Model properties and activation functions
o Loss landscape

® Residual networks

o Overparameterized networks

o Generalization and regularization

o Generalization — Norm of weights

® Generalization — Flatness of minima
e Backpropagation

e Vanishing and exploding gradients
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Model properties — ReLU networks

® Recall model
m(z;0) := Wnon1(Wn-10n—2(--- (Waor(Wiz +b1) +b2) -+ ) + bu1) + bn

where 6 contains all W; and b;
® Assume that all activation functions are (Leaky)RelLU
® What can you say about the properties of m(-; ) for fixed 87

16




Model properties — ReLU networks

® Recall model

m(z;0) :== Wnon—1(Wn-10n—2(--- (Wao1(Wiz +b1) + b2) -+ ) + bpn_1) + bn

where 6 contains all W; and b;
® Assume that all activation functions are (Leaky)RelLU
® What can you say about the properties of m(-;6) for fixed 7

® |t is continuous piece-wise affine

1D Regression — Model properties

® Fully connected, layers widths: 5,5,5,1,1 (78 params), LeakyRelLU

m(x; 0*)

response y

E

variable x

16 17
1D Regression — Model properties 1D Regression — Model properties
® Fully connected, layers widths: 5,5,5,1,1 (78 params), LeakyReLU ® Fully connected, layers widths: 5,5,5,1,1 (78 params), Tanh
— m(x;0%) m(x; 6*%)
= =
8 8
g g
¢ ¢
*
*
*
*
variable = variable =
® Vertical lines show kinks ® No kinks for Tanh
17 17

Identity activation

® Do we need nonlinear activation functions?
® What can you say about model if all o = Id in

m(x;0) := Wyon-1(Wy-10n-2(--- (Waor(Wiz +b1) +b2) -+ ) 4+ ba1) + bn

where # contains all W; and b;

18

Identity activation

® Do we need nonlinear activation functions?
® What can you say about model if all o; = 1Id in

m(x;0) := Wnon-1(Wn-10n—2(--- (Wao1(Wiz + b1) + b2) -+ ) + bn_1)
where @ contains all W; and b,
® We then get
m(@;0) == Wo(Wai (- (Wa(Wiz + b1) 4+ bs) - ++) + bu_1) + bn

=W W WoWiz+by+ > W Wb
NS

W 1=2

b
=Wz+b

which is linear in « (but training problem nonconvex)

+bn

Network with identity activations — Example

® Fully connected, layers widths: 5,5,5,1,1 (78 params), Identity

— m(6Y)

response y

variable x
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Outline

o Deep learning

o Learning features

e Model properties and activation functions
o Loss landscape

® Residual networks

o Overparameterized networks

o Generalization and regularization

o Generalization — Norm of weights

® Generalization — Flatness of minima
o Backpropagation

e Vanishing and exploding gradients
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Training problem properties

® Recall model
m(z;0) == Woon—1(Wno10n—2(--- (Waor(Wiz +b1) +b2) -+ ) + bn_1) + bn
where @ includes all TV and b; and training problem

N

minimize ; L(m(x:;0),y:)

® Ifall o; LeakyReLU and L(u,y) = 3|lu — y||3, then for fixed z,y
® m(x;-) is continuous piece-wise polynomial (cpp) of degree n in 0
® L(m(wx;0),y) is cpp of degree 2n in 0
where both model output and loss can grow fast
¢ If g; is instead Tanh
® model no longer piece-wise polynomial (but “more” nonlinear)
® model output grows slower since o; : R — (—1,1)

Loss landscape — Leaky ReLU

® Fully connected, layers widths: 5,5,5,1,1 (78 params), LeakyRelu
® Regression problem, least squares loss
® Plot: 21111 L(m(xi; 0% + t101 + t202),y;) vs scalars t1, t2, where
® §* is numerically found solution to training problem
® @, and 02 are random directions in parameter space
® First choice of #; and 05:

21 22
Loss landscape — Leaky ReLU Loss landscape — Leaky RelLU
® Fully connected, layers widths: 5,5,5,1,1 (78 params), LeakyRelu ® Fully connected, layers widths: 5,5,5,1,1 (78 params), LeakyRelu
® Regression problem, least squares loss ® Regression problem, least squares loss
® Plot: Zfil L(m(z;; 0% + 1601 + t202),y;) vs scalars ¢y, ta, where ® Plot: Zf;l L(m(xz;; 0% + 101 + t262),y;) vs scalars ty, ta, where
® (* is numerically found solution to training problem ® (* is numerically found solution to training problem
® ¢, and 6> are random directions in parameter space ® (; and 6> are random directions in parameter space
® Second choice of 6 and 65: ® Third choice of #;, and 65:
H ‘H I i
I
Il
| W Jl"ll,
T
) ‘ |
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Loss landscape — Tanh Loss landscape — Tanh
® Fully connected, layers widths: 5,5,5,1,1 (78 params), LeakyRelu ® Fully connected, layers widths: 5,5,5,1,1 (78 params), LeakyRelu
® Regression problem, least squares loss ® Regression problem, least squares loss
® Plot: Zfil L(m(x;; 0* 4+ t101 + t202),y;) vs scalars t1, ta, where ® Plot: 21111 L(m(xi; 0% + t101 + t202),y;) vs scalars t1, t2, where
® §* is numerically found solution to training problem ® §* is numerically found solution to training problem
® @, and 0> are random directions in parameter space ® @, and 02 are random directions in parameter space
® First choice of 61 and 65: ® Second choice of 01 and 65:
‘u ‘
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Loss landscape — Tanh ReLU vs Tanh
® Fully connected, layers widths: 5,5,5,1,1 (78 params), LeakyRelu
® Regression problem, least squares loss
® Plot: Zfil L(m(z;;0* + 1601 + t202),y;) vs scalars tq, ta, where
® (* is numerically found solution to training problem
® ¢, and 6> are random directions in parameter space
o Th . . . )
Third choice of 6, and 6,: Previous figures suggest:
%%WW%W"”’"MMM m ® RelU: more regular and similar loss landscape?
g iy
’”%WW%%W %%m%%%ﬂ#% ® Tanh: less steep (on macro scale)?
iT11jf fiiny | il i
i Wﬁ/i/:’:’:’:’:’:’:’:’:”’”"l’%%““ AW%WW”%’W% ® Tanh: Minima extend over larger regions?
dl i N‘ "‘mm'/”/g",'
| H /
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Outline

o Deep learning

o Learning features

e Model properties and activation functions
e Loss landscape

® Residual networks

o Overparameterized networks

o Generalization and regularization

o Generalization — Norm of weights

® Generalization — Flatness of minima
o Backpropagation

o Vanishing and exploding gradients

Performance with increasing depth

® Increasing depth can deteriorate performance
® Deep networks may even have worse training errors than shallow
® [ntuition: deeper layers bad at approximating identity mapping

25 26
Residual networks Graphical representation
® Add skip connections between layers
® Instead of network architecture with z; = x; (see figure):
i . For graphical representation, first collapse nodes into single node
zj41 =0;(Wjz; +b;) for je{1,...,n—1}
21 o1 (- 22 oa(- z3 o3(- 24 ay(-
use residual architecture
zjy1 = zj +0;(Wjzj +b;) for j € {1,...,n—1}
—
® Assume 0(0) =0, W; =0,b; =0for j=1,...,m (m <n—1)
= deeper part of network is identity mapping and does no harm hai(:) ha () hs(-) ha(-)
® Learns variation from identity mapping (residual) IS
( h ( ) ( h ( )\
[t WOTOR pran WO N ey WEIO IS peerag WEION
21 o1() 2 o2() 2z o3() 2 oa() &
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Graphical representation Residual network — Example
® Fully connected — no residual layers, LeakyReLU activation
e Collapsed network representation ® Layers widths: 3x5,1,1 (depth: 5, 78 params)
® Trained for 5000 epochs
&
( ) ( ho() ) [ ha() ) ( )
LUl Ul Ul = O
® Residual network =
; )
I (MO JO{ ) O hs0) J O 1) g
8
® If some h; = 0 gives same performance as shallower network
variable =
29 30
Residual network — Example Residual network — Example
® Fully connected — no residual layers, LeakyReLU activation ® Fully connected — no residual layers, LeakyReLU activation
® Layers widths: 5x5,1,1 (depth: 7, 138 params) ® Layers widths: 10x5,1,1 (depth: 12, 288 params)
® Trained for 5000 epochs ® Trained for 5000 epochs
m(z;0%) m(z;0%)
*
= >
g g *
& & %
L L *
*
*
*
*
* %
*
variable variable
30
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Residual network — Example

® Fully connected — no residual layers, LeakyReLU activation
® Layers widths: 15x5,1,1 (depth: 17, 438 params)
® Trained for 5000 epochs

Residual network — Example

® Fully connected — no residual layers, LeakyReLU activation
® Layers widths: 45x5,1,1 (depth: 47, 1,338 params)
® Trained for 5000 epochs

— m(z;0%) — m(x;0%)
* *
= >
& 8
8 * g %
o o
3 * 8 *
= * = *
*
* *
* *
* *
* ok * ok
* *
variable = variable =
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Residual network — Example Residual network — Example
® Fully connected — residual layers, LeakyReLU activation ® Fully connected — residual layers, LeakyReLU activation
® Layers widths: 3x5,1,1 (depth: 5, 78 params) ® Layers widths: 5x5,1,1 (depth: 7, 138 params)
® Trained for 5000 epochs ® Trained for 5000 epochs
m(z;0%) m(z;0%)
= >
& &
2 2
g g
L L
*
*,
*
*
*
variable variable
30 30
Residual network — Example Residual network — Example
® Fully connected — residual layers, LeakyReLU activation ® Fully connected — residual layers, LeakyReLU activation
® Layers widths: 10x5,1,1 (depth: 12, 288 params) ® Layers widths: 15x5,1,1 (depth: 17, 438 params)
® Trained for 5000 epochs ® Trained for 5000 epochs
— m(z;0%)
= >
o o
2 2
2 2
4 4
variable = variable =
30 30
Outline

Residual network — Example

® Fully connected — residual layers, LeakyReLU activation
® Layers widths: 45x5,1,1 (depth: 47, 1,338 params)
® Trained for 5000 epochs

m(z;0%)

response y

variable
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o Deep learning

o Learning features

e Model properties and activation functions
o Loss landscape

® Residual networks

e Overparameterized networks

o Generalization and regularization

o Generalization — Norm of weights

® Generalization — Flatness of minima
o Backpropagation

e Vanishing and exploding gradients
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Why overparameterization?

® Neural networks are often overparameterized in practice
® Why? They often perform better than underparameterized

What is overparameterization?

® \We mean that many solutions exist that can:
® fit all data points (0 training loss) in regression
® correctly classify all training examples in classification
® This requires (many) more parameters than training examples
® Need wide and deep enough networks
® Can result in overfitting
® Questions:
® Which of all solutions give best generalization?
® (How) can network design affect generalization?

oz(-)

32 33
Outline Generalization
o Deep learning
o Learning features
e Model properties and activation functions . .
® Most important for model to generalize well to unseen data
o Loss landscape . ..
. ® General approach in training
* Residual networks ® Train a model that is too expressive for the underlying data
o Overparameterized networks ® Overparameterization in deep learning
o Generalization and regularization ® Use regularization to
. . ® find model of appropriate (lower) complexity
* Generalization — Norm of weights ® favor models with desired properties
® Generalization — Flatness of minima
e Backpropagation
e Vanishing and exploding gradients
34 35
Regularization Implicit vs explicit regularization
® Regularization can be explicit or implicit
® Explicit — Introduce something with intent to regularize:
What regularization techniques in DL are you familiar with? ¢ Add cost function to favor desirable properties .
® Design (adapt) network to have regularizing properties
® |Implicit — Use something with regularization as byproduct:
® Use algorithm that finds favorable solution among many
® Will look at implicit regularization via SGD
36 37
Generalization — Our focus Outline
o Deep learning
o Learning features
e Model properties and activation functions
) . o . e Loss landscape
Will here discuss generalization via: P
® Residual networks
® Norm of parameters — leads to implicit regularization via SGD o Overparameterized networks
® Flatness of minima — leads to implicit regularization via SGD o Generalization and regularization
¢ Generalization — Norm of weights
® Generalization — Flatness of minima
o Backpropagation
e Vanishing and exploding gradients
38 39




Lipschitz continuity of ReLU networks

® Assume that all activation functions 1-Lipschitz continuous

® The neural network model m(-;6) is Lipschitz continuous in z,
lm(z1;0) — m(x2;0)||2 < Lz — x2]|2

for fixed 0, e.g., the 6 obtained after training
® This means output differerences are bounded by input differences

® A Lipschitz constant L is given by
L= |[Wall2 - [[Watll2- - [[Wil|2

since activation functions are 1-Lipschitz continuous

Desired Lipschitz constant

® Qverparameterization gives many solutions that perfectly fit data
® Would you favor one with high or low Lipschitz constant L?

® For residual layers each ||W;]|2 replaced by (1 + |[W;]|2)
40 41
Generalization — Norm of weights Generalization — Norm of weights
® Fully connected — residual layers, LeakyRelLU ® Fully connected — residual layers, LeakyReLU
® Layers widths: 30x5,1,1 (888 params) ® Layers widths: 30x5,1,1 (888 params)
® Norm of weights (with perfect fit): 72 ® Norm of weights (with perfect fit): 540
m(z;0*)
= =
b b
g g
g 4
variable x variable x
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Generalization — Norm of weights Generalization — Norm of weights
® Fully connected — residual layers, LeakyRelLU ® Fully connected — residual layers, LeakyReLU
® Layers widths: 30x5,1,1 (888 params) ® Layers widths: 30x5,1,1 (888 params)
® Norm of weights (with perfect fit): 540 ® Norm of weights (with perfect fit): 595
— m(x;0%) m(x; 0*)
i >
b b
g g
g 4
variable x variable x
® Same as previous, new scaling ® |arge norm, but seemingly fair generalization
42 42

Generalization — Norm of weights

® Fully connected — residual layers, LeakyRelLU
® Layers widths: 30x5,1,1 (888 params)
® Norm of weights (with perfect fit): 595

;60%)

response y

variable x

® Same as previous, new scaling
42

Generalization — Norm of weights

® Fully connected — residual layers, LeakyReLU
® Layers widths: 30x5,1,1 (888 params)
® Norm of weights (with perfect fit): 72

— m(x;0%)

response y

variable x

® Same as first, new scaling — overfits less than large norm solutions
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Outline

o Deep learning

o Learning features

e Model properties and activation functions
e Loss landscape

® Residual networks

o Overparameterized networks

o Generalization and regularization

o Generalization — Norm of weights

® Generalization — Flatness of minima
o Backpropagation

o Vanishing and exploding gradients

Flatness of minima

® Consider the following illustration of average loss:

Training loss Test loss

® Depicts test loss as shifted training loss

® Motivation to that flat minima generalize better than sharp

43 a4
Flatness of minima Generalization from loss landscape
® Training set {(z;,v;)}~, and training problem:
® Consider the following illustration of average loss: . N
minimize Z L(m(z;;0),y;)
Training loss Test loss 0 i=1
® Test set {(?Lg},)}fil 0 generalizes well if test loss small
N
S Lim(#::6).3,)
i=1
® By overparameterization, we can for each (&;,9;) find é,-, so that
0 A
. ) . L(m(2;0),9:) = L(m(z;,;0 + 0:),y;,)
® Depicts test loss as shifted training loss for all & gi (similar) ( ) pair i -
N . . or a iven a (similar) (z;,,y;,,) pair in training set
® Motivation to that flat minima generalize better than sharp & T Vi) P . .g )
L L ® Evaluate test loss by training loss at shifted points 6 + 91
® Is there a limitation in considering the average loss only? ® Test loss small if original individual loss small at all 6 + 6
® Previous figure used same 6; = @ for all ¢
1) Don't compute in practice, just thought experiment to connect generalization to training loss
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Example Example
® Can flat (local) minima be different? ® Can flat (local) minima be different?
® Does one of the following minima generalize better? ® Does one of the following minima generalize better?
Average training loss f(6) Training loss 1 f1(6)
o It depends on individual losses
46 46
Example Example
® Can flat (local) minima be different? ® Can flat (local) minima be different?
® Does one of the following minima generalize better? ® Does one of the following minima generalize better?
Training loss 2 f2(0) Training loss 3 f3(0)
e |t depends on individual losses e |t depends on individual losses
46 46




Example

® Can flat (local) minima be different?
® Does one of the following minima generalize better?

Training loss 4 f4(6)

o It depends on individual losses

Example

® Can flat (local) minima be different?
® Does one of the following minima generalize better?

Average training loss f(6)

o It depends on individual losses
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Example Example
® Can flat (local) minima be different? ® Can flat (local) minima be different?
® Does one of the following minima generalize better? ® Does one of the following minima generalize better?
Test losses (= Shifted training losses) Average test loss
o |t depends on individual losses o |t depends on individual losses
e Let us evaluate test loss by shifting individual training losses o Let us evaluate test loss by shifting individual training losses
e Do not only want flat minima, want individual losses flat at minima
46 46
Individually flat minima Outline
o Deep learning
e Learning features
® Both flat minima have V f(6) = 0, but o Model properties and activation functions
® One minima has large individual gradients ||V f;(6)|2 Loss land
® Other minima has small individual gradients ||V f;(6)||2 ¢ Loss landscape
® The latter (individually flat minima) seems to generalize better ® Residual networks
® Want individually flat minima (with small ||V f;(6)]|2) o Overparameterized networks
® This implies average flat minima o Generalization and regularization
® The reverse implication may not hold . .
o Overparameterized networks: o Generalization — Norm of weights
® The reverse implication may often hold at global minima ® Generalization — Flatness of minima
® Why? f(6) =0 and Vf(6) =0 implies f;(6) =0 and Vf;(0) =0 « Backpropagation
o Vanishing and exploding gradients
47 48
Training algorithm Backpropagation
® Backpropagation is reverse mode automatic differentiation
. . . . ® Based on chain-rule in differentiation
® Neural networks often trained using stochastic gradient descent Back K b p d |
. . . . . ® Backpropagation must be performed per sample
® DNN weights are updated via gradients in training P .p g P P P
e Gradi ¢ . ¢ di ¢ d | ® Qur derivation assumes:
ra !ent of cost is sum of gradients o s%lmman s (samp(ﬁs) ® Fully connected layers (W full, if not, set elements in W to 0)
® Gradient of each summand computed using backpropagation ® Activation functions ¢ (v) = (c;(v1),...,0;(vp)) element-wise
(overloading of o; notation)
® Weights W; are matrices, samples x; and responses y; are vectors
® No residual connections
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Jacobians

® The Jacobian of a function f : R™ — R™ is given by

rofi ... o
of _ d.':m Dy I
O Nop L op
Loz, Oy
® The Jacobian of a function f : RP*™ — R is given by
[or ... _of
L A [
oo ar
L Ozp1 I pn

® The Jacobian of a function f : RP*™ — R™ is at layer j given by

df1 L 9f1
P51 Brim

[%f] - | ermn
Tl Of ... Ofm
Br;1 B ym

the full Jacobian is a 3D tensor in R™*Px™

Jacobian vs gradient

® The Jacobian of a function f:R™ — R is given by

of _Tor .. o
P Dz,
® The gradient of a function f : R™ — R is given by
of
dx1
V=1 ":

of
Ay,

i.e., transpose of Jacobian for f: R™ — R
® Chain rule holds for Jacobians:
of _ 050z
0xr 0z 0z
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acobian vs gradient — Example ackpropagation — Introduce states
J b gradient — E | Back gat Introd tat
® Compute gradient/Jacobian of
® Consider differentiable f : R™ — R and M € R™*"™
e Compute Jacobian of g = (f o M) using chain rule: L(m(z; ), yi)
® Rewrite as g(z) = f(z) where z = Mz _ Cpn
® Compute Jacobian by partial Jacobians % and gf: wrt. 0 {(‘Vj’bn}]:l' where
£ m(zi;0) = Wnon—1(Wn_10n-2(- - - (Waor(Wizi + b1) + b2) -+ ) + bu_1) + bn
% = %% = %% =Vf(z)"M = Vf(Mz)"M e R"*"
* zor zow ® Rewrite as function with states z;
® Know gradient of (f o M)(x) satisfies
, L(zn+1,9i)
V(foM)(x)=M"Vf(Mz) €R" where  zj41 =0;(W;z; + b;) for j € {1,...,n}
which is transpose of Jacobian and =T
where o, (u) = u
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Graphical representation Backpropagation — Chain rule
® Per sample loss function
P ® Jacobian of L w.r.t. W; and b; can be computed as
Lz .
(en1,02) OL L Ozap1 9242 02
where zjy1 = 0;(Wjz; +b;) for j € {1 n} = P i
i+l IR T oW, Ozpy1 Ozn 0zjp1 OW;
and oz = OL 0L 9zpin 9242 020
where o, () = u Ob;  Oznpg1 Oz, 0zj41 Ob;
® Graphical representation where we mean derivative w.r.t. first argument in L
® Backpropagation evaluates partial Jacobians as follows
OL _ (( OL Bz"ﬂ) (9ZJ+2) 0zj41
oW Ozny1 Ozn 0zjy1) OW;
oL _ OL Ozpi1)  0zj12)) Ozt
6bj é?z,,ﬂ (‘)z,, 0Z]+1 8bj
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Backpropagation — Forward and backward pass Dimensions
o Jacobian of L(zns1,9s) W.r.t. zns1 (transpose of gradient) : Ilsgt zj e_]RnJ’ consequently W; € R™%+1X%  p; € R+t
® Computing Jacobian of L(z,1,¥;) requires z,41 imensions
= forward pass: 2y = x4, zj+1 = 0;(W;z; + bj) oL OL  Ozp41 0242 0241
® Backward pass, store §;: oW, Ozp1  Ozp 0241 oW
S—— T S—— ~——
oL ( ( oL BZ,L+1> 8Zj+2> 1X 741 a1 X RiraNTye1 Tyl XTylXT;
0zj41 - Ozpy1 Ozp 0zj41 1xXn,
——
‘;{4 1 IXnj41
o njt1X"
P 07]’ -~ OL 0zp41 0zj42 0zj11
(A ob;  \\0zn11 0z, 0zj41 0b;
e Compute —
IXn 41 Mj+1 X M1
OL _ OL 0zj 1 _ (5»T+1 0zj11 o
oW,  0zjy1 OW, T OW.
Blj ajgl 92 / 92 ’ ® \ector matrix multiplies except for in last step
5 =5 Ojbﬂ = (FJTH Djbﬂ ® Multiplication with tensor ;{;5] can be simplified
J AR 7 ® Backpropagation variables d; € R™ are vectors (not matrices)
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. -
Partial Jacobian =
J

® Recall relation zj 1 = 0;(W;z; + b;) and let v; = W;z; +b;
® Chain rule gives
0zjp1 _ O0zjq1 Ovj . , 0v;
; _ J 2 g (1)) —2
0z; ov; 0z; lag(%(l]»a.@
= diag(o’;(W;z; + b;))W;

where, with abuse of notation (notation overloading)

Partial Jacobian §7 = 9&
Zj
® For any vector §;41 € R™+1*1, we have

0zj11

0z;

5T =01\, diag(c}(W;z; + b;))W;
= (W] (87, diag(o} (W;2; +b;)))")"
= (W (0501 © 05(W;2; +b;)))"

where © is element-wise (Hadamard) product

/
7;(w) ® We have defined 6, | = 2% then
G'/v(u) _ . n+1 Oznt1
! ' oL 0z
7l T = 0 = T P2 (W (G © 0L Wz + )T
® Reason: o;(u) = [0j(uw1),...,05(un,,,)]" with 5
oj « R+ = RWH, gives ® Consequently, using induction:
o’ (uy) oL 0
) 7 T T 9Zj+1 sT (s 'a T
‘fi& - - = diag (e (1)) d; = a5, " o 3127 = (W} (0511 © 05 (W;z; + b))
5 (tn; ) %
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. r . . oL
Information needed to compute 2= Partial Jacobian a‘{xvj
“J
® To compute first Jacobian % we need z,, = forward pass ® Computed by
® Computing oL _ OL 9zj41 _T 0zj11
oL o 0z T / T _ T oWy D241 OW; oW
0z, =0j4 az] = (Wi (051 ©0;(Wjz; + b)) =9 where 211 = 0;(v;) and v; = W;z; + b;
s d . backward ® Recall 05;&[‘ is 3D tensor, compute Jacobian w.r.t. row I (W;);
IS done using a backward pass
8 = W (6541 0 0§(Wiz; + b)) 0
® All z; (or v; = Wjz; + b;) need to be stored for backward pass 0z, 0z v, . . ' T
5 (or vj 57 +b5) p fﬂa(l’a;l =67, (‘)rjvjl a(WJj)z =0}, diag(o)(v))) |27
0
0
=(6j+10 o‘;(VVJZJ + bj))T ZT =(0j+10 o-,;(‘/VJZJ + b]))lij
61 0 62
Partial Jacobian 2% cont’d Partial Jacobian 2
J b
® Stack Jacobians w.r.t. rows to get full Jacobian:
ST 9zjy1 . = o.i(vs L= .
, oylﬂm (041 © 0§ (Wizj +bj))1zT ® Recall zj41 = 0;(v;) where v; = Wjz; +b;
oL _ T 9z _ : _ : ® Computed by
ow; It aw; b P r
5_7+1W (0541 GU]<VVJZ] +b]))"1+lzj 37L _ 0L Oz % _s7 8z7+1% — 7 di .
e B, Doyr Oy Db, 1o, ap, O diag(;(v)
= (8410 (W2 + b))z i O O b O O
= (341 @ 05(W;z; +b;))
forallje{l,...,n—1}
® Dimension of result is n;1 X nj, which matches W}
® This is used to update TV; weights in algorithm
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Backpropagation summarized Backpropagation — Residual networks
1. Forward pass: Compute and store z; (or v; = W;z; + b;): 1. Forward pass: Compute and store z; (or v; = W;z; + b;):
zj+1 = 0j(W;z; +b)) zjp1 =05 (Wjz +b;) + 2
where z; = z; and o, = Id where z; = z; and o,, = Id
2. Backward pass: 2. Backward pass:
85 =W (511 © 0j(W;z; +b;)) 6; =W (6511 © 0§ (W;z; + b)) + 6541
: _ oL s 0L
with 5,41 = T with 8,41 = ey
3. Weight update Jacobians (used in SGD) 3. Weight update Jacobians (used in SGD)
oL . oL i
aw, - (041 © 05 (Wjzj + b))z aw, = (6741 © 03 (Wjzj +0;)2;)
oL . T oL .
& = (8541 © 0§ (Wjz; + b;))" o, = (0541 © f(Wjz; + b;))"
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Outline

o Deep learning

o Learning features

e Model properties and activation functions
e Loss landscape

® Residual networks

o Overparameterized networks

o Generalization and regularization

o Generalization — Norm of weights

® Generalization — Flatness of minima
o Backpropagation

¢ Vanishing and exploding gradients

Vanishing and exploding gradients

® Composing scalars C' = a™ is exponential in n
® if a € (0,1) exponential decrease (vanishing)

® if & > 1 exponential increase (exploding)

® ifa=1,wehave C=1

Backpropagation composes n layers in the two passes

® Want gain per layer to be around 1 in backpropagation

Achieved gain depends on

® Choice of activation functions

® Norms of weights
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Avoiding vanishing and exploding gradients Residual networks
® Assume L-Lipschitz activation with (0) =0
e Forward pass estimation: ® Assume L-Lipschitz activation with ¢(0) =0
i ) ® Forward pass estimation:
lzj+1ll2 = lloy(Wjz; + bj)ll2 < LIW;z; + bjll2 < LIW;z;ll2 + [1b;1l2)
< LIW;lilizll2 + Lbj 2 2541l = lloj(Wjz; + ;)12 + l125ll2 < (L + LIW; 125112 + Lllbj]l2
® Backward pass estimation: ® Backward pass estimation:
18112 = W (3141 ® o (W25 + b))z 195112 = 1WF (3541 © 05 (Wyz; + b)) 12 + dj41
< W7 118501 © 0} Wy + )l < (14 LW, ) 5341
< LIW;IlId5+4112 ® |arger estimates than for non-residual networks
® Gradients do not explode or vanish if ® To achieve |[2j+1]l2 = [|2;]l2 and |[;]l2 & [|0;+1]]2 suggests
llzj+illz = [zl and  [[6ll2 = [|0j41l2 L|[wjll and [[b;]l2 small
® Suggests L||W;| ~ 1 and L||b;||2 small
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Suggestions based on upper bounds Initialization
® Suggestions
® L||Wj|| = 1 and L||bj||2 small for standard networks
® LW, d L||bj]| I fo idual network . L . .
IW; ]l and Lijbs |2 small for residual networks ® |nitialize network to avoid vanishing and exploding gradients
are based on upper bounds s . . .
. . ® To initialize according to suggestions rely on computing
® Safe to go a bit larger w.r.t. explosion ® operator norms ||W;|| (largest singular value)
® Replace L by “average” Lipschitz constant for better estimates ® average non-zero singular values of W;
® RelU: 0.5, a-LeakyRelU: (1 +a)/2) where first is expensive and second even more so
® Tanh: d d: ti i ! i I tant . B
anh: depends on active region (larger region, -sma er constant) ® Not possible for large networks = Randomization!
® Replace operator norm ||}, e.g., by average singular value
® Operator norm is maximum gain of vector (max singular value)
® Average singular value is “average gain of vector”
® Tanh outputs are constrained to (—1,1) — not taken into account
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The power of random initialization Initialization example
e Claim: (W;)i ~ N(0, W) implies ||W;|| ~ %
® Random iid matrices have operator norm close to expected value ® Let L =0.5 and we get the following [|IW;]| which should be ~ 2
® Probability distribution concentrated around mean 7 100 100 100 1000 1000 1000
o “Concentration of meastres” nyr 1 10 100 1 1001000
1.91 1.97 1.96 2.02 1.98 2.00
° [y nXm I~
It turns out that if M € R with M ~ N(0,1) 199 186 191 189 189 1.99
E[|M]] ~ (Vi + v/m) 180 193 194 194 197  2.00
1.79 1.82 1.94 2.00 1.95 1.98
o If we select (M);; ~ N(0, Ww) 173 202 1.90 187 198  2.00
1.73 1.83 2.00 1.92 1.98 2.00
1 1.83 1.82 1.98 1.96 1.97 1.99
Il = —L1 VW~ —— 1 ——— . . . . K K
IMIl = 7z IEVa+ VW~ g Vit vim) L 183 198 194 193 200 2.0l
. 1.69 1.85 1.97 2.00 2.00 1.99
which for ReLU suggests (W;);; ~ N (0, ———2—2
geests (W)l O ) 165 193 198 195 198  1.98
® For residual networks weights can be initalized smaller | - - -
® Very close to ; = 2, especially for larger dimensions
® Same results if n; 1 > n;
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Estimation from upper bounds

® Suggestion [|[W;

~ % from upper bounds

® Can use average non-zero singular value instead of largest (||[WW]|;)
® For Gaussian iid matrices:

® Average singular value typically | W;|| with o € [0.4,1]

® Factor a smaller for square and larger for wide/thin matrices

® Also concentrated around mean

75

Average singular value vs operator norm

® Claim: Average non-zero SVD typically af|W;|| with o € [0.4,1]
® Table of « for different dimensions and different random matrices

5100 100 100 1000 1000 1000
i+1 1 10 100 1 100 1000

1.000 0.774 0.430 1.000 0.755 0.427
1.000 0.767 0.443 1.000 0.762 0.425
1.000 0.745 0.432 1.000 0.763 0.427
1.000 0.812 0.432 1.000 0.758 0.428
1.000 0.789 0.435 1.000 0.751 0.427
1.000 0.800 0.436 1.000 0.754  0.427
1.000 0.806 0.403 1.000 0.752 0.428
1.000 0.765 0.419 1.000 0.759 0.428
1.000 0.810 0.438 1.000 0.764 0.428
1.000 0.787 0.433 1.000 0.753  0.427

® Concentrated around mean, especially for large square matrices
o Initialize: (W;);; ~ N(0, W) with average L
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Stochastic Gradient Descent

Qualitative Convergence Behavior

Pontus Giselsson

Outline

o Stochastic gradient descent

e Convergence and distance to solution

e Convergence and solution norms

o Overparameterized vs underparameterized setting
e Escaping not individually flat minima

® SGD step-sizes

e SGD convergence

Notation Gradient method
® Optimization (decision) variable notation:
® Optimization literature: z,y, z
® Statistics literature: ® Gradient method is applied problems of the form
® Machine learning literature: 6, w,b
® Data and labels in statistics and machine learning are x,y minimize f(x)
® Training problems in supervised learning N
N where f is differentiable and gradient method is
minimize Zl L(m(x;;0),y;) The1 = % — WV f(zx)
im
. . . . N where v, > 0 is a step-size
optimizes over decision variable @ for fixed data {(z;,y;)}, : ] ] ) . ]
e Optimization problem in standard optimization notation ® f not differentiable in DL with ReLU but still say gradient method
® For large problems, gradient can be expensive to compute
minimize f(z) = replace by unbiased stochastic approximation of gradient
optimizes over decision variable z
® Will use optimization notation when algorithms not applied in ML
Unbiased stochastic gradient approximation Stochastic gradient descent (SGD)
® Stochastic gradient estimator:
® notation: V() ® The following iteration generates (z)ren of random variables:
® outputs random vector in R" for each z € R" N
® Stochastic gradient realization: 1 = o — 1V f(Tk)
® notation: Vf(z): R" — R" ) ~ )
® outputs, Yz € R"™, vector in R™ drawn from distribution of V f(z) since V f outputs random vectors in R™
® An unbiased stochastic gradient estimator ﬁf satisfies Vo € R™: ® Stochastic gradient descent finds a realization of this sequence:
E@f(:r) =V/f(2) Trt1 = Tx — VeV f(zk)
® |f 2 is random vector in R™, unbiased estimator satisfies where (zj)ren here is a realization with values in R™
~ ) ® Sloppy in notation for when zy, is random variable vs realization
E[Vf(2)la] = Vf(z) ® Can be efficient if evaluating ﬁf much cheaper than V f
(both are random vectors in R™)
Stochastic gradients — Finite sum problems Single function stochastic gradient
® let I bea {1,..., N}-valued random variable
° = . . .
o Consider finite sum problems of the form Let, as before, V f denote the stochastic gradient estimator
® Realization: let i be drawn from probability distribution of I
N
minil}nizc ]% (Z fl(:v)> Vf(z)=Vfi(z)
i=1
f(“I) where we will use uniform probability distribution
1 . . pi=p(I=1)= %
where % is for convenience and gives average loss g N
® Training problems of this form, where sum over training data ® Stochastic gradient is unbiased:
® Stochastic gradient: select f; at random and take gradient step

N N
]E[%)‘(I)] = Zplvh(m) =+ Z Vii(z) =Vf(z)




Mini-batch stochastic gradient

® | et B be set of K-sample mini-batches to choose from:
® Example: 2-sample mini-batches and N = 4:
B={{1,2},{1,3},{1,4},{2,3},{2,4}, {3,4}}

~~1) batches

® Number of mini batches (¥), each item in (¥~}

® Let B be B-valued random variable
® Let, as before, V f denote stochastic gradient estimator
® Realization: let B be drawn from probability distribution of B

Vi) =%y Vi)
ieB
where we will use uniform probability distribution
s =pB =DB) = xy
K

® Stochastic gradient is unbiased:

EVf@) = & 3 3 Vhw) = &
™ (

Stochastic gradient descent for finite sum problems

® The algorithm, choose 2y € R™ and iterate:

1. Sample a mini-batch By, € B of K indices uniformly
2. Update

Tpp1 = T — H Z V fi(zk)

JEB

® Can have B = {{1},...,{NN}} and sample only one function

® Gives realization of underlying stochastic process

N
BeB  ie€B KT = i=1
9 10
Outline Qualitative convergence behavior
® Consider single-function batch setting
® Assume that the individual gradients satisf
e Stochastic gradient descent g y
 Convergence and distance to solution (V@) (Vi) > 1
o Convergence and solution norms o . . .
. X . for all 4, j and for some p € R (i.e., can be positive or negative)
o Overparameterized vs underparameterized setting
e Escaping nc.)t individually flat minima sz(;?b(x) Vf3(x) Viola)
¢ SGD step-sizes Vii(z)
¢ SGD convergence
& w=05 p=—o077 " V@)
Will larger or smaller 1 likely give better SGD convergence? Why?
11 12
Qualitative convergence behavior Minibatch setting
® Consider single-function batch setting
® Assume that the individual gradients satisfy
N . .. .
(Vfi(@)) (Vfi(x)) = 1 ® Larger minibatch gives larger 1 and faster convergence
for all 4,j and for some y € R (i.e., can be positive or negative) ® Comes at the cost of higher per iteration count
® Limiting minibatch case is the gradient method
b\ y Vi) ® Tradeoff in how large minibatches to use to optimize convergence
\ / ® Other reasons exist that favor small batches (later)
p=-0.77"
Will larger or smaller y likely give better SGD convergence? Why?
e Larger u gives more similar to full gradient and faster convergence
12 13

SGD - Example

eletcy+ceo+e3=0
¢ Solve minimize, (3 ([lz — c1[13 + [l — 213 + |2 — esll3)) = §ll[l5 + ¢
o How will trajectory look for SGD with ~; = 1/3?

Levelsets of summands Levelset of sum

14

SGD - Example

eletcy+eo+e3=0
e Solve minimize, (3 (|lz — c1l|3 + |z — c2[3 + ||z — e3]13)) = E|lz[3 + ¢
o How will trajectory look for SGD with ~; = 1/3?

Levelsets of summands Levelset of sum

14




SGD - Example

eletcy+co+ce3=0
e Solve minimize, (3 (||lz — c1]|3 + ||z — e2||3 + |z — c3]13)) = 3||z]3 + ¢
o How will trajectory look for SGD with v, = 1/37?

Levelsets of summands Levelset of sum

e Fast convergence outside “triangle” where gradients similar, slow inside

o Constant step SGD converges to noise ball
14

SGD - Example

eletcy+co+ce3=0
e Solve minimize, ((|lz — e1]|3 + |z — c2[3 + |z — e3]13)) = 2|z[} + ¢
o How will trajectory look for SGD with v, = 1/37?

Levelsets of summands Levelset of sum

o Constant step GD converges (in this case straight to) solution (right)

o Difference is noise in stochastic gradient that can be measured by 1
14

SGD - Example zoomed out
o Same example but zoomed out
o Solve minimize, (3 (|lz — c1/|3 + |z — c2[3 + [l — c3]13)) = 2|jz[3 + ¢

o How will trajectory look with 4, = 1/3 from more global view?

SGD - Example zoomed out

e Same example but zoomed out
e Solve minimize, (3 (|lz — c1ll3 + |z — c2[3 + ||z — e3]13)) = £[j2[3 + ¢

o How will trajectory look with 45 = 1/3 from more global view?

Levelsets of summands Levelset of sum

Levelsets of summands Levelset of sum

e Far form solution V f; more similar to V f, larger ;i = faster convergence

15 15
Qualitative convergence behavior Drawback of diminishing step-size
® Often fast convergence far from solution, slow close to solution ® Diminishing step-size typically gives slow convergence
® Fixed-step size converges to noise ball in general ® Often better convergence with constant step (if it works)
® Need diminishing step-size to converge to solution in general ® |s there a setting in which constant step-size works?
16 17
Outline Fixed step-size SGD does not converge to solution
® \We can at most hope for finding point Z such that
e Stochastic gradient descent VfE) =0
o Convergence and distance to solution _
) ® Let z; = I, and assume V f;(zx) # 0, then
¢ Convergence and solution norms
o Overparameterized vs underparameterized setting Tt1 = Tk — WV fi(zr) # @k
e Escaping not individually flat minima . L
i i.e., moves away from solution Z
o SGD step-sizes o . .
® Only hope with fixed step-size if all V f;(Z) = 0, since for z;, = &
o SGD convergence
Th1 = T — VRV fi(zg) = o
independent on 7 and algorithm stays at solution
® How does norm of individual gradients affect local convergence?
18 19




Example — Large gradients at solution

® Individal gradients at solution 0: V f1(0) = 0.83, V f2(0) = —0.83
® SGD with v = 0.07 and cyclic update order:

fa(z) fi(z) (f1 + f2) (@)

P// \\l
(—0.83, —1) (0.83, —1)

(0, -1)

Example — Large gradients at solution

® Individal gradients at solution 0: V f1(0) = 0.83, V f2(0) = —0.83
® SGD with v = 0.07 and cyclic update order:

fa(x) (f1 + f2)(z)

Ve

flzo) — f* =245

Example — Large gradients at solution

® Individal gradients at solution 0: V f1(0) = 0.83, V f2(0) = —0.83
® SGD with v = 0.07 and cyclic update order:

fa(a) fi(@) (fr + f2)(z)
);Q
Ea
flz1) = f*=0

Example — Large gradients at solution

® Individal gradients at solution 0: V f1(0) = 0.83, V f2(0) = —0.83
® SGD with v = 0.07 and cyclic update order:

fa(x) (f1 + f2)(z)

NN

flze) — f*=1.82

Example — Large gradients at solution

® Individal gradients at solution 0: V f1(0) = 0.83, V f2(0) = —0.83
® SGD with v = 0.07 and cyclic update order:

f2(z) fi(z) (f1+ f2)(=

N

flxs) — f*=0.11

Example — Large gradients at solution

® Individal gradients at solution 0: V f1(0) = 0.83, V f2(0) = —0.83
® SGD with v = 0.07 and cyclic update order:

fa(x) (f1 + f2)(z)

N

flag) — f* =147

Example — Large gradients at solution

® Individal gradients at solution 0: V f1(0) = 0.83, V f2(0) = —0.83
® SGD with v = 0.07 and cyclic update order:

fa(a) fi(@) (fr + f2)(z)

flos) — £+ =018

Example — Large gradients at solution

® Individal gradients at solution 0: V f1(0) = 0.83, V f2(0) = —0.83
® SGD with v = 0.07 and cyclic update order:

fa(x) (f1 + f2)(z)

N

flze) — f* =131




Example — Large gradients at solution

® Individal gradients at solution 0: V f1(0) = 0.83, V f2(0) = —0.83
® SGD with v = 0.07 and cyclic update order:

fa(z) fi(z) (f1+ f2)(=

N

flar) — f* =028

Example — Large gradients at solution

® Individal gradients at solution 0: V f1(0) = 0.83, V f2(0) = —0.83
® SGD with v = 0.07 and cyclic update order:

fa(x) (f1 + f2)(z)

N

flzg) — f*=1.16

Example — Large gradients at solution

® Individal gradients at solution 0: V f1(0) = 0.83, V f2(0) = —0.83
® SGD with v = 0.07 and cyclic update order:

fa(a) fi(@) (fr + f2)(z)

flzo) — f* =035

Example — Large gradients at solution

® Individal gradients at solution 0: V f1(0) = 0.83, V f2(0) = —0.83
® SGD with v = 0.07 and cyclic update order:

fa(x) (f1 + f2)(z)

NN

rio
flz10) - f* =107

20

Example — Large gradients at solution

® Individal gradients at solution 0: V f1(0) = 0.83, V f2(0) = —0.83
® SGD with v = 0.07 and cyclic update order:

f2(z) fi(z) (f1+ f2)(=

NS

f(x10) - f* = 1.07

e Will not converge to solution with constant step-size

20

Example — Small gradients at solution

® Shift f; and fo “outwards”’ to get new problem

® Individal gradients at solution 0: V f1(0) = 0.02, V f2(0) = —0.02
® SGD with v = 0.07 and cyclic update order:
f2(z) Ji(x)

(f1+ f2)(z)

(0.02, =1) (—0.02, —1) (0, =1)

Example — Small gradients at solution

® Shift f; and f» “outwards” to get new problem
® Individal gradients at solution 0: V f1(0) = 0.02, V f2(0) = —0.02
® SGD with v = 0.07 and cyclic update order:

fa(x) fi(=z)

(f1 + f2)(z)

NS

0

Flxo) - f* =2.45

Example — Small gradients at solution

® Shift f; and fy “outwards” to get new problem
® Individal gradients at solution 0: V f1(0) = 0.02, V f5(0) = —0.02
® SGD with v = 0.07 and cyclic update order:

fa(x) fi(z)

(fr + f2)(=)

NS

Ty
fla) - f* =013




Example — Small gradients at solution

® Shift f; and fo “outwards” to get new problem

® Individal gradients at solution 0: V f1(0) = 0.02, V f2(0) = —0.02
® SGD with v = 0.07 and cyclic update order:

fa(z) fi(@)

(fr + f2) (@)

2
f(z2) — f* =013

Example — Small gradients at solution

® Shift f; and fo “outwards”’ to get new problem

® Individal gradients at solution 0: V f1(0) = 0.02, V f2(0) = —0.02
® SGD with v = 0.07 and cyclic update order:

f2(z) Ji(x)

(f1+ f2)(z)

T3
fzs) — f* = 0.06

Example — Small gradients at solution

® Shift f; and f2 “outwards” to get new problem
® Individal gradients at solution 0: V f1(0) = 0.02, V f2(0) = —0.02
® SGD with v = 0.07 and cyclic update order:

fa(x) fi(=z)

(f1 + f2)(z)

NS

x4
flaa) — f* =006

Example — Small gradients at solution

® Shift f; and fy “outwards” to get new problem
® Individal gradients at solution 0: V f1(0) = 0.02, V f2(0) = —0.02
® SGD with v = 0.07 and cyclic update order:

fa(x) fi(z)

(f1 + f2)(=)

NS

5
flws) — f* =0.03

Example — Small gradients at solution

® Shift f; and fo “outwards” to get new problem

® Individal gradients at solution 0: V f1(0) = 0.02, V f2(0) = —0.02
® SGD with v = 0.07 and cyclic update order:

fa(x) Ji(x)

(fr + f2) (@)

ze
f(z6) — £+ =0.03

Example — Small gradients at solution

® Shift f; and fo “outwards”’ to get new problem

® Individal gradients at solution 0: V f1(0) = 0.02, V f2(0) = —0.02
® SGD with v = 0.07 and cyclic update order:

f2(z) Ji(x)

(f1+ f2)(z)

xr7
flz7) — f* =0.02

Example — Small gradients at solution

® Shift f; and f» “outwards” to get new problem
® Individal gradients at solution 0: V f1(0) = 0.02, V f2(0) = —0.02
® SGD with v = 0.07 and cyclic update order:

fa(x) fi(=z)

(f1 + f2)(z)

NS

g

Flws) - f* = 0.02

Example — Small gradients at solution

® Shift f; and fy “outwards” to get new problem
® Individal gradients at solution 0: V f1(0) = 0.02, V f5(0) = —0.02
® SGD with v = 0.07 and cyclic update order:

fa(x) fi(z)

(fr + f2)(=)

NS

9
flwo) — f* =0.01




Example — Small gradients at solution

® Shift f; and fo “outwards” to get new problem

® Individal gradients at solution 0: V f1(0) = 0.02, V f2(0) = —0.02
® SGD with v = 0.07 and cyclic update order:

fa(z) fi(@)

(f1+ f2)(x)

1o
f(z10) — f* =0.01

Example — Small gradients at solution

® Shift f; and fo “outwards”’ to get new problem

® Individal gradients at solution 0: V f1(0) = 0.02, V f3(0) = —0.02
® SGD with v = 0.07 and cyclic update order:

Ja(x) fi(@)

(f1+ f2)(z)

1o
f(z10) — f* = 0.01

® Much faster to reach small loss
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Convergence and individual gradient norm Outline
e Stochastic gradient descent
Local convergence of stochastic gradient descent is: * Convergence and distance to solution
e . . o Convergence and solution norms
® slow if individual functions do not agree on minima . . .
N . B . e Overparameterized vs underparameterized setting
® individual norms “large” at and around minima i o o
® faster if individual functions do agree on minima * Escaping not individually flat minima
® individual norms “small” at and around minima * SGD step-sizes
e SGD convergence
22 23
Over- vs under-parameterized models Overparameterization — LS example
® Data A e RV*" b e RN, and 2z € R"
. . . i
o Model overparameterized if: Consider least squares problem
® in regression, zero loss is possible N
® in classification, correct classification with margin possible minimize %”A:I: _ b||§ _ Z %((hflﬁ _ b'],)2
® |ogistic loss gives close to 0 loss B4 — O
® hinge loss gives 0 loss f(x) . filz)
® Model underparameterized if the above does not hold 1 . i
where a; € R"™™ are rows in A and problem is
® overparameterized if n > N (infinitely many 0O-loss solutions)
® underparameterized if n < N (unique solution if A full rank)
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Convergence — LS example Convergence — LS example
® Random problem data: A € R200%100 ' ¢ R200 from Gaussian ® Random problem data: A € R200%100 4 ¢ R200 from Gaussian
P p
® Underparameterized setting and unique solution ® Underparameterized setting and unique solution
® Local convergence of SGD quite slow: ® Norms of Vf;(z*) = (a;z* — b;) quite large:
104 20
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Convergence — LS example

® Random problem data: A € R200x1000 p « R200 from Gaussian
® QOverparameterized, many O-loss solutions, larger problem

® Convergence of SGD much faster:

104

102

10°

flxg) — f*

Convergence — LS example

® Random problem data: A € R200x1000 '} ¢ R200 from Gaussian
® Overparameterized, many 0-loss solutions, larger problem
® Individual norms V f;(z*) = (a;z* — b;) = 0:

20

Vfi(z*)

200 400 600 800 1000 ] 50 100 150 200
epoch k index i
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Convergence — DL example Convergence — DL example
® (lassification problem: logistic loss ® (lassification problem: logistic loss
® Network: Residual, ReLU, 3x5,2,1 widths (5 layers) ® Network: Residual, ReLU, 15x25,2,1 widths (17 layers)
® Underparameterized: ® Overparameterized:
* * * *
* *
* *
¥ *
* *
* *
% * X
3 %
* *
* * *
* *
* a * a
¥ ¥
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Convergence — DL example Convergence — DL example
® (lassification problem: logistic loss ® (lassification problem: logistic loss
® Network: Residual, ReLU, 3x5,2,1 vs 15x25,2,1 ® Network: Residual, ReLU, 3x5,2,1 vs 15x25,2,1
® Convergence of “best gradient” (final loss: 0.17 vs 0.00018): ® Final norm of individual gradients (final loss: 0.17 vs 0.00018):
1010 16
14
Kl 10° 12
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Overparameterized networks and convergence Outline
e Stochastic gradient descent
e Convergence and distance to solution
. . e Convergence and solution norms
® Overparameterized models seems to give faster SGD convergence . . .
o ) e Overparameterized vs underparameterized setting
® Reason: individual gradients agree better! . Lo -
e Escaping not individually flat minima
o SGD step-sizes
e SGD convergence
28
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Step-length

® The step-length in constant step SGD is given by
lzkt1 — 2l = YV filwr) |2

i.e., proportional to individual gradient norm
® The step-length in constant step GD is given by

o1 =zl = AV F (@)l

i.e., proportional to full (average) gradient norm

Flatness of minima

® |s SGD or GD more likely to escape the sharp minima?

Average training loss

30 31
Flatness of minima Example
® Flat (local) minima can be different
® Is SGD or GD more likely to escape right/left minima?
® |s SGD or GD more likely to escape the sharp minima?
Average training loss
0
e Impossible to say only from average training loss
31 32
Example Example
® Flat (local) minima can be different ® Flat (local) minima can be different
® |s SGD or GD more likely to escape right/left minima? ® |s SGD or GD more likely to escape right/left minima?
o GD will stay in both minima (Vf(zx) =0 = 2541 = a%) e GD will stay in both minima (Vf(zx) =0 = 2341 = z%)
o SGD will stay in right minima (V fi(zx) = 0 = zp41 = x1)
e SGD may escape left minima (||V fi(zg)|l2 # 0 = zps1 # x1)
32 32
Example Example
® Flat (local) minima can be different ® Flat (local) minima can be different
® |s SGD or GD more likely to escape right/left minima? ® Is SGD or GD more likely to escape right/left minima?
T Ty
o GD will stay in both minima (Vf(z)) =0 = xp11 = @) o GD will stay in both minima (Vf(2) =0 = 211 = @)
o SGD will stay in right minima (V fi(zx) = 0 = xp11 = x1) e SGD will stay in right minima (V fi(zx) = 0 = xp11 = x1)
o SGD may escape left minima (||V fi(z)||2 # 0 = zp41 # xx) e SGD may escape left minima (||V fi(zx)|l2 # 0 = zpi1 # xk)
exr,=0.8andy=05 ez, =0.8and vy =0.5i=4and Vfi(zy) = -2.77
32 32




Example

® Flat (local) minima can be different
® |s SGD or GD more likely to escape right/left minima?

Tk Tr+1

o GD will stay in both minima (Vf(zx) =0 = 2541 = a%)

o SGD will stay in right minima (V fi(zx) = 0 = zp41 = x)

¢ SGD may escape left minima (||V f;(z)||2 # 0 = Tpt1 # @)
ez, =08andy=0.5,i=4and Vfi(zy) = —2.77, xp41 = 2.18

Mini-batch vs single-batch

® |s escape property effected by mini-batch size?

® How large mini-batch size is best for escaping?

32 33
Mini-batch setting Mini-batch setting
® Use mini-batches of size 2: ® Use mini-batches of size 2:
Functions in batch loss 1 Functions in batch loss 2
34 34
Mini-batch setting Connection to generalization
® Use mini-batches of size 2:
® Argued that individually flat minima generalize better, i.e.,
Batch losses
all ||V fi(x)]]2 small in region around minima
® SGD more likely to escape if individual gradients not small
® Smaller batch size increases chances of escaping “bad” minima
Have also argued for:
® Good convergence properties towards individually flat minima
In summary:
. . . ® Single-batch SGD well suited for overparameterized training
o Larger mini-batch = smaller gradients = worse at escaping
o Single-batch better at escaping
34 35
Outline Step-sizes
® Diminising step-sizes are needed for convergence in general
® Common static step-size rules
® reduce step-size every K epochs (passes through N data points):
e Stochastic gradient descent , Yo , Yo
Ye = — = Ve = ——F/—
o Convergence and distance to solution L+ [k/(NK)] 1+ /[k/(NK)]
o Convergence and solution norms where [k/(NK)] increases by 1 every K epochs
o Overparameterized vs underparameterized setting ® Convergence analysis under smoothness or convexity requires
e Escaping not individually flat minima Z% o and me < o0
o SGD step-sizes k=0 k=0
o SGD convergence which is satisfied by first but not second above
® Refined analysis gives requirements
) o
Zkfo Tk
Yk = 00 and == - =
;, 20k
K
(or really lim Z%ﬁ‘g = 00) which is satisfied by all the above
K—00 k=0 Tk
36 37




Large gradients

® Fixed step-size rules do not take gradient size into account
® Gradients can be very large:

® Step-size rule

-
allVf(ze)ll2 +1

Vi

with 40, @ > 0 gives
® small steps if ||V f(zk)]2 large
® approximately o steps if ||V f(zx)|]2 small

Combined step-size rule

® Combination the two previous rules

7o _
T+ d(TR/ KDV f ()2 +1)

where, e.g., ¥(z) = z or Y(z) = \/z (as before)
® Properties
® ||V f(xx)|2 large: small step-sizes
o H%f(mk)nz small: diminshing step-sizes according to W

Ve =
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Step-size rules and convergence Step-size rules and convergence
® Classification, Residual layers, ReLU, 15x25,2,1 widths (17 layers) ® Classification, Residual layers, ReLU, 15x25,2,1 widths (17 layers)
® Step-size parameters: ¢(x) = 0.5\/x, K =50, « = vy = 0.1 ® Step-size parameters: ¢(x) = 0.5y/x, K =50, « =0, 7o = 0.1
® |teration data: ® |teration data:
# epoch step-size batch norm  full norm # epoch  step-size  batch norm  full norm
0 4.8-1078% 2.1-107 6.8-10° 1 0.1 1.2-106 6.8-10°
10 1.4-107° 7.2-10% 1.4-10% 2 - NaN NaN
50 0.097 0.31 14 50 - NaN NaN
100 0.016 0.28 3.2 100 - NaN NaN
200 0.012 6.8-107° 0.72 200 - NaN NaN
300 0.01 0.33 11.8 300 - NaN NaN
500 0.008 0 0.529 500 - NaN NaN
700 0.007 1.2-1076 0.0008 700 - NaN NaN
1000 0.006 3.1-1076 0.0003 1000 - NaN NaN
® Large initial gradients dampened ® No adaptation to large gradients
® Diminishing step-size gives local convergence ® Long step to point with larger gradient that “explodes”
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Step-size rules and convergence QOutline
o Classification, Residual layers, ReLU, 15x25,2,1 widths (17 layers)
® Step-size parameters: ¢ =0, a = = 0.1
® |teration data: . .
o Stochastic gradient descent
#epoch _ stepsize  batch norm _ full norm  Convergence and distance to solution
0 1.4-1077 7.0- 106 4.7-10° C d soluti
L]
10 0.004 257 394 onvergence and solution norms
50 0.10 6.2.10-10 4.1 o Overparameterized vs underparameterized setting
100 0.087 15 1.3 e Escaping not individually flat minima
200 0.089 1.2 0.26 e SGD step-sizes
—12
300 0.1 2.0-10 1.3 « SGD convergence
500 0.1 5.1-1012 0.198
700 0.1 2.4-10713 0.16
1000 0.087 15 0.013
® | arge initial gradients dampened
® Larger final full norm than first choice since not diminishing 7
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Convergence analysis Error bound
® Need some inequality that function satisfies to analyze SGD ® |n absence of convexity, an error bound is useful in analysis:
® Convexity inequality not applicable in deep learning ,
. % .
® Smoothness inequality not applicable in deep learning in general 6(f(z) = f(") < IVF(@)2
R . .
ReLU networks are not differentiable and thgrefore not smooth that holds locally around solution z* with & > 0
® Tanh networks with smooth loss are cont. diff. = locally smooth . )
L. L . . ® Gradient in error bound can be replaced by
® We have seen that training problem is piece-wise polynomial if . . -
. o R . ® sub-gradient for convex nondifferentiable f
® |2 loss and piece-wise linear activation functions ® [iis X . .
: . s S ) limiting (Clarke) sub-gradient for nonconvex nondifferentiable f
® hinge loss and piece-wise linear activation functions N .
. . . . ® element computed using backpropagation
but does not provide an inequality for proving convergence
42 43




Kurdyka-Lojasiewicz

® Error bound is instance of the Kurdyka-Lojasiewicz (KL) property
® KL property has exponent « € [0,1), a = % gives error bound
® Examples of KL functions:

® Continuous (on closed domain) semialgebraic functions are KL:

graphf = Uj_; (ﬂ?:]{m thij(z) =0} N, {z: gu(z) < 0})

graph is union of intersection, where h;; and g; polynomials
® Continuous piece-wise polynomials (some DL training problems)
® Strongly convex functions
® Often difficult to decide KL-exponent
® Result: descent methods on KL functions converge
® sublinearly if o € (3, 1)
® linearly if o € (0, ] (the error bound regime)

Strongly convex functions satisfy error bound

® s+ oz € Of(z) with s € dg(z) for convex g = f — || - ||3
® Therefore

lls +oz)3 = lIsll3 + 2057z + 0”213
> [Is[|3 + 205" 2* +20(g(z) — g(z")) + o°||z[13
= |lsl2 + 208"a* + ofla*|3 + 20(f(2) — f(2*))
= |ls + 02?3 + 20 (f(z) - f(2*))
2 20(f(z) = ("))
where we used

® subgradient definition g(z*) > g(z) + s7 (z* — z) in first inequality
® nonnegativity of norms in the second inequality
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Implications of error bound Implications of error bound
® Restating error bound for differentiable case ® Restating error bound for differentiable case
6(f(x) = f(=7) < V()2 6(f(z) = f(@) < IV ()2
® Assume it holds for all z in some ball X around solution z* ® Assume it holds for all z in some ball X around solution z*
® Can non-global minima or saddle-points exist in X7 ® Can non-global minima or saddle-points exist in X7
® No! Proof by contradiction:
® Assume local minima or saddle-point Z
® Then Vf(Z) =0 = f(Z) = f(2") and Z is global minima
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Convergence analysis — Smoothness and error bound Semi-smoothness
® Convergence analysis of gradient method
. ® Typical DL traini bl t th
® [3-smoothness and error bound assumptions (f* = f(z*)): ypica ramning pro' €ms are not smoo )
® E.g.: overparameterized ReLU networks with smooth loss
Flappr) = F* < flaw) = 5+ Vi (ar) T @ren — o) + 5llon — |13 ® But semi-smooth! in neighborhood around random initialization?:
R fr N2 L BYE SN .
= () = £ =V F @) + 2RIV @)l F(@) < F@) + VW) (@ — y) + clle — yllo/ T + Lz — I3
= f(xr) — f* — w1 = 22|V £ (z0) |13
flaw) = f 6/k( 2 IV @)z for some constants ¢ and 3
/. Vi *
<A -1 - T,))(f(z” - ® Holds locally for large enough ¢, 8 if cont. piece-wise polynomial
® Constants and neighborhood quantified in [1]?
where )
L] =
® [-smoothness of f is used in first inequality ¢ = 0 gives smoothness
® gradient update xj41 = xx — % V.f(2x) in first equality ® ¢ small gives close to smoothness but allows nondifferentiable
® error bound is used in the final inequality
® Linear convergence in function values if v, € [e,% —€,e>0
1 Semismoothness definition not a standard semismoothness definition
2 [1] A Convergence Theory for Deep Learning via Over-Parameterization. Z. Allen-Zhu et al
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Convergence — Error bound and semi-smoothness

® Convergence analysis of gradient descent method
® Assumptions: (c,3)-semi-smooth, d-error bound, f* =0 (w.l.o.g.)

.« VB 1y.
® Parameters ¢ < T”’ and v € (0, E)

f(@hs1)
< flan) + V@) (@ern — ax) + clan — 2ell2 /) + §llaer — axl3
= (@) =YV I @) 13 + NV F @)/ Flan) + ZE IV F () 13
< flan) =WV @o)3 + FIV S @)l + BV ()3
< flae) =AMV @)z + 871V f (@)l
< flar) =91 = BNV S (@n)lI3
< (1= 07(1 - B7) ()
which shows linear convergence to 0 loss
® Need the nonsmooth part of upper bound ¢ to be small enough
® Can analyze SGD in similar manner
49

Convergence in deep learning

® Setting: ReLU network, fully connected, smooth loss

® cis small enough when model overparameterized enough [1]*

® Linear convergence (with high prob.) for random initialization [1]
® |n practice:

® 3 will be big — relies on small enough (< %) constant step-size

® need to find “correct” step-size by diminishing rule

® need to control steps to not depart from linear convergence region
® hopefully achieved by previous step-size rule

1 [1] A Convergence Theory for Deep Learning via Over-Parameterization. Z. Allen-Zhu et al
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Stochastic Gradient Descent

Implicit Regularization

Pontus Giselsson

Outline

* Variable metric methods

e Convergence to projection point

e Convergence to sharp or flat minima
o Early termination

Gradient method interpretation
® Gradient method minimizes quadratic approximation of function
s = argmin (F (@) + VF(@n) (2 = 20) + o o - s 3)
= argmin (51 2 — ok — WV () I3)

= xp — 1V f(zK)
® Graphical illustration of one step

[ f@i) + V@) (@ = @) + 5o le — @ll3
[ f@)

Gradient method interpretation
® Gradient method minimizes quadratic approximation of function
i1 = avgmin (/@) + V()T (@~ 20) + g 2 — oal3)
= argmin (51 2 — (e — VS (20))I3)

= a2 — V(o)
® Graphical illustration of one step

| f@i) + V@) (@ = o) + g le = zxll3
[ f@)

Th41

Scaled gradient method

® Quadratic approximation same in all directions due to || - ||3
Tyl = arg;nin (f(:rk) + V() (x —zp) + ﬁHT - mﬂ\%)
® Scaled gradient method minimizes scaled quadratic approximation
a1 = avgmin (f(@n) + V(o) (@~ 20) + g 12— el
= argmin (g 2 — ok — 9 H 'V () )
=ar —H 'V (k)

where H is a positive definite matrix and ||z||%, = 27 Hx
® Nominal gradient method obtained by H = I
® Better quadratic approximation (good H) = faster convergence

Gradient descent — Example

® (Unscaled) Gradient descent on convex quadratic problem

o 1] o1 —04] [a
mlHIImIZC 2 | o 0.1 1 oo

® Graphical illustration:

Gradient descent — Example

® (Unscaled) Gradient descent on convex quadratic problem

minimize ~ |1 o1 —01] [
r 2 [T2 —0.1 1 T

® Graphical illustration:

Gradient descent — Example

® (Unscaled) Gradient descent on convex quadratic problem

minimize 1 "for —o1 1
e 2 |z2] [-01 1 ||z

® Graphical illustration:




Gradient descent — Example

® (Unscaled) Gradient descent on convex quadratic problem

o 1 [m] o1 —01] [a
mlnlzmIZC 2 | o 0.1 1 T

® Graphical illustration:

Gradient descent — Example

® (Unscaled) Gradient descent on convex quadratic problem

o 1] [0l —01] [z
mlHlImIZC 2 | o 0.1 1 oo

® Graphical illustration:

Gradient descent — Example

® (Unscaled) Gradient descent on convex quadratic problem

minimize Lz "To1 —01] [
’” 2 |z2] |-01 1 ||

® Graphical illustration:

Scaled gradient descent — Example

® Scaled gradient descent on convex quadratic problem

minimize Lz "To1 —01] [a
kd PAED) —0.1 1 T2

® Scaling H = diag(V?f) := P:

Scaled gradient descent — Example

® Scaled gradient descent on convex quadratic problem

o 1] o1 —01] [a
mlnlzmIZC 2 | o 0.1 1 T

e Scaling H = diag(V?2f) := P:

Scaled gradient descent — Example

® Scaled gradient descent on convex quadratic problem

o 1] o1 —04] [a
mlHlImIZC 2 | o 0.1 1 oo

e Scaling H = diag(V?2f) := P:

Scaled gradient descent — Example

® Scaled gradient descent on convex quadratic problem

minimize L "To1 —01] [
’” 2 |z2] |-01 1 ||

e Scaling H = diag(V?f) := P:

Scaled gradient descent — Example

® Scaled gradient descent on convex quadratic problem

minimize Lz "To1 —01] [a
kd PAED) —0.1 1 T2

e Scaling H = diag(V?f) := P:




Scaled gradient descent — Example

® Scaled gradient descent on convex quadratic problem

o 1 [m] o1 —01] [a
mlnlzmlzc 2 | o 0.1 1 T

e Scaling H = diag(V?2f) := P:

How to select metric H?

A priori: Use a fixed H thoughout iterations

® can be difficult to find a good performing H
® does not adapt to local geometry

Adaptively: Iteration-dependent H), that adapts to local geometry

6 7
Adaptive metric methods SGD variations with adaptive diagonal scaling
® Diagonal scaling gives one step-size (learning rate) per variable
® Algorithms with full Hy: ® SGD type methods with diagonal Hy, = diag(hi ;... ,hnk):
® (Regularized) Newton methods N
® Quasi-Newton methods Tp41 = Tk — ’)’ka_lvf(mk)
® Algorithms with diagonal Hy, (in stochastic setting): where
® Adagrad . R .
o RMSProp . tAhe inverse is H, ' = dlag(ﬁ7 o ﬁ)
® Adam ® Vf(zk) is a stochastic gradient approximation
: Adamax/Adadelta ® Methods called variable metric methods since H, defines a metric
® Introduced to improve convergence compared to SGD
® Can have worse generalization properties?
8 9
Metrics - RMSprop and Adam Filtered stochastic gradients
® Adam also filters stochastic gradients for smoother updates
. . . . ® Let 7o =0 and by, € (0,1), and update
® Estimate coordinate-wise variance: 0 m € (0,1) P B
. . _ ) My = btitg—1 + (1 — b))V f(z—1)
O = bybg—1 + (1 = by )(V f(2r-1)) . ) A
® Adam uses unbiased estimate: lTb*;
where 9 = 0, b, € (0,1) ® Fixed step-size without filtered gradient
® Metric Hy, is chosen (approximately) as standard deviation: .
® RMSprop: biased estimate Hj, = diag(v/0x + €)
® Adam: unbiased estimate H = diag( lf‘bk +e€)
® Intuition:
® Reduce step size for high variance coordinates
® |Increase step size for low variance coordinates
® Alternative intuition:
® Reduce step size for “steep” coordinate directions
® Increase step size for “flat” coordinate directions _
Levelsets of summands
10 11
Filtered stochastic gradients Adam — Summary
® Adam also filters stochastic gradients for smoother updates
® Let iy =0 and by, € (0,1), and update
N N = ® Initialize g = 09 = 0, by, by, € (0,1), and select v > 0
T = bmiig—1 + (1 — b))V f(z—1) o= oY ( ’ ) K
. 1. gr = Vf(zr_1) (stochastic gradient)
® Adam uses unbiased estimate: % 2. 1 = bmmg—1 + (1 — bm)gk
® Fixed step-size with filtered gradient 3. Ok = budr—1 + (1 — bu)gi
4. my, =1k /(1 - bE)
5. v = oy /(1 — bF)
6. i1 = xkp — ymi./(y/Uk + €1)
® Suggested choices: b,, = 0.9, b, = 0.999, ¢ = 1078, v = 0.001
® More succinctly
Tpp1 = xp — vH '
where metric Hy, = diag(,/Uk1 +¢€,...,\/Tkn + €)
Levelsets of summands
11 12




Adam vs SGD

® Adam designed to converge faster than SGD by adaptive scaling
® Often observed to give worse generalization than SGD
® Two possible reasons for worse generalization:

® Convergence to larger norm solutions?
® Convergence to sharper minima?

Outline

® Variable metric methods
« Convergence to projection point
e Convergence to sharp or flat minima

o Early termination

13 14
Generalization in neural networks Explicit vs implicit regularization
® Tikhonov adds || - ||3 norm penalty for better generalization
® Recall: Lipschitz constant L of neural network N N
minimize Z L(m(xi;0),v:) + 5013
L= Wallz - [Wn-1ll2--- [[Will2 =1
or with ||W;||» replaced by (1 + ||W;||2) for residual layers which gives a smaller 6 and is a form of explicit regularization
® Can use ||0]|> where 6 = {(W;,b;)}™, as proxy ® Deep learning has no explicit regularization = training problem:
® Overparameterized networks N
® Infinitely many solutions exist minimize » L(m(zi;0),y:)
® Want a solution with small ||0]|> for good generalization 0 i—
with many O-loss solutions in overparameterized setting
® Implicit regularization if algorithm finds small norm solution
15 16
(S)GD limit points Least squares
® Consider least squares problem of the form
PPN 2
minimize 3|| Az — bl|3
P
® Assume overparameterized convex least squares problem
mxn m 7 o=
® Gradient descent converges to projection point of initial point where A € R b €R™, m <n, and 37 such that AT =b
e If SGD converges, it converges to same projection point ® Problem is overparameterized and has many solutions
® Since m < n, solution set is
X :={z: Az =1b}
which is (at least) n — m-dimensional affine set
17 18
Gradient method convergence to projection point Characterizing projection point
® Will show that scaled gradient method
= o -1 . L S . 2 .
Tpi1 = o — wH Vf(z)) ® The unique projection point & = argmin(||z — zo||%) if and only if
zeX
converges to || - || g-norm projection onto solution set from x¢ ,
® Means that scaled gradient method converges to solution of Hi — Hao € R(A7) and Az =0
T T
minimize, ||z — 2% where R(A™) is the range space of A
subject to Az =b ® The range space is R(AT) = {v € R" : v = AT\ and A\ € R}
where H decides metric in which to measure distance from z(
® If 2o =0, we get minimum || - || z-norm solution in {z : Az = b}
19 20




Convergence to projection point

The scaled gradient method can be written as
Hl‘k+1 HTk - "kaT(Al‘k - b)
if all v, > € > 0 are small enough, it converges to a solution Z:

Ty — T and Az =10

Letting A\, = — Z;‘;O ~i(Az; — b) € R™ and unfolding iteration:

k
Hzpypy — Hog = =Y m AT (Az — b) = AT\, € R(AT)

1=0
In the limit z;, — Z, we get
Hz — Hxy € R(AT)

which with AZ = b gives optimality conditions for projection
If g = 0, the algorithm converges to argmin(||z| )
zeX

21

Graphical interpretation

® What happens with scaled gradient method?
® Solution set X extends infinitely

® sequence is perpendicular to X in scalar product (Hz) Ty
® algorithm converges to projection point argmin, ¢ x (|| — 2ol #)

{z: Az = b}

% x
Gradient method A scaled gradient method

{z: Az = b}

22

SGD - Convergence to projection point

Least squares problem on finite sum form
m
s LI AL 2 _ 1
minimize sllAz —bl3 = 5 g alz —b;)
i=1

where A = [ag,...,am]"
Applying single-batch scaled SGD:

-1 T
Tpy1 = o — wH g, (az, x) — byy)

The iteration can be unfolded as

k
Z X (n(af@ = b))
—o u=1

k
- Z a”'yl(az;wz - bu) =A"

1=0

Hxpyr — Hxo =

k '
=37 x (mlana —bm))

=0 iL=m

where x (v) = v ifi; = j, else 0, so Hzj1 — Hrg € R(AT)

=]

SGD vs Adam

This analysis hints towards that SGD gives smaller norm solutions and
better generalization than variable metric Adam. True?

® Assume xj — T with AZ = b = convergence to projection point 3 2
Convergence from different initial points Convergence from different initial points

¢ Classification, hinge loss, ReLU, residual, 15x25,2,1 (17 layers) ® Classification, hinge loss, ReLU, residual, 15x25,2,1 (17 layers)
® L, is Lipschitz constant in z of final model m(z;6cna) ® L, is Lipschitz constant in z of final model m(z;8cnq)
® Init: Resid - (0, 02), non-resid - A/(0, max(1,02)), o = 0.01 ® Init: Resid - A(0,02), non-resid - A'(0, max(1,02)), o = 0.1
® Algorithm: SGD ® Algorithm: SGD

[[6oll2 = 3.57 Ly = 8.4-10% [16o]l2 = 3.8 Lm =2.0-10°

lfenall2 = 9.9 loss(fena) = 0.051 [l0enall2 = 10.4  loss(fena) = 0.042
* 5 * %
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Convergence from different initial points Convergence from different initial points

e Classification, hinge loss, ReLU, residual, 15x25,2,1 (17 layers) o Classification, hinge loss, ReLU, residual, 15x25,2,1 (17 layers)
® L, is Lipschitz constant in z of final model m(z; 0ena) ® L, is Lipschitz constant in z of final model m(z;0ena)
® Init: Resid - NV(0,02), non-resid - N'(0, max(1,0?)), o0 =1 ® Init: Resid - NV(0,02), non-resid - NV'(0, max(1,0?)), 0 =5
® Algorithm: SGD ® Algorithm: SGD

l6o]l2 = 10.8 L = 2.4-10° 60ll2 = 54.2 Ly =1.9-10'2

[0cnallz2 = 14.4  loss(fena) = 0 l0cnall2 = 49.5  loss(fena) = 0.036
* N * N *
* * o
* . * . .
25 25




Convergence from different initial points

Convergence from different initial points

Classification, hinge loss, ReLU, residual, 15x25,2,1 (17 layers)

¢ Classification, hinge loss, ReLU, residual, 15x25,2,1 (17 layers) .
® L, is Lipschitz constant in z of final model m(z;fcna) ® L, is Lipschitz constant in z of final model m(z;0cnq)
® Init: Resid - V(0,02), non-resid - N'(0, max(1,02)), o = 10 ® Init: Resid - A(0,02), non-resid - A'(0, max(1,02)), o = 0.01
® Algorithm: SGD ® Algorithm: Adam
[16o]l2 = 107.2 Ly = 1.6-10% l16ol2 = 3.6 Lm =9.3-107
[[0endll2 = 96.2 1088(fend) = 0 [|Oendll2 = 17.4 10ss(fend) = 0.12
. ’ “\’ * * ’ *
*
* * *
* *
* * ] * o x
*
* * *
%
* * 5
* *
*
* o *
*
*
* *
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Convergence from different initial points Convergence from different initial points
e Classification, hinge loss, ReLU, residual, 15x25,2,1 (17 layers) o Classification, hinge loss, ReLU, residual, 15x25,2,1 (17 layers)
® L, is Lipschitz constant in z of final model m(z; 0ena) ® L, is Lipschitz constant in z of final model m(z;0ena)
® Init: Resid - (0, 02), non-resid - (0, max(1,0?)), o = 0.1 ® Init: Resid - NV(0,02), non-resid - NV'(0, max(1,0?)), o0 =1
® Algorithm: Adam ® Algorithm: Adam
[160]l2 = 3.9 Ly = 45107 l60ll2 = 10.7 Ly = 4.3-107
[0enall2 = 16.2  loss(fena) = 0 0enall2 = 18.7  loss(fena) = 0
* * * *
* *
* N * *
* *
«
* *
* % %
* *
* * *
* *
* % * *
* *
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Convergence from different initial points Convergence from different initial points
¢ Classification, hinge loss, ReLU, residual, 15x25,2,1 (17 layers) ® Classification, hinge loss, ReLU, residual, 15x25,2,1 (17 layers)
® L, is Lipschitz constant in z of final model m(z;6cna) ® L, is Lipschitz constant in z of final model m(z;8cnq)
® Init: Resid - V(0,02), non-resid - N'(0, max(1,02)), o = 5 ® Init: Resid - V(0,02), non-resid - N(0, max(1,02)), o = 10
® Algorithm: Adam ® Algorithm: Adam
[[6oll2 = 54.61 Ly =1.9-10'2 [16o]l2 = 109.278 Ly = 3.8-10'6
[|[Oendll2 = 54.61  1oss(fena) = 0 [[enall2 = 109.282 loss(fena) = 0
* *
*
*
*
*
x
%
*
*
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Conclusions Outline
® Norm of final point on same order of magnitude as initial point
® Choice of initial point is significant for generalization
® |nitialize as small as possible while avoiding vanishing gradients
® Variable metric methods
Adam SGD o Convergence to projection point
scaling o 0ol [|fenallz L., 16oll2 1enallz Lo » Convergence to sharp or flat minima
0.01 3.6 174  9.3-107 3.57 9.9 84-10* e Early termination
0.1 3.9 162 4.5-107 3.8 104 2.0-10°
1 10.7 187 4.3-107 10.8 144 24-10°
5 54.61 54.61 1.9-10'2 54.2 49.5 1.9-10'2
10 109.278 109.282 3.8-10'6 107.2 96.2 1.6-1015
® Adam gives larger ||@end|| and L,,, hints at worse generalization?
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Convergence to sharp or flat minima

® Have argued flat minima generalize well, sharp minima poorly

® |s Adam or SGD most likely to converge to sharp minimum?

Variable metric methods — Interpretation

® Variable metric methods
Thar = o — W H, 'V f(2x) (1)
can be interpreted as taking pure (stochastic) gradient step on
fr = (f o HY (@)
® Why? Gradient method on fg, is

Vet = ok — WV i, (0) = vk — e Hy, PV o)

which after
® multiplication with H,~
® and change of variables according to = = H,:l/ka

1/2

gives (1)
28 29
Interpretation consequence Adam vs SGD - Flat or sharp minima
® Data from previous classification example with o = 10
® Loss landscape around final point fenq for SGD and Adam
® SGD and Adam reach 0 loss but Adam minimum much sharper
® Variable metric methods choose H), to make fp, well conditioned ® Same 61,0, directions, same axes, Zmax = 1000
® Consequences:
® Sharp minima in f become less sharp in fz, SGD Adam
® (Flat minima in f become less flat in fx,)
® Adam maybe more likely to converge to sharp minima than SGD —
® This can be a reason for worse generalization in Adam than SGD 100 Al l”‘ !
| W
o : u :
30 31
Adam vs SGD - Flat or sharp minima Adam vs SGD - Flat or sharp minima
® Data from previous classification example with o = 10 ® Data from previous classification example with o = 10
® Loss landscape around final point fenq for SGD and Adam ® Loss landscape around final point 0.,q for SGD and Adam
® SGD and Adam reach 0 loss but Adam minimum much sharper ® SGD and Adam reach 0 loss but Adam minimum much sharper
® Same 01,0, directions, same axes, zyax = 100000 ® Same 01,0, directions, same axes, zZmax = 10°
SGD Adam SGD Adam
31 31
Outline Early termination
® Variable metric methods
o Convergence to projection point ® Another implicit regularization is to terminate algorithm early
e Convergence to sharp or flat minima ® Sometimes generalization deteriorates with higher accuracy
o Early termination ® Can happen if model too complex for data
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Early termination — Example Early termination — Example
e SVM polynomial features of degree 6, A = 0.00001
o |teration number: 1 Residual norm: 87! ||uy |2 = 6.6e!
® Will consider SVM with small regularization on this problem data
: * * 3 * * *
* * * *
PR . X "'
® Will see: . _
® best generalization after only a few iterations at medium accuracy by =,
® high accuracy takes many iterations but poor generalization T n
iteration k : " iteration k
34
Early termination — Example Early termination — Example
o SVM polynomial features of degree 6, A = 0.00001 o SVM polynomial features of degree 6, A = 0.00001
® Iteration number: 2 Residual norm: 87 !{|uy s = 4.7} e Iteration number: 3 Residual norm: 871 ||uy||» = 3.5e~!
T T T
777\,,
iteration & " iteration k " iteration k " : iteration k
35
Early termination — Example Early termination — Example
e SVM polynomial features of degree 6, A = 0.00001 e SVM polynomial features of degree 6, A = 0.00001
e |teration number: 4 Residual norm: 871 ||ug |2 = 2.8¢7* o |teration number: 5 Residual norm: 374 |ug |2 = 2.3¢7!
. . .
B z z F
S L A L
— —
iteration k ‘ iteration k iteration k ’ : " iteration k
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Early termination — Example Early termination — Example
o SVM polynomial features of degree 6, A = 0.00001 o SVM polynomial features of degree 6, A = 0.00001
® Iteration number: 6 Residual norm: 87 !{|ug |2 = 1.9¢~* e Iteration number: 7 Residual norm: 871 ||uy||» = 1.5e7!
\\\\\ \\
iteration & © 7 iteration k ' iteration k ' iteration k
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Early termination — Example

e SVM polynomial features of degree 6, A = 0.00001

® |teration number: 8 Residual norm: 87! ||ug|l2 = 1.3+

B gl
/
B gl

Early termination — Example

e SVM polynomial features of degree 6, A = 0.00001

e |teration number: 9 Residual norm: 87! ||uy |2 = 1.2}

B lugll
_—
57 ull

iteration k ‘ iteration k iteration k : " iteration k
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Early termination — Example Early termination — Example
o SVM polynomial features of degree 6, A = 0.00001 o SVM polynomial features of degree 6, A = 0.00001
® Iteration number: 10 Residual norm: 87 !{|uy |2 = 1.1e7! e Iteration number: 20 Residual norm: 87! ||uy |2 = 5.8¢72
\\ o I
iteration k T " iteration k iteration k : iteration k
35 35
Early termination — Example Early termination — Example
e SVM polynomial features of degree 6, A = 0.00001 e SVM polynomial features of degree 6, A = 0.00001
e |teration number: 30 Residual norm: 87! |ugll2 = 4.1e72 e |teration number: 40 Residual norm: 871 |lug|l2 = 3.2¢72
*» >
h T T \ h
m Y @ ~—_ N
- —
“iteration k ) ‘ iteration k | iteationk : " iteration k
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Early termination — Example Early termination — Example
o SVM polynomial features of degree 6, A = 0.00001 o SVM polynomial features of degree 6, A = 0.00001
® Iteration number: 50 Residual norm: 87 !|ug |2 = 2.4e72 e Iteration number: 60 Residual norm: 871 ||uy |2 = 1.8e72
TN i i i
iteration & © 7 iteration k iteration k iteration k
35

35




Early termination — Example

e SVM polynomial features of degree 6, A = 0.00001

® |teration number: 70 Residual norm: 871 |ugll2 = 1.4e~2

B gl
B gl

iteration k iteration k

Early termination — Example

e SVM polynomial features of degree 6, A = 0.00001

e |teration number: 80 Residual norm: 87! ||uy||2 = 1.2¢2

B gl
57 ull

iteration k iteration k
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Early termination — Example Early termination — Example
o SVM polynomial features of degree 6, A = 0.00001 o SVM polynomial features of degree 6, A = 0.00001
o |teration number: 90 Residual norm: 87 1{|lugll2 = 1e~2 o |teration number: 100 Residual norm: 871 ||ug |2 = 7.8¢73
i i \ i
s \ o S S
\\\
iteration k iteration k iteration k iteration k
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Early termination — Example Early termination — Example
e SVM polynomial features of degree 6, A = 0.00001 e SVM polynomial features of degree 6, A = 0.00001
e |teration number: 110 Residual norm: 87! {|ugll2 = 6.5¢~3 e |teration number: 120 Residual norm: 871 |lug|l2 = 5.9¢73
k3 *
N N 5
) I A T — i
. — ] . — |~
“iteration k iteration k iteration k " iteration k
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Early termination — Example Early termination — Example
o SVM polynomial features of degree 6, A = 0.00001 o SVM polynomial features of degree 6, A = 0.00001
® |teration number: 130 Residual norm: 87 1{|ugll2 = 5.5¢~3 o |teration number: 140 Residual norm: 871 |lug|l2 = 5.1e73
AN : SN :
iteration k iteration k " iteration k iteration k
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Early termination — Example

e SVM polynomial features of degree 6, A = 0.00001

® |teration number: 150 Residual norm: 87! |ugll2 = 4.8¢73

B gl

B gl

iteration k

iteration k

Early termination — Example

e SVM polynomial features of degree 6, A = 0.00001

e |teration number: 160 Residual norm: 87! ||uy|2 = 4.5¢~3

B gl
57 ull

iteration k

iteration k
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Early termination — Example Early termination — Example
o SVM polynomial features of degree 6, A = 0.00001 o SVM polynomial features of degree 6, A = 0.00001
® |teration number: 170 Residual norm: 871 {|ugll2 = 3.9¢73 o |teration number: 180 Residual norm: 871 ||ug|l2 = 3.8¢73
A i A i
b \\\\ S b \\\\‘ N
iteration k © 7 iteration k iteration k ’ ' iteration k
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Early termination — Example Early termination — Example
e SVM polynomial features of degree 6, A = 0.00001 e SVM polynomial features of degree 6, A = 0.00001
e |teration number: 190 Residual norm: 87! |ugll2 = 3.6e~3 e |teration number: 300 Residual norm: 871 ||lug |2 = 2.3¢73
k3 *
S F z i
h e h T
) |$erat|l:vn ls‘ ’ CeT ‘ nerati;m k ‘nerati‘o‘n k - ’ ’ ’ : 'mevam‘en k
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Early termination — Example Early termination — Example
o SVM polynomial features of degree 6, A = 0.00001 o SVM polynomial features of degree 6, A = 0.00001
® |teration number: 400 Residual norm: 871 {|ugll2 = 1.6e~3 o |teration number: 500 Residual norm: 871 |ug |2 = 1.2¢73
1 T T T
iteration k iteration k " iteration k iteration k
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Early termination — Example

e SVM polynomial features of degree 6, A = 0.00001

® |teration number: 600 Residual norm: 871 {|ugll2 = 8.9¢74

Early termination — Example

e SVM polynomial features of degree 6, A = 0.00001

e |teration number: 700 Residual norm: 87! ||uy|2 = 6.7¢~*

B F F i
T T h T
“neran‘on k : - : ‘ nerat'n;m k ’ ner'ation k : - ’ : : 'mevam‘en k
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Early termination — Example Early termination — Example
o SVM polynomial features of degree 6, A = 0.00001 o SVM polynomial features of degree 6, A = 0.00001
® |teration number: 800 Residual norm: 871 {|ugll2 = 4.7¢~4 o [teration number: 900 Residual norm: 871 ||ug |2 = 4.1e74
\ ;\;
) fteration k © 7 iteration k ) Citeration k ' iteration k
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Early termination — Example Early termination — Example
e SVM polynomial features of degree 6, A = 0.00001 e SVM polynomial features of degree 6, A = 0.00001
e |teration number: 1000 Residual norm: 87! {|ugll2 = 3.7¢74 e |teration number: 2000 Residual norm: 874 |lug|l2 = 1.5e™*
L i x L
T ok ‘ iteration k ST Thenton kT T : " iteration k
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Early termination — Example Early termination — Example
o SVM polynomial features of degree 6, A = 0.00001 o SVM polynomial features of degree 6, A = 0.00001
® |teration number: 3000 Residual norm: 871 {|lugll2 = 1.2¢74 o |teration number: 4000 Residual norm: 871 |lugl2 = 1.1e74
Ey\ Ey|
8 ¥ o S S
- T Thention k © 7 iteration k iteration k& ' iteration k
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Early termination — Example

e SVM polynomial features of degree 6, A = 0.00001

® |teration number: 5000 Residual norm: 87! {|ug |2 = 9~

B gl
B gl

Early termination — Example

e SVM polynomial features of degree 6, A = 0.00001

e |teration number: 6000 Residual norm: 87! ||luy |2 = 8e™

B gl
B ugll

- |$§'rat’|u’:v‘n I»w nr nr ‘ nerat'n;m k “neratio‘n k : . " : : 'mevam‘en k
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Early termination — Example Early termination — Example
o SVM polynomial features of degree 6, A = 0.00001 o SVM polynomial features of degree 6, A = 0.00001
® |teration number: 7000 Residual norm: 871 {|ugll2 = 7.2¢7 o |teration number: 8000 Residual norm: 871 ||ug|l2 = 6.6~
A«
= N = N b
7 iteration k © 7 iteration k iteration k. ' iteration k
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Early termination — Example Early termination — Example
e SVM polynomial features of degree 6, A = 0.00001 e SVM polynomial features of degree 6, A = 0.00001
e |teration number: 9000 Residual norm: 87! {|ugll2 = 5.6e~° o |teration number: 10000 Residual norm: 871 ||lug|l2 = 5.3¢~°
) F z E
Y Teration s ‘ iteration k Diteration & : " iteration k
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Early termination — Example Early termination — Example
o SVM polynomial features of degree 6, A = 0.00001 o SVM polynomial features of degree 6, A = 0.00001
o [teration number: 20000 Residual norm: 871 {|ugll2 = 3.1e7 o [teration number: 30000 Residual norm: 871 ||ug|l2 = 1.8¢7°
T T. T4 T
' iteration k o © 7 iteration k iteration k T ' iteration k
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Early termination — Example

e SVM polynomial features of degree 6, A = 0.00001

® |teration number: 40000 Residual norm: 87! |ugll2 = 1.3e7°

Early termination — Example

e SVM polynomial features of degree 6, A = 0.00001

o |teration number: 50000 Residual norm: 87! ||uy||2 = 9.3¢¢

) F Z i
T h h T
o - \\ o o \ @
‘ T eraton ko ‘ iteration k " iteration k : : " iteration k
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Early termination — Example Early termination — Example
o SVM polynomial features of degree 6, A = 0.00001 o SVM polynomial features of degree 6, A = 0.00001
® Iteration number: 60000 Residual norm: 871 {|ugll2 = 7.9¢~6 e Iteration number: 70000 Residual norm: 871 ||ug|l2 = 7.1e76
i — T T — T
iteration k . " iteration k iteration & : : iteration k
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Early termination — Example Early termination — Example
e SVM polynomial features of degree 6, A = 0.00001 e SVM polynomial features of degree 6, A = 0.00001
e |teration number: 80000 Residual norm: 87! {|ug|2 = 6.5¢~6 e |teration number: 90000 Residual norm: 87! ||lug|l2 = 66
B z z i
TN T h ¥ 7.
‘ iteration k| o ‘ iteration k iteration k " : " iteration k
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Early termination — Example Early termination — Example
o SVM polynomial features of degree 6, A = 0.00001 o SVM polynomial features of degree 6, A = 0.00001
® |teration number: 100000  Residual norm: 87 !||uk||2 = 5.5¢ ¢ ¢ |teration number: 200000  Residual norm: 8= }||uk||2 = 2.7¢~®
[ S B k g
' iteration & B © 7 iteration k " iteration k " ' iteration k
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Early termination — Example

e SVM polynomial features of degree 6, A = 0.00001
® |teration number: 300000  Residual norm: 37 !||uy|l2 = 1.9¢7¢

Early termination — Example

e SVM polynomial features of degree 6, A = 0.00001

o |teration number: 400000  Residual norm: 37| uy||2 = 1.5¢~¢

3 F F i
‘ " iteration . ‘ iteration k ‘ iteration k Yo " iteration k
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Early termination — Example Early termination — Example
o SVM polynomial features of degree 6, A = 0.00001 o SVM polynomial features of degree 6, A = 0.00001
® |teration number: 500000  Residual norm: 87 1||uy|l2 = 1.2¢7¢ ® Iteration number: 600000  Residual norm: B~ 1||uy||2 = le~®
] | : - :
' "7 iteration k . iteration & iteration k : : iteration k
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Early termination — Example Early termination — Example
e SVM polynomial features of degree 6, A = 0.00001 e SVM polynomial features of degree 6, A = 0.00001
* |teration number: 700000  Residual norm: 37 !||uy|l2 = 8.4e~7 o |teration number: 800000  Residual norm: 37 1||uy||2 = 4.6e~7
E F z E
= N - S L
iteration k : ‘ iteration k ) iteration k : : " iteration k
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Early termination — Example Early termination — Example
o SVM polynomial features of degree 6, A = 0.00001 o SVM polynomial features of degree 6, A = 0.00001
® Iteration number: 900000  Residual norm: 87! ||ug||2 = 3.9¢~7 ¢ Iteration number: 1000000 Residual norm: 87! ||ug||2 = 3.4e~7
)
' iteration k . © 7 iteration k ' © 7 iteration o ' iteration k ;
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