
Department of

AUTOMATIC CONTROL

Exam in Optimization for Learning
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Grading and points
All answers must include a clear motivation. Answers should be given in English.
Number all your solution sheets and indicate the total number of sheets, e.g., 1/12,
2/12 and so on.

The total number of points is 25. The maximum number of points is specified
for each subproblem. Preliminary grading scales:

Grade 3: 12 points
4: 17 points
5: 22 points

Accepted aid
You are allowed to bring lecture slides. You may use the results in the slides unless
the opposite is explicitly stated.

Results
Solutions will be posted on the course webpage, and results will be registered in
LADOK. Date and location for display of corrected exams will be posted on the
course webpage.
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1. Determine if the following sets are convex or not:

a. S1 = {x ∈ R : x is integer and x ≥ 5}. (1 p)

b. S2 = {x ∈ Rm : ∥x∥2 ≤ 1}. (1 p)

c. S3 = {x ∈ Rn : Ax + b ∈ D} where

D = {y ∈ Rm : ∥y∥2 ≤ 1},

A ∈ Rm×n and b ∈ Rm. (1 p)

d. S4 = {x ∈ R : f(x) ≤ 1} where

f(x) =
{cos x if 0 ≤ x ≤ 2π,

∞ otherwise

for each x ∈ R. (1 p)

2. Determine whether or not the functions below are convex.

a. f1 : R → R such that

f1(x) = log
(
1 + e−x2)

for each x ∈ R. (1 p)

b. f2 : Sn → R such that

f2(X) = λmax(X)

for each X ∈ Sn, where λmax denotes the largest eigenvalue. (1 p)

c. f3 : Rn → R such that

f3(x) =
r∑

i=1

∣∣∣x⟨i⟩

∣∣∣
for each x ∈ Rn where 1 ≤ r ≤ n is an integer and x⟨i⟩ is the component of x
with the ith largest absolute value, meaning that∣∣∣x⟨1⟩

∣∣∣ ≥ . . . ≥
∣∣∣x⟨n⟩

∣∣∣ .

(1 p)

d. f4 : Rn → R ∪ {∞} such that

f4 = ιS

where S ⊆ Rn is given by

S = {x ∈ Rn : ∥x∥0 = r}

where 1 ≤ r ≤ n is a fixed integer and

∥x∥0 = number of nonzero elements in the vector x

for each x ∈ Rn. (1 p)
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3. Consider the function f : R → R such that

f(x) =
{−0.5x if x ≤ 0,

3x if x > 0.

See Figure 1.

x

f(x)

Figure 1 Function f in Problem 3.

a. Compute the subdifferential ∂f (1 p)

b. Compute proxf (1 p)

c. Compute f∗ (1 p)

d. Compute proxf∗ (1 p)

4. We will consider the problem of selecting an optimal portfolio of stocks using a
mean-variance model. Suppose you wish to invest W SEK, for some W > 0, by
picking among n ∈ N different stocks. Your portfolio of stocks is constructed at
present time by purchasing xi SEK worth of stock i, for each i = 1, . . . , n. The
portfolio can be represented by the vector x = (x1, . . . , xn) ∈ Rn. Naturally,
there is the budget constraint that

1T x = W,

i.e., the sum of the investments equals the investment budget W . We denote
the set of feasible portfolios by

B = {x ∈ Rn : 1T x = W}.

Note that we allow x to have negative components. A negative component xi

corresponds to short-selling stock i, i.e., borrowing the stock and immediately
selling it. The portfolio of stocks is held constant until some predetermined
time in the future when all investments are liquidated (sold). This corresponds
to a one-period investment problem. Let r be n-dimensional, where ri is the
return of stock i over the period. In order to model our uncertainty of the future
stock returns, we let r be a n-dimensional random variable with known expected
value E[r] = µ ∈ Rn and known covariance matrix Var[r] = Σ ∈ Sn

++, i.e., Σ
is a real-valued positive definite n × n matrix. The return of the portfolio, the
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expected return of the portfolio, and the variance of the return of the portfolio
are given by

rT x, E
[
rT x

]
= µT x and Var

[
rT x

]
= xT Σx,

respectively. In the mean-variance model we seek the portfolio x that solves
the optimization problem

minimize
x∈B

−µT x + γxT Σx = minimize
x∈Rn

−µT x + γxT Σx + ιB(x) (1)

where γ > 0 is given. The variance of the return of the portfolio xT Σx is a
proxy for the risk inherent in the investment. Therefore, γ is usually called the
risk aversion parameter and is an inverse measure of an investors risk appetite.
For future reference, we define the function f : Rn → R such that

f(x) = −µT x + γxT Σx

for each x ∈ Rn.

a. Prove that f is strongly convex. (0.5 p)

b. Prove that B is convex. What does this imply for ιB? (0.5 p)

c. Why does optimization problem (1) have a unique minimizer? (0.5 p)

d. Compute the subdifferential ∂f . (0.5 p)

e. Show that

∂ιB(x) =
{{α1 : α ∈ R} if x ∈ B,

∅ if x /∈ B

for each x ∈ Rn. (1.5+0.5 p)

f. Using the subdifferentials in d. and e., find the optimal portfolio according to
the mean-variance model (1).
(You may assume that the expression for ∂ιB in e. holds.) (2 p)

g. Show that the conjugate functions of f and ιB satisfy

f∗(s) = 1
4γ

(s + µ)T Σ−1(s + µ)

for each s ∈ Rn and

ι∗
B(s) =

{
αW if s = α1 for some α ∈ R,

∞ otherwise

for each s ∈ Rn, respectively. (1+1 p)

h. State the dual problem

minimize
s∈Rn

f∗(−s) + ι∗
B(s) (2)

to problem (1) and express it as an optimization problem over a single real
variable. (You may assume that the expressions for f∗ and ι∗

B in g. hold.)
Solve the dual problem (2) over that single variable and relate it to the optimal
α in f. that comes from the subdifferential in e.. Give the dual optimal point
s∗ ∈ Rn. (1 p)
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i. Given the optimal point s∗ ∈ Rn of the dual problem (2) in h., show how to
recover the primal solution, i.e., the solution to (1). You are allowed to directly
use any one of the primal dual necessary and sufficient optimality conditions.
Show that the recovered primal solution is the same as in f.. (1 p)

5. Consider the 1-norm regularized SVM problem

minimize
w∈Rn

N∑
i=1

max
(
0, 1 − yiw

T xi

)
︸ ︷︷ ︸

=fi(w)

+λ ∥w∥1 (3)

given the labeled training data set {(xi, yi)}N
i=1, where xi ∈ Rn and yi ∈ {−1, 1}

are training data and labels, respectively.

a. Find the smallest nonnegative constant λ0 ∈ R such that if λ ≥ λ0, then

w = 0

is an optimal point for (3). (2 p)

b. Is the proximal gradient method applicable to find a solution of problem (3)?
Is it applicable to solve a corresponding Fenchel dual problem? (1 p)
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