
Department of

AUTOMATIC CONTROL

Exam in Optimization for Learning

2019-10-28

Points and grading
All answers must include a clear motivation. Answers should be given in English.
The total number of points is 20. The maximum number of points is specified for
each subproblem. Preliminary grading scales:

Grade 3: 12 points on the exam
4: 17 points on exam plus extra-credit handin
5: 22 points on exam plus extra-credit handin

Accepted aid
Authorized Cheat Sheet.

Results
Solutions will be posted on the course webpage, and results will be registered in
LADOK. Date and location for display of corrected exams will be posted on the
course webpage.
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1. Determine if the following sets are convex or not:

a. S1 = {(x, y) ∈ R2 : x2 = y}. (1 p)

b. S2 = {x ∈ Rn : maxi=1,...,n xi ≤ r}, where r ∈ R. (1 p)

c. S3 = {(x, t) ∈ R2 : |x|2 ≤ t2}. (1 p)

d. S4 = epi(exp) where exp is the exponential function. (1 p)

e. S5 = {x ∈ Rn : Ax ≥ b} where A ∈ Rm×n and b ∈ Rm. (1 p)
In each subproblem, you are allowed to assume that norms are convex and that
the function hp : R → R such that

hp(z) = max(0, z)p (1)

for each z ∈ R is convex and nondecreasing, for any p ≥ 1.

Solution

a. S1 is not convex. Take (−1, 1) ∈ S1 and (1, 1) ∈ S1. Then

1
2

(−1, 1) + 1
2

(1, 1) = (0, 1) /∈ S1.

b. S2 is convex. S2 is the r-sublevel set of a convex function, since the function is
a point-wise maximum of convex (in particular, linear) functions.

c. S3 is not convex. Take (1, 1) ∈ S3 and (1, −1) ∈ S3. Then

1
2

(1, 1) + 1
2

(1, −1) = (1, 0) /∈ S3.

d. S4 is convex. The exponential function is convex, therefore its epigraph is con-
vex.

e. S5 is convex. S5 is a polytope.

2. Determine whether or not the functions below are convex.

a. f1 : R → R such that

f(x) =
{

x if x > 0,

−1 if x ≤ 0.

(1 p)

b. f2 : R → R ∪ {∞} such that f2 = g⋆, where g : R → R is such that

g(x) = a4x4 + a3x3 + a2x2 + a1x1 + a0

for each x ∈ R, where a0, a1, a2, a3 ∈ R. (1 p)
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c. f3 : R → R ∪ {∞} such that

f3(x) =
{− min(log(x), −e−x) if x > 0,

∞ if x ≤ 0.

(1 p)

d. f4 : R → R such that

f4(x) = |x|3

for each x ∈ R. (1 p)

e. f5 : Rn → R ∪ {∞} such that

f(x) =

‖x‖2
2 if Ax = b,

∞ if Ax 6= b,

for each x ∈ Rn, where A ∈ Rm×n and b ∈ Rm. (1 p)

Solution

a. f1 is not convex. Take x = 0, y = 1, and θ = 0.5. Then

θx + (1 − θ)y = 0.5

and

f(θx + (1 − θ)y) = 0.5 > 0 = θf(x) + (1 − θ)f(y).

b. f2 is convex. The conjugate of any function is a point-wise supremum of convex
(in particular, affine) functions, and therefore itself convex.

c. f3 is convex. Note that f3 is the maximum of the two convex functions

x 7→
{− log(x) if x > 0,

∞ if x ≤ 0,
from R to R ∪ {∞}

and

x 7→ e−x from R to R,

and is therefore itself convex. The convexity of these two functions can be
checked using, e.g., the second-order condition for convexity.

d. f4 is convex. Note that

f ′
4(x) = 3x |x| and f ′′

4 (x) = 6 |x| ≥ 0

for each x ∈ R. The second-order condition for convexity gives that f4 is convex.
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e. f5 is convex. Note that the mapping

x 7→ h2(‖x‖2) = ‖x‖2
2

from Rn to R is convex since it is a composition of the convex and nondecreasing
function h2 defined in (1) and the convex function ‖·‖2. Moreover,

x 7→ ι{y∈Rn:Ay=b}(x)

from Rn to R is convex, since the set {y ∈ Rn : Ay = b} is convex (in particular,
a polytope). However, note that f5 can be written as

f5 = ‖·‖2
2 + ι{y∈Rn:Ay=b},

i.e., a sum of convex functions, and is therefore itself convex.

3. Consider the proper, closed and convex function f : R → R such that

f(x) =


1
2

x2 if |x| ≤ 1
2

,

1
2

(|x| − 1
4

) if |x| >
1
2

,

for each x ∈ R, known as the Huber loss. Let γ > 0. Compute the proximal
operator proxγf . (1 p)

Solution
Let z ∈ R and

x = proxγf (z)

= argmin
y∈R

(
f(y) − 1

2γ
(y − z)2

)
.

Fermat’s rule gives that this holds if and only if

0 ∈ ∂f(x) + γ−1(x − z). (2)

Note that f is differentiable with derivative

f ′(x) =


x if |x| ≤ 1

2
,

sgn x

2
if |x| >

1
2

.

Since f also is convex, we know that ∂f(x) = {∇f(x)}, for each x ∈ R. We
consider two different cases:

• Suppose that |x| ≤ 1/2. Then (2) gives that

0 = x + γ−1(x − z)
⇔

x = (1 + γ)−1z,

and |z| ≤ (1 + γ)/2.
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• Suppose that |x| > 1/2. Then (2) gives that

0 = sgn(x)
2

+ γ−1(x − z)

⇔

z = x + γ sgn(x)
2

[note that sgn x = sgn z]

⇔

z = x + γ sgn(z)
2

⇔

x = z − γ sgn(z)
2

and |z| > (1 + γ)/2.

This covers all cases. We conclude that

proxγf (z) =


(1 + γ)−1z if |z| ≤ 1 + γ

2
,

z − γ sgn(z)
2

if |z| >
1 + γ

2
.

4. Consider the proper, closed and convex function f : Rn → R such that

f(x) =


‖x‖2 if ‖x‖2 ≤ 1,

1
2

(
‖x‖2

2 + 1
)

if ‖x‖2 > 1

for each x ∈ R, known as the reversed Huber function. Compute ∂f . (1 p)

Solution
Note that f is differentiable everywhere except at 0. In particular,

∇f(x) =


x

‖x‖2
if x ∈ Rn \ {0} and ‖x‖2 ≤ 1,

x if x ∈ Rn and ‖x‖2 > 1.

Since f is also convex, we know that ∂f(x) = {∇f(x)} for each x ∈ Rn \ {0}.
It remains to find ∂f(0). Note that

s ∈ ∂f(0)
⇔

f(y) ≥ f(0) + sT y, ∀y ∈ Rn

⇔

sT y ≤


‖y‖2 , ∀y ∈ Rn : ‖y‖2 ≤ 1,

1
2

(
‖y‖2

2 + 1
)
, ∀y ∈ Rn : ‖y‖2 > 1.
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The first requirement in the cases above holds if and only if ‖s‖ ≤ 1, using the
Cauchy-Schwarz inequality. In fact, if ‖s‖ ≤ 1, then sT y ≤ ‖y‖2 for each y ∈ Rn,
by the Cauchy-Schwarz inequality. But if ‖s‖ ≤ 1, the second requirement in
the cases above holds automatically since

0 ≤ (‖y‖2 − 1)2, ∀y ∈ Rn

⇔
0 ≤ ‖y‖2

2 − 2 ‖y‖2 + 1, ∀y ∈ Rn

⇔

‖y‖2 ≤ 1
2

(
‖y‖2

2 + 1
)
, ∀y ∈ Rn,

and

sT y ≤ ‖y‖2 , ∀y ∈ Rn,

as argued above. We conclude that

∂f(0) = {s ∈ Rn : ‖s‖2 ≤ 1}.

5. A proper and convex function f : R → R ∪ {∞} has the following properties:
f(−2) = 3, ∂f(−1) = {−1}, ∂f(0) = [−1, 0]. What can you conclude about
the following properties?

a. Smoothness. (1 p)

b. Strong convexity. (1 p)

Solution

a. The function f is not smooth since it is not differentiable at 0 (∂f(0) is not a
singleton).

b. The function f is not strongly convex. Note that

−1 ∈ ∂f(−1) and − 1 ∈ ∂f(0).

Therefore, ∂f is not strongly monotone since

((−1) − (−1))((−1) − 0) = 0 < σ = σ |(−1) − 0|

for any σ > 0. Therefore, f can not be strongly convex.
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6. Sketch the conjugate of the piecewise linear function showed below. Outside
the plotted domain, assume the graph continues in the same direction as on
the boundary. (1 p)

f(x)

x

Solution

f⋆(s)

s

7. Let γ > 0, b ∈ Rn and f : Rn → R ∪ {∞}.

a. Find (γf)∗ expressed in terms of f∗ and γ. (1 p)

b. Find (f(· − b))∗ expressed in terms f∗ and b. (1 p)

Solution
Let s ∈ Rn.

a. Then

(γf)∗(s) = sup
x∈Rn

(
sT x − γf(x)

)
= γ sup

x∈Rn

((
γ−1s

)T
x − f(x)

)
= γf∗(γ−1s).

b. Note that

(f(· − b))∗(s) = sup
x∈Rn

(
sT x − f(x − b)

)
[z = x − b]

= sup
z∈Rn

(
sT (z + b) − f(z)

)
= sT b + sup

z∈Rn

(
sT z − f(z)

)
= sT b + f∗(s).
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8. Suppose that f : Rn → R is convex and differentiable, and that gi : R →
R ∪ {∞} is proper, closed and convex for each i = 1, . . . , n. Consider the
coordinate proximal-gradient method:

1. Pick an initial point x0 ∈ Rn and step-lengths γi > 0 for each i = 1, . . . , n

2. For k = 0, 1, 2, . . .

(a) Choose an index i ∈ {1, . . . , n} (according to some schedule)
(b) Update xk+1

i = proxγigi

(
xk

i − γi(∇f(xk))i

)
(c) Update xk+1

j = xk
j for each j = 1, . . . , n such that j 6= i

Now, suppose that x⋆ ∈ Rn is a fixed point of the coordinate proximal-gradient
method, i.e., if xk = x⋆, then xk+1 = x⋆, regardless of which coordinate i was
chosen. Show that x⋆ solves

minimize
x=(x1,...,xn)∈Rn

f(x) +
n∑

i=1
gi(xi).

(1 p)

Solution
First, define g : Rn → R ∪ {∞} such that

g(x) =
n∑

i=1
gi(xi)

for each x = (x1, . . . , xn) ∈ Rn. The optimization problem can then be written
as

minimize
x∈Rn

f(x) + g(x).

Moreover, we know that

∂g(x) = {(s1, . . . , sn) ∈ Rn : si ∈ ∂gi(xi) for each i = 1, . . . , n}.

Now, we have that

x⋆
i = proxγigi

(x⋆
i − γi(∇f(x⋆))i)

= argmin
x∈R

(
gi(x) + 1

2γi
(x − (x⋆

i − γi(∇f(x⋆))i))2
)

,

for each i = 1, . . . , n. Fermat’s rule gives that this is equivalent to that

0 ∈ ∂gi(x⋆
i ) + γ−1

i (x⋆
i − (x⋆

i − γi(∇f(x⋆))i))
= ∂gi(x⋆

i ) + (∇f(x⋆))i,

or

−(∇f(x⋆))i ∈ ∂gi(x⋆
i ),
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for each i = 1, . . . , n. This implies that

−∇f(x⋆) ∈ ∂g(x⋆)

or

0 ∈ ∇f(x⋆) + ∂g(x⋆) ⊆ ∂(f + g)(x⋆).

Fermat’s rule implies that

x⋆ ∈ Argmin
x∈Rn

(f(x) + g(x)),

as desired.

9. Consider the primal problem

minimize
x∈Rn

‖x‖1 +
∣∣∣1T x

∣∣∣
and the dual problem

minimize
µ∈R

ι[−1,1](−1µ) + ι[−1,1](µ)

where 1 ∈ Rn is a vector of all ones. Here we used that

(‖·‖1)⋆ = ι[−1,1]

and

(|·|)⋆ = ι[−1,1].

Suppose that µ⋆ ∈ R is a solution to the dual problem. Recover the primal
solution x⋆ ∈ Rn using µ⋆. (2 p)

Solution
First, note that it must be the case that −1 ≤ µ⋆ ≤ 1 for a dual optimal
solution, since if not, the objective function of the dual problem would be
infinite, which clearly is not optimal.
Next, note that

relint dom
(
ι[−1,1] ◦ −1

)
∩ relint dom ι[−1,1] = relint[−1, 1] ∩ relint[−1, 1]

= (−1, 1)
6= ∅,

i.e., constraint qualification holds for the dual problem. Fermat’s rule gives that
µ⋆ is a solution to the dual problem if and only if

0 ∈ ∂
((

ι[−1,1] ◦ −1
)

+ ι[−1,1]
)
(µ⋆)

= ∂
(
ι[−1,1] ◦ −1

)
(µ⋆) + ∂ι[−1,1](µ⋆)

= −1T ∂ι[−1,1](−1µ⋆) + ∂ι[−1,1](µ⋆).
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This is equivalent to that there exists a point x⋆ ∈ Rn such that1T x⋆ ∈ ∂ι[−1,1](µ⋆),

x⋆ ∈ ∂ι[−1,1](−1µ⋆).
(3)

Note that

∂ι[−1,1](z) =


(s1, . . . , sn) ∈ Rn : si ∈



(−∞, 0] if zi = −1,

{0} if − 1 < zi < 1,

[0, ∞) if zi = 1,

∅ if zi ∈ R \ [−1, 1],

∀i ∈ {1, . . . , n}


for each z = (z1, . . . , zn) ∈ Rn, and that

∂ι[−1,1](µ) =



(−∞, 0] if µ = −1,

{0} if − 1 < µ < 1,

[0, ∞) if µ = 1,

∅ if µ ∈ R \ [−1, 1],

for each µ ∈ R.
We consider three different cases:

• Suppose that −1 < µ⋆ < 1. The second condition in (3) gives that x⋆ = 0.
• Suppose that µ⋆ = 1. The first condition in (3) gives that

1T x⋆ ≥ 0

and the second condition in (3) gives that

x⋆
i ≤ 0

for each i = 1, . . . , n. This is only possible if x⋆ = 0.
• Suppose that µ⋆ = −1. The first condition in (3) gives that

1T x⋆ ≤ 0

and the second condition in (3) gives that

x⋆
i ≥ 0

for each i = 1, . . . , n. This is only possible if x⋆ = 0.

This covers all cases. We conclude that x⋆ = 0.
One can verify that x⋆ = 0 is in fact the optimal solution to the primal problem
simply by inspecting the objective function in the primal problem.
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