
Department of

AUTOMATIC CONTROL

Exam in Optimization for Learning

2020-10-26

Points and grading
All answers must include a clear motivation. Answers should be given in English.
The total number of points is 25. The maximum number of points is specified for
each subproblem. Preliminary grading scales:

Grade 3: 12 points
4: 17 points
5: 22 points

Accepted aid
All material form the course.

Results
Solutions will be posted on the course webpage, and results will be registered in
LADOK. Date and location for display of corrected exams will be posted on the
course webpage.
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1. Determine whether or not the functions below are convex.

a. f1 : Rn → R such that

f1(x) = 1
g(x)

for each x ∈ Rn, where g : Rn → R is concave and satisfies g(x) > 0 for each
x ∈ Rn. (1 p)

b. f2 : Rn → R such that

f(x) =
√

xT LT Lx

for each x ∈ Rn, where L ∈ Rm×n. (1 p)

c. f3 : R2 → R such that

f3(x) =


√

x1x2 if x = (x1, x2) ∈ R2
++,

∞ if x ∈ R2 \ R2
++.

(1 p)

d. f4 : Rn → R such that

f4(x) =
r∑

i=1
x(i) = x(1) + . . . + x(r)

for each x ∈ Rn, where r is an integer such that 1 ≤ r ≤ n and x(i) denote the
ith largest component of x, i.e.,

x(1) ≥ . . . ≥ x(n).

(1 p)
Remark: In each subproblem, you are allowed to assume that norms are convex.
This remark also holds for all other problems in this exam.

2. Determine if the following sets are convex or not:

a. S1 = {x ∈ Rn : x1 + . . . + xn = 1}. (1 p)

b. S2 = {x ∈ Rn : ∥x − a∥2 ≤ ∥x − b∥2}, where a, b ∈ Rn and a ̸= b. (1 p)

c. S3 =
{

x ∈ R3 : 2x1 ≥
√

x2
2 + x2

3

}
. (1 p)

d. S4 =
{

x ∈ R2 : 2 ≤ ex2
1+x2

2 ≤ 4
}

. (1 p)

e. S5 =
{

x ∈ Rn : xT y ≤ 1, ∀y ∈ C
}

, where C ⊆ Rn. (1 p)

3. Consider the convex function f : Rn → R such that

f(x) =
(
aT x − b

)2

for each x ∈ Rn, where a ∈ Rn \ {0}, b ∈ R and n ≥ 2.
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a. Prove or disprove that f is strongly convex. (1 p)

b. Find the conjugate function f∗. (2 p)

c. Let γ > 0. Find the proximal operator proxγf . (1 p)

4. Let C ⊆ Rn be a nonempty, closed and convex set. Its support function
σC : Rn → R ∪ {∞} is defined as

σC(y) = sup
x∈C

yT x

for each y ∈ Rn.

a. Show that the support function σC is convex, independent of the convexity of
the set C. (1 p)

b. Show that σ∗
C = ιC . (1 p)

c. Find an expression for proxγσC
, where γ > 0, that involves ΠC , i.e., the (Eu-

clidean) projection onto the set C. (1 p)

5. Consider the problem

minimize
x∈Rn

1
2

∥Ax − b∥2
2

where A ∈ Rn×n satisfies

A = diag(a1, . . . , an), ai ≠ 0, ∀i ∈ {1, . . . , n},

and b = (b1, . . . , bn) ∈ Rn. Let f : Rn → R such that

f(x) = 1
2

∥Ax − b∥2
2

for each x ∈ Rn.

a. Give a closed-form expression of the solution. (0.5 p)

b. Show that β = maxi∈{1,...,n} a2
i is a smoothness constant for f . (1 p)

c. Show that βi = a2
i is a coordinate-wise smoothness constants for f , for each

coordinate i = 1, . . . , n. (1 p)

d. Consider the gradient method with step-size 1/β, where β is the smoothness
constant in b.. Suppose you are given the iterate xk ∈ Rn, where k ∈ N0 is the
iteration number. For each coordinate i = 1, . . . , n, provide the update formula
for xk

i . Utilize that A = diag(a1, . . . , an). (1 p)

e. Let bi = 0 for each i = 1, . . . , n and provide an exact linear convergence rate
for each of the coordinates for the gradient method in d.. This means, find the
ρi ∈ [0, 1) such that ∥∥∥xk+1

i

∥∥∥
2

= ρi

∥∥∥xk
i

∥∥∥
2

,

for each coordinate i = 1, . . . , n. (Each coordinate will converge linearly to
x⋆

i = 0 in this case.) (1 p)
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f. Now drop the assumption that bi = 0 for each i = 1, . . . , n. Consider the
coordinate gradient method (i.e., no proximal operator) with step-sizes 1/βi,
where βi are the coordinate smoothness constants in c.. Provide an update
formula for each coordinate i = 1, . . . , n. Utilize that A = diag(a1, . . . , an).
Show that xk+1

i = x⋆
i with x⋆

i from a., independent on xk ∈ Rn. (1 p)

6. Consider minimizing a function f : Rn → R, with minimizer x⋆ ∈ Rn, using
a stochastic optimization algorithm, starting at some predetermined (deter-
ministic) point x0 ∈ Rn. Analysis of the algorithm resulted in the following
inequality

E
[
∥xk+1 − x⋆∥2

2 | xk

]
≤ ∥xk − x⋆∥2

2 − 2γ(f(xk) − f(x⋆)) + γ2G, ∀k ∈ N0,

where G is a deterministic positive constant and γ is a deterministic fixed pos-
itive step-size of the algorithm. In particular, (xk)k∈N0 is a stochastic process.

a. Apply an expectation to the above inequality to derive a Lyapunov inequality
for the algorithm. (1 p)

b. Use the obtained Lyapunov inequality to show that

k∑
i=0

E[f(xi) − f(x⋆)] ≤ ∥x0 − x⋆∥2
2 + G(k + 1)γ2

2γ
, ∀k ∈ N0. (1)

(1.5 p)

c. The upper bound (1) goes to infty as k → ∞ unless G = 0. Consider the step-
size γ = θ/

√
K + 1, where K ∈ N0 is the total number of iterations we wish to

run the algorithm and θ > 0. Show that we get a O(1/
√

K + 1) convergence
bound. In particular, show that

min
i∈{0,...,K}

E[f(xi) − f(x⋆)] ≤ ∥x0 − x⋆∥2
2 + Gθ2

2θ
√

K + 1
.

(1 p)
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